mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-03 03:31:05 +06:00
s|Pretrained|PreTrained| (#11048)
This commit is contained in:
parent
b0d49fd536
commit
3d39226a51
@ -22,10 +22,10 @@ class RagPyTorchDistributedRetriever(RagRetriever):
|
||||
Args:
|
||||
config (:class:`~transformers.RagConfig`):
|
||||
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build.
|
||||
question_encoder_tokenizer (:class:`~transformers.PretrainedTokenizer`):
|
||||
question_encoder_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
|
||||
The tokenizer that was used to tokenize the question.
|
||||
It is used to decode the question and then use the generator_tokenizer.
|
||||
generator_tokenizer (:class:`~transformers.PretrainedTokenizer`):
|
||||
generator_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
|
||||
The tokenizer used for the generator part of the RagModel.
|
||||
index (:class:`~transformers.models.rag.retrieval_rag.Index`, optional, defaults to the one defined by the configuration):
|
||||
If specified, use this index instead of the one built using the configuration
|
||||
|
@ -50,10 +50,10 @@ class RagRayDistributedRetriever(RagRetriever):
|
||||
Args:
|
||||
config (:class:`~transformers.RagConfig`):
|
||||
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build.
|
||||
question_encoder_tokenizer (:class:`~transformers.PretrainedTokenizer`):
|
||||
question_encoder_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
|
||||
The tokenizer that was used to tokenize the question.
|
||||
It is used to decode the question and then use the generator_tokenizer.
|
||||
generator_tokenizer (:class:`~transformers.PretrainedTokenizer`):
|
||||
generator_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
|
||||
The tokenizer used for the generator part of the RagModel.
|
||||
retrieval_workers (:obj:`List[ray.ActorClass(RayRetriever)]`): A list of already initialized `RayRetriever` actors.
|
||||
These actor classes run on remote processes and are responsible for performing the index lookup.
|
||||
|
@ -27,7 +27,7 @@ PROCESS_INPUTS_DOCSTRING = r"""
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_beams, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using any class inheriting from :class:`~transformers.PretrainedTokenizer`. See
|
||||
Indices can be obtained using any class inheriting from :class:`~transformers.PreTrainedTokenizer`. See
|
||||
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
||||
details.
|
||||
|
||||
@ -60,7 +60,7 @@ FINALIZE_INPUTS_DOCSTRING = r"""
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_beams, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using any class inheriting from :class:`~transformers.PretrainedTokenizer`. See
|
||||
Indices can be obtained using any class inheriting from :class:`~transformers.PreTrainedTokenizer`. See
|
||||
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
||||
details.
|
||||
|
||||
@ -86,8 +86,8 @@ FINALIZE_INPUTS_DOCSTRING = r"""
|
||||
|
||||
class BeamScorer(ABC):
|
||||
"""
|
||||
Abstract base class for all beam scorers that are used for :meth:`~transformers.PretrainedModel.beam_search` and
|
||||
:meth:`~transformers.PretrainedModel.beam_sample`.
|
||||
Abstract base class for all beam scorers that are used for :meth:`~transformers.PreTrainedModel.beam_search` and
|
||||
:meth:`~transformers.PreTrainedModel.beam_sample`.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
|
@ -474,7 +474,7 @@ class PrefixConstrainedLogitsProcessor(LogitsProcessor):
|
||||
class HammingDiversityLogitsProcessor(LogitsProcessor):
|
||||
r"""
|
||||
:class:`transformers.LogitsProcessor` that enforces diverse beam search. Note that this logits processor is only
|
||||
effective for :meth:`transformers.PretrainedModel.group_beam_search`. See `Diverse Beam Search: Decoding Diverse
|
||||
effective for :meth:`transformers.PreTrainedModel.group_beam_search`. See `Diverse Beam Search: Decoding Diverse
|
||||
Solutions from Neural Sequence Models <https://arxiv.org/pdf/1610.02424.pdf>`__ for more details.
|
||||
|
||||
Args:
|
||||
|
@ -586,7 +586,7 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
|
||||
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
||||
"""
|
||||
This function is used to re-order the :obj:`past_key_values` cache if
|
||||
:meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is
|
||||
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
||||
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
||||
"""
|
||||
return tuple(
|
||||
|
@ -89,7 +89,7 @@ ENCODER_DECODER_INPUTS_DOCSTRING = r"""
|
||||
:obj:`past_key_values`).
|
||||
|
||||
Provide for sequence to sequence training to the decoder. Indices can be obtained using
|
||||
:class:`~transformers.PretrainedTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and
|
||||
:class:`~transformers.PreTrainedTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and
|
||||
:meth:`transformers.PreTrainedTokenizer.__call__` for details.
|
||||
decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
|
||||
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
|
||||
|
@ -951,7 +951,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
|
||||
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
||||
"""
|
||||
This function is used to re-order the :obj:`past_key_values` cache if
|
||||
:meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is
|
||||
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
||||
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
||||
"""
|
||||
return tuple(
|
||||
@ -1157,7 +1157,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
||||
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
||||
"""
|
||||
This function is used to re-order the :obj:`past_key_values` cache if
|
||||
:meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is
|
||||
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
||||
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
||||
"""
|
||||
return tuple(
|
||||
|
@ -1141,8 +1141,8 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
|
||||
@staticmethod
|
||||
def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]:
|
||||
"""
|
||||
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.PretrainedModel.beam_search` or
|
||||
:meth:`~transformers.PretrainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
|
||||
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.PreTrainedModel.beam_search` or
|
||||
:meth:`~transformers.PreTrainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
|
||||
correct beam_idx at every generation step.
|
||||
"""
|
||||
return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems]
|
||||
|
@ -1470,8 +1470,8 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
|
||||
@staticmethod
|
||||
def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]:
|
||||
"""
|
||||
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.PretrainedModel.beam_search` or
|
||||
:meth:`~transformers.PretrainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
|
||||
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.PreTrainedModel.beam_search` or
|
||||
:meth:`~transformers.PreTrainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
|
||||
correct beam_idx at every generation step.
|
||||
"""
|
||||
return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems]
|
||||
|
@ -351,7 +351,7 @@ def pipeline(
|
||||
# Impossible to guest what is the right tokenizer here
|
||||
raise Exception(
|
||||
"Impossible to guess which tokenizer to use. "
|
||||
"Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer."
|
||||
"Please provided a PreTrainedTokenizer class or a path/identifier to a pretrained tokenizer."
|
||||
)
|
||||
|
||||
modelcard = None
|
||||
|
@ -1930,7 +1930,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
|
||||
"""
|
||||
if not legacy_format:
|
||||
raise ValueError(
|
||||
"Only fast tokenizers (instances of PretrainedTokenizerFast) can be saved in non legacy format."
|
||||
"Only fast tokenizers (instances of PreTrainedTokenizerFast) can be saved in non legacy format."
|
||||
)
|
||||
|
||||
save_directory = str(save_directory)
|
||||
|
Loading…
Reference in New Issue
Block a user