mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Remove dead code in tests.
This commit is contained in:
parent
b0ee7c7df3
commit
40255ab002
@ -233,80 +233,6 @@ class TFCommonTestCases:
|
||||
self.model_tester.seq_length,
|
||||
self.model_tester.key_len if hasattr(self.model_tester, 'key_len') else self.model_tester.seq_length])
|
||||
|
||||
def test_headmasking(self):
|
||||
pass
|
||||
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
# config.output_attentions = True
|
||||
# config.output_hidden_states = True
|
||||
# configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
||||
# for model_class in self.all_model_classes:
|
||||
# model = model_class(config=configs_no_init)
|
||||
# model.eval()
|
||||
|
||||
# # Prepare head_mask
|
||||
# # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
|
||||
# head_mask = torch.ones(self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads)
|
||||
# head_mask[0, 0] = 0
|
||||
# head_mask[-1, :-1] = 0
|
||||
# head_mask.requires_grad_(requires_grad=True)
|
||||
# inputs = inputs_dict.copy()
|
||||
# inputs['head_mask'] = head_mask
|
||||
|
||||
# outputs = model(**inputs)
|
||||
|
||||
# # Test that we can get a gradient back for importance score computation
|
||||
# output = sum(t.sum() for t in outputs[0])
|
||||
# output = output.sum()
|
||||
# output.backward()
|
||||
# multihead_outputs = head_mask.grad
|
||||
|
||||
# attentions = outputs[-1]
|
||||
# hidden_states = outputs[-2]
|
||||
|
||||
# # Remove Nan
|
||||
|
||||
# self.assertIsNotNone(multihead_outputs)
|
||||
# self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
|
||||
# self.assertAlmostEqual(
|
||||
# attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
|
||||
# self.assertNotEqual(
|
||||
# attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
|
||||
# self.assertNotEqual(
|
||||
# attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
|
||||
# self.assertAlmostEqual(
|
||||
# attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
|
||||
# self.assertNotEqual(
|
||||
# attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)
|
||||
|
||||
|
||||
def test_head_pruning(self):
|
||||
pass
|
||||
# if not self.test_pruning:
|
||||
# return
|
||||
|
||||
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
# for model_class in self.all_model_classes:
|
||||
# config.output_attentions = True
|
||||
# config.output_hidden_states = False
|
||||
# model = model_class(config=config)
|
||||
# model.eval()
|
||||
# heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)),
|
||||
# -1: [0]}
|
||||
# model.prune_heads(heads_to_prune)
|
||||
# outputs = model(**inputs_dict)
|
||||
|
||||
# attentions = outputs[-1]
|
||||
|
||||
# self.assertEqual(
|
||||
# attentions[0].shape[-3], 1)
|
||||
# self.assertEqual(
|
||||
# attentions[1].shape[-3], self.model_tester.num_attention_heads)
|
||||
# self.assertEqual(
|
||||
# attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
|
||||
|
||||
|
||||
def test_hidden_states_output(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
@ -323,43 +249,6 @@ class TFCommonTestCases:
|
||||
list(hidden_states[0].shape[-2:]),
|
||||
[self.model_tester.seq_length, self.model_tester.hidden_size])
|
||||
|
||||
|
||||
def test_resize_tokens_embeddings(self):
|
||||
pass
|
||||
# original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
# if not self.test_resize_embeddings:
|
||||
# return
|
||||
|
||||
# for model_class in self.all_model_classes:
|
||||
# config = copy.deepcopy(original_config)
|
||||
# model = model_class(config)
|
||||
|
||||
# model_vocab_size = config.vocab_size
|
||||
# # Retrieve the embeddings and clone theme
|
||||
# model_embed = model.resize_token_embeddings(model_vocab_size)
|
||||
# cloned_embeddings = model_embed.weight.clone()
|
||||
|
||||
# # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
||||
# model_embed = model.resize_token_embeddings(model_vocab_size + 10)
|
||||
# self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
|
||||
# # Check that it actually resizes the embeddings matrix
|
||||
# self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
|
||||
|
||||
# # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
|
||||
# model_embed = model.resize_token_embeddings(model_vocab_size - 15)
|
||||
# self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
|
||||
# # Check that it actually resizes the embeddings matrix
|
||||
# self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
|
||||
|
||||
# # Check that adding and removing tokens has not modified the first part of the embedding matrix.
|
||||
# models_equal = True
|
||||
# for p1, p2 in zip(cloned_embeddings, model_embed.weight):
|
||||
# if p1.data.ne(p2.data).sum() > 0:
|
||||
# models_equal = False
|
||||
|
||||
# self.assertTrue(models_equal)
|
||||
|
||||
|
||||
def test_model_common_attributes(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
@ -369,40 +258,6 @@ class TFCommonTestCases:
|
||||
x = model.get_output_embeddings()
|
||||
assert x is None or isinstance(x, tf.keras.layers.Layer)
|
||||
|
||||
|
||||
def test_tie_model_weights(self):
|
||||
pass
|
||||
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
# def check_same_values(layer_1, layer_2):
|
||||
# equal = True
|
||||
# for p1, p2 in zip(layer_1.weight, layer_2.weight):
|
||||
# if p1.data.ne(p2.data).sum() > 0:
|
||||
# equal = False
|
||||
# return equal
|
||||
|
||||
# for model_class in self.all_model_classes:
|
||||
# if not hasattr(model_class, 'tie_weights'):
|
||||
# continue
|
||||
|
||||
# config.torchscript = True
|
||||
# model_not_tied = model_class(config)
|
||||
# params_not_tied = list(model_not_tied.parameters())
|
||||
|
||||
# config_tied = copy.deepcopy(config)
|
||||
# config_tied.torchscript = False
|
||||
# model_tied = model_class(config_tied)
|
||||
# params_tied = list(model_tied.parameters())
|
||||
|
||||
# # Check that the embedding layer and decoding layer are the same in size and in value
|
||||
# self.assertGreater(len(params_not_tied), len(params_tied))
|
||||
|
||||
# # Check that after resize they remain tied.
|
||||
# model_tied.resize_token_embeddings(config.vocab_size + 10)
|
||||
# params_tied_2 = list(model_tied.parameters())
|
||||
# self.assertGreater(len(params_not_tied), len(params_tied))
|
||||
# self.assertEqual(len(params_tied_2), len(params_tied))
|
||||
|
||||
def test_determinism(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
@ -461,29 +316,5 @@ def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
|
||||
return output
|
||||
|
||||
|
||||
class TFModelUtilsTest(unittest.TestCase):
|
||||
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
|
||||
def test_model_from_pretrained(self):
|
||||
pass
|
||||
# logging.basicConfig(level=logging.INFO)
|
||||
# for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
|
||||
# config = BertConfig.from_pretrained(model_name)
|
||||
# self.assertIsNotNone(config)
|
||||
# self.assertIsInstance(config, PretrainedConfig)
|
||||
|
||||
# model = BertModel.from_pretrained(model_name)
|
||||
# model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
|
||||
# self.assertIsNotNone(model)
|
||||
# self.assertIsInstance(model, PreTrainedModel)
|
||||
# for value in loading_info.values():
|
||||
# self.assertEqual(len(value), 0)
|
||||
|
||||
# config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
|
||||
# model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
|
||||
# self.assertEqual(model.config.output_attentions, True)
|
||||
# self.assertEqual(model.config.output_hidden_states, True)
|
||||
# self.assertEqual(model.config, config)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
Loading…
Reference in New Issue
Block a user