[tests] remove test_export_to_onnx (#36241)

This commit is contained in:
Joao Gante 2025-02-17 16:52:44 +00:00 committed by GitHub
parent dae8708c36
commit 429f1a682d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 0 additions and 99 deletions

View File

@ -262,20 +262,6 @@ class FSMTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
@unittest.skip(reason="Test has a segmentation fault on torch 1.8.0")
def test_export_to_onnx(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
model = FSMTModel(config).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
model,
(inputs_dict["input_ids"], inputs_dict["attention_mask"]),
f"{tmpdirname}/fsmt_test.onnx",
export_params=True,
opset_version=12,
input_names=["input_ids", "attention_mask"],
)
def test_ensure_weights_are_shared(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()

View File

@ -627,20 +627,6 @@ class LongT5ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMix
model = LongT5Model.from_pretrained(model_name)
self.assertIsNotNone(model)
@slow
def test_export_to_onnx(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
model = LongT5Model(config_and_inputs[0]).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
model,
(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]),
f"{tmpdirname}/longt5_test.onnx",
export_params=True,
opset_version=14,
input_names=["input_ids", "decoder_input_ids"],
)
def test_generate_with_head_masking(self):
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
config_and_inputs = self.model_tester.prepare_config_and_inputs()

View File

@ -871,20 +871,6 @@ class MT5ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
model = MT5Model.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip(reason="Test has a segmentation fault on torch 1.8.0")
def test_export_to_onnx(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
model = MT5Model(config_and_inputs[0]).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
model,
(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]),
f"{tmpdirname}/t5_test.onnx",
export_params=True,
opset_version=9,
input_names=["input_ids", "decoder_input_ids"],
)
def test_generate_with_head_masking(self):
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
config_and_inputs = self.model_tester.prepare_config_and_inputs()

View File

@ -26,7 +26,6 @@ from transformers.feature_extraction_utils import BatchFeature
from transformers.testing_utils import (
require_essentia,
require_librosa,
require_onnx,
require_scipy,
require_torch,
slow,
@ -611,20 +610,6 @@ class Pop2PianoModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTester
model = Pop2PianoForConditionalGeneration.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_onnx
def test_export_to_onnx(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
model = Pop2PianoForConditionalGeneration(config_and_inputs[0]).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
model,
(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]),
f"{tmpdirname}/Pop2Piano_test.onnx",
export_params=True,
opset_version=14,
input_names=["input_ids", "decoder_input_ids"],
)
def test_pass_with_input_features(self):
input_features = BatchFeature(
{

View File

@ -709,20 +709,6 @@ class SwitchTransformersModelTest(ModelTesterMixin, GenerationTesterMixin, Pipel
model = SwitchTransformersModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip(reason="Test has a segmentation fault on torch 1.8.0")
def test_export_to_onnx(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
model = SwitchTransformersModel(config_and_inputs[0]).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
model,
(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]),
f"{tmpdirname}/switch_transformers_test.onnx",
export_params=True,
opset_version=9,
input_names=["input_ids", "decoder_input_ids"],
)
def test_generate_with_head_masking(self):
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
config_and_inputs = self.model_tester.prepare_config_and_inputs()

View File

@ -875,20 +875,6 @@ class T5ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
model = T5Model.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip(reason="Test has a segmentation fault on torch 1.8.0")
def test_export_to_onnx(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
model = T5Model(config_and_inputs[0]).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
model,
(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]),
f"{tmpdirname}/t5_test.onnx",
export_params=True,
opset_version=9,
input_names=["input_ids", "decoder_input_ids"],
)
def test_generate_with_head_masking(self):
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
config_and_inputs = self.model_tester.prepare_config_and_inputs()

View File

@ -525,20 +525,6 @@ class UMT5ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_with_sequence_classification_head(*config_and_inputs)
@unittest.skip(reason="Test has a segmentation fault on torch 1.8.0")
def test_export_to_onnx(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
model = UMT5Model(config_and_inputs[0]).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
model,
(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]),
f"{tmpdirname}/t5_test.onnx",
export_params=True,
opset_version=9,
input_names=["input_ids", "decoder_input_ids"],
)
@unittest.skipIf(torch_device == "cpu", "Cant do half precision")
def test_model_fp16_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()