s|Pretrained|PreTrained| (#11048)

This commit is contained in:
Stas Bekman 2021-04-04 18:08:42 -07:00 committed by GitHub
parent b0d49fd536
commit 3d39226a51
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 19 additions and 19 deletions

View File

@ -22,10 +22,10 @@ class RagPyTorchDistributedRetriever(RagRetriever):
Args:
config (:class:`~transformers.RagConfig`):
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build.
question_encoder_tokenizer (:class:`~transformers.PretrainedTokenizer`):
question_encoder_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
The tokenizer that was used to tokenize the question.
It is used to decode the question and then use the generator_tokenizer.
generator_tokenizer (:class:`~transformers.PretrainedTokenizer`):
generator_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
The tokenizer used for the generator part of the RagModel.
index (:class:`~transformers.models.rag.retrieval_rag.Index`, optional, defaults to the one defined by the configuration):
If specified, use this index instead of the one built using the configuration

View File

@ -50,10 +50,10 @@ class RagRayDistributedRetriever(RagRetriever):
Args:
config (:class:`~transformers.RagConfig`):
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build.
question_encoder_tokenizer (:class:`~transformers.PretrainedTokenizer`):
question_encoder_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
The tokenizer that was used to tokenize the question.
It is used to decode the question and then use the generator_tokenizer.
generator_tokenizer (:class:`~transformers.PretrainedTokenizer`):
generator_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
The tokenizer used for the generator part of the RagModel.
retrieval_workers (:obj:`List[ray.ActorClass(RayRetriever)]`): A list of already initialized `RayRetriever` actors.
These actor classes run on remote processes and are responsible for performing the index lookup.

View File

@ -27,7 +27,7 @@ PROCESS_INPUTS_DOCSTRING = r"""
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_beams, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from :class:`~transformers.PretrainedTokenizer`. See
Indices can be obtained using any class inheriting from :class:`~transformers.PreTrainedTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
@ -60,7 +60,7 @@ FINALIZE_INPUTS_DOCSTRING = r"""
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_beams, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from :class:`~transformers.PretrainedTokenizer`. See
Indices can be obtained using any class inheriting from :class:`~transformers.PreTrainedTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
@ -86,8 +86,8 @@ FINALIZE_INPUTS_DOCSTRING = r"""
class BeamScorer(ABC):
"""
Abstract base class for all beam scorers that are used for :meth:`~transformers.PretrainedModel.beam_search` and
:meth:`~transformers.PretrainedModel.beam_sample`.
Abstract base class for all beam scorers that are used for :meth:`~transformers.PreTrainedModel.beam_search` and
:meth:`~transformers.PreTrainedModel.beam_sample`.
"""
@abstractmethod

View File

@ -474,7 +474,7 @@ class PrefixConstrainedLogitsProcessor(LogitsProcessor):
class HammingDiversityLogitsProcessor(LogitsProcessor):
r"""
:class:`transformers.LogitsProcessor` that enforces diverse beam search. Note that this logits processor is only
effective for :meth:`transformers.PretrainedModel.group_beam_search`. See `Diverse Beam Search: Decoding Diverse
effective for :meth:`transformers.PreTrainedModel.group_beam_search`. See `Diverse Beam Search: Decoding Diverse
Solutions from Neural Sequence Models <https://arxiv.org/pdf/1610.02424.pdf>`__ for more details.
Args:

View File

@ -586,7 +586,7 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return tuple(

View File

@ -89,7 +89,7 @@ ENCODER_DECODER_INPUTS_DOCSTRING = r"""
:obj:`past_key_values`).
Provide for sequence to sequence training to the decoder. Indices can be obtained using
:class:`~transformers.PretrainedTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and
:class:`~transformers.PreTrainedTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and
:meth:`transformers.PreTrainedTokenizer.__call__` for details.
decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will

View File

@ -951,7 +951,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return tuple(
@ -1157,7 +1157,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return tuple(

View File

@ -1141,8 +1141,8 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
@staticmethod
def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]:
"""
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.PretrainedModel.beam_search` or
:meth:`~transformers.PretrainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.PreTrainedModel.beam_search` or
:meth:`~transformers.PreTrainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
correct beam_idx at every generation step.
"""
return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems]

View File

@ -1470,8 +1470,8 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
@staticmethod
def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]:
"""
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.PretrainedModel.beam_search` or
:meth:`~transformers.PretrainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.PreTrainedModel.beam_search` or
:meth:`~transformers.PreTrainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
correct beam_idx at every generation step.
"""
return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems]

View File

@ -351,7 +351,7 @@ def pipeline(
# Impossible to guest what is the right tokenizer here
raise Exception(
"Impossible to guess which tokenizer to use. "
"Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer."
"Please provided a PreTrainedTokenizer class or a path/identifier to a pretrained tokenizer."
)
modelcard = None

View File

@ -1930,7 +1930,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
"""
if not legacy_format:
raise ValueError(
"Only fast tokenizers (instances of PretrainedTokenizerFast) can be saved in non legacy format."
"Only fast tokenizers (instances of PreTrainedTokenizerFast) can be saved in non legacy format."
)
save_directory = str(save_directory)