mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Fix 29807 sinusoidal positional encodings in Flaubert, Informer and XLM (#29904)
* Fix sinusoidal_embeddings in FlaubertModel * Fix for Informer * Fix for XLM * Move sinusoidal emb for XLM * Move sinusoidal emb for Flaubert * Small cleanup * Add comments on tests code copied from * Add with Distilbert->
This commit is contained in:
parent
83b26dd79d
commit
416711c3ea
@ -58,10 +58,10 @@ from ..deprecated._archive_maps import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST #
|
||||
# Copied from transformers.models.xlm.modeling_xlm.create_sinusoidal_embeddings
|
||||
def create_sinusoidal_embeddings(n_pos, dim, out):
|
||||
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
|
||||
out.requires_grad = False
|
||||
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
|
||||
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
|
||||
out.detach_()
|
||||
out.requires_grad = False
|
||||
|
||||
|
||||
# Copied from transformers.models.xlm.modeling_xlm.get_masks
|
||||
@ -370,6 +370,10 @@ class FlaubertPreTrainedModel(PreTrainedModel):
|
||||
if isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
if isinstance(module, FlaubertModel) and self.config.sinusoidal_embeddings:
|
||||
create_sinusoidal_embeddings(
|
||||
self.config.max_position_embeddings, self.config.emb_dim, out=module.position_embeddings.weight
|
||||
)
|
||||
|
||||
|
||||
class FlaubertModel(FlaubertPreTrainedModel):
|
||||
@ -407,8 +411,6 @@ class FlaubertModel(FlaubertPreTrainedModel):
|
||||
|
||||
# embeddings
|
||||
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim)
|
||||
if config.sinusoidal_embeddings:
|
||||
create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
|
||||
if config.n_langs > 1 and config.use_lang_emb:
|
||||
self.lang_embeddings = nn.Embedding(self.n_langs, self.dim)
|
||||
self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
|
||||
|
@ -890,7 +890,7 @@ class InformerPreTrainedModel(PreTrainedModel):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.Embedding):
|
||||
elif isinstance(module, nn.Embedding) and not isinstance(module, InformerSinusoidalPositionalEmbedding):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
@ -59,10 +59,10 @@ from ..deprecated._archive_maps import XLM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa
|
||||
|
||||
def create_sinusoidal_embeddings(n_pos, dim, out):
|
||||
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
|
||||
out.requires_grad = False
|
||||
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
|
||||
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
|
||||
out.detach_()
|
||||
out.requires_grad = False
|
||||
|
||||
|
||||
def get_masks(slen, lengths, causal, padding_mask=None):
|
||||
@ -245,6 +245,10 @@ class XLMPreTrainedModel(PreTrainedModel):
|
||||
if isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
if isinstance(module, XLMModel) and self.config.sinusoidal_embeddings:
|
||||
create_sinusoidal_embeddings(
|
||||
self.config.max_position_embeddings, self.config.emb_dim, out=module.position_embeddings.weight
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -414,8 +418,6 @@ class XLMModel(XLMPreTrainedModel):
|
||||
|
||||
# embeddings
|
||||
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim)
|
||||
if config.sinusoidal_embeddings:
|
||||
create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
|
||||
if config.n_langs > 1 and config.use_lang_emb:
|
||||
self.lang_embeddings = nn.Embedding(self.n_langs, self.dim)
|
||||
self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
|
||||
|
@ -36,6 +36,7 @@ if is_torch_available():
|
||||
FlaubertModel,
|
||||
FlaubertWithLMHeadModel,
|
||||
)
|
||||
from transformers.models.flaubert.modeling_flaubert import create_sinusoidal_embeddings
|
||||
|
||||
|
||||
class FlaubertModelTester(object):
|
||||
@ -431,6 +432,14 @@ class FlaubertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_flaubert_model(*config_and_inputs)
|
||||
|
||||
# Copied from tests/models/distilbert/test_modeling_distilbert.py with Distilbert->Flaubert
|
||||
def test_flaubert_model_with_sinusoidal_encodings(self):
|
||||
config = FlaubertConfig(sinusoidal_embeddings=True)
|
||||
model = FlaubertModel(config=config)
|
||||
sinusoidal_pos_embds = torch.empty((config.max_position_embeddings, config.emb_dim), dtype=torch.float32)
|
||||
create_sinusoidal_embeddings(config.max_position_embeddings, config.emb_dim, sinusoidal_pos_embds)
|
||||
self.model_tester.parent.assertTrue(torch.equal(model.position_embeddings.weight, sinusoidal_pos_embds))
|
||||
|
||||
def test_flaubert_lm_head(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_flaubert_lm_head(*config_and_inputs)
|
||||
|
@ -35,7 +35,11 @@ if is_torch_available():
|
||||
import torch
|
||||
|
||||
from transformers import InformerConfig, InformerForPrediction, InformerModel
|
||||
from transformers.models.informer.modeling_informer import InformerDecoder, InformerEncoder
|
||||
from transformers.models.informer.modeling_informer import (
|
||||
InformerDecoder,
|
||||
InformerEncoder,
|
||||
InformerSinusoidalPositionalEmbedding,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@ -164,6 +168,12 @@ class InformerModelTester:
|
||||
|
||||
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
|
||||
|
||||
embed_positions = InformerSinusoidalPositionalEmbedding(
|
||||
config.context_length + config.prediction_length, config.d_model
|
||||
)
|
||||
self.parent.assertTrue(torch.equal(model.encoder.embed_positions.weight, embed_positions.weight))
|
||||
self.parent.assertTrue(torch.equal(model.decoder.embed_positions.weight, embed_positions.weight))
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
decoder = model.get_decoder()
|
||||
decoder.save_pretrained(tmpdirname)
|
||||
|
@ -36,6 +36,7 @@ if is_torch_available():
|
||||
XLMModel,
|
||||
XLMWithLMHeadModel,
|
||||
)
|
||||
from transformers.models.xlm.modeling_xlm import create_sinusoidal_embeddings
|
||||
|
||||
|
||||
class XLMModelTester:
|
||||
@ -432,6 +433,14 @@ class XLMModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_xlm_model(*config_and_inputs)
|
||||
|
||||
# Copied from tests/models/distilbert/test_modeling_distilbert.py with Distilbert->XLM
|
||||
def test_xlm_model_with_sinusoidal_encodings(self):
|
||||
config = XLMConfig(sinusoidal_embeddings=True)
|
||||
model = XLMModel(config=config)
|
||||
sinusoidal_pos_embds = torch.empty((config.max_position_embeddings, config.emb_dim), dtype=torch.float32)
|
||||
create_sinusoidal_embeddings(config.max_position_embeddings, config.emb_dim, sinusoidal_pos_embds)
|
||||
self.model_tester.parent.assertTrue(torch.equal(model.position_embeddings.weight, sinusoidal_pos_embds))
|
||||
|
||||
def test_xlm_lm_head(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)
|
||||
|
Loading…
Reference in New Issue
Block a user