added tests + fixed losses

This commit is contained in:
thomwolf 2019-01-08 16:24:23 +01:00
parent eed51c5bdf
commit 3cf12b235a
4 changed files with 484 additions and 225 deletions

View File

@ -549,7 +549,7 @@ class BertPreTrainedModel(nn.Module):
model.__class__.__name__, unexpected_keys))
if len(error_msgs) > 0:
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
self.__class__.__name__, "\n\t".join(error_msgs)))
model.__class__.__name__, "\n\t".join(error_msgs)))
if tempdir:
# Clean up temp dir
shutil.rmtree(tempdir)

View File

@ -48,12 +48,10 @@ class OpenAIGPTConfig(object):
n_embd=768,
n_layer=12,
n_head=12,
intermediate_size=3072,
afn="gelu",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
type_vocab_size=2,
initializer_range=0.02):
"""Constructs OpenAIGPTConfig.
@ -65,8 +63,6 @@ class OpenAIGPTConfig(object):
n_layer: Number of hidden layers in the Transformer encoder.
n_head: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
afn: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
resid_pdrop: The dropout probabilitiy for all fully connected
@ -74,8 +70,6 @@ class OpenAIGPTConfig(object):
attn_pdrop: The dropout ratio for the attention
probabilities.
embd_pdrop: The dropout ratio for the embeddings.
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`OpenAIGPTModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
@ -92,11 +86,9 @@ class OpenAIGPTConfig(object):
self.n_layer = n_layer
self.n_head = n_head
self.afn = afn
self.intermediate_size = intermediate_size
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
else:
raise ValueError("First argument must be either a vocabulary size (int)"
@ -133,6 +125,167 @@ class OpenAIGPTConfig(object):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class Conv1D(nn.Module):
def __init__(self, nf, rf, nx):
super(Conv1D, self).__init__()
self.rf = rf
self.nf = nf
if rf == 1: # faster 1x1 conv
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
self.weight = Parameter(w)
self.bias = Parameter(torch.zeros(nf))
else: # was used to train LM
raise NotImplementedError
def forward(self, x):
if self.rf == 1:
size_out = x.size()[:-1] + (self.nf,)
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
x = x.view(*size_out)
else:
raise NotImplementedError
return x
class Attention(nn.Module):
def __init__(self, nx, n_ctx, cfg, scale=False):
super(Attention, self).__init__()
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
assert n_state % cfg.n_head == 0
self.register_buffer('b', torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
self.n_head = cfg.n_head
self.split_size = n_state
self.scale = scale
self.c_attn = Conv1D(n_state * 3, 1, nx)
self.c_proj = Conv1D(n_state, 1, nx)
self.attn_dropout = nn.Dropout(cfg.attn_pdrop)
self.resid_dropout = nn.Dropout(cfg.resid_pdrop)
def _attn(self, q, k, v):
w = torch.matmul(q, k)
if self.scale:
w = w / math.sqrt(v.size(-1))
# w = w * self.b + -1e9 * (1 - self.b) # TF implem method: mask_attn_weights
# XD: self.b may be larger than w, so we need to crop it
b = self.b[:, :, :w.size(-2), :w.size(-1)]
w = w * b + -1e9 * (1 - b)
w = nn.Softmax(dim=-1)(w)
w = self.attn_dropout(w)
return torch.matmul(w, v)
def merge_heads(self, x):
x = x.permute(0, 2, 1, 3).contiguous()
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
def split_heads(self, x, k=False):
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
if k:
return x.permute(0, 2, 3, 1)
else:
return x.permute(0, 2, 1, 3)
def forward(self, x):
x = self.c_attn(x)
query, key, value = x.split(self.split_size, dim=2)
query = self.split_heads(query)
key = self.split_heads(key, k=True)
value = self.split_heads(value)
a = self._attn(query, key, value)
a = self.merge_heads(a)
a = self.c_proj(a)
a = self.resid_dropout(a)
return a
class MLP(nn.Module):
def __init__(self, n_state, cfg): # in MLP: n_state=3072 (4 * n_embd)
super(MLP, self).__init__()
nx = cfg.n_embd
self.c_fc = Conv1D(n_state, 1, nx)
self.c_proj = Conv1D(nx, 1, n_state)
self.act = ACT_FNS[cfg.afn]
self.dropout = nn.Dropout(cfg.resid_pdrop)
def forward(self, x):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
return self.dropout(h2)
class Block(nn.Module):
def __init__(self, n_ctx, cfg, scale=False):
super(Block, self).__init__()
nx = cfg.n_embd
self.attn = Attention(nx, n_ctx, cfg, scale)
self.ln_1 = LayerNorm(nx)
self.mlp = MLP(4 * nx, cfg)
self.ln_2 = LayerNorm(nx)
def forward(self, x):
a = self.attn(x)
n = self.ln_1(x + a)
m = self.mlp(n)
h = self.ln_2(n + m)
return h
class OpenAIGPTLMHead(nn.Module):
""" Language Model Head for the transformer """
def __init__(self, model_embeddings_weights, cfg):
super(OpenAIGPTLMHead, self).__init__()
self.n_embd = cfg.n_embd
self.set_embeddings_weights(model_embeddings_weights)
def set_embeddings_weights(self, model_embeddings_weights):
embed_shape = model_embeddings_weights.shape
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
self.decoder.weight = model_embeddings_weights # Tied weights
def forward(self, hidden_state):
# Truncated Language modeling logits (we remove the last token)
# h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
lm_logits = self.decoder(hidden_state)
return lm_logits
class OpenAIGPTMultipleChoiceHead(nn.Module):
""" Classifier Head for the transformer """
def __init__(self, cfg):
super(OpenAIGPTMultipleChoiceHead, self).__init__()
self.n_embd = cfg.n_embd
# self.multiple_choice_token = multiple_choice_token
self.dropout = nn.Dropout2d(cfg.resid_pdrop) # To reproduce the noise_shape parameter of TF implementation
self.linear = nn.Linear(cfg.n_embd, 1)
nn.init.normal_(self.linear.weight, std = 0.02)
nn.init.normal_(self.linear.bias, 0)
def forward(self, hidden_states, classification_token_mask):
# Classification logits
# hidden_states = hidden_states.view(-1, self.n_embd)
# classification_token_mask = classification_token_mask.view(-1, 1).expand_as(hidden_states)
multiple_choice_h = hidden_states * classification_token_mask.unsqueeze(-1)
multiple_choice_h = multiple_choice_h.sum(dim=-2)
# flat = x[..., 0].contiguous().view(-1)
# multiple_choice_h = multiple_choice_h[flat == self.multiple_choice_token, :]
# multiple_choice_h = multiple_choice_h.view(-1, x.size(1), self.n_embd, 1)
# # This double transposition is there to replicate the behavior
# # of the noise_shape argument in the tensorflow
# # implementation. For more details, see
# # https://github.com/huggingface/pytorch-openai-transformer-lm/issues/11
# multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
# multiple_choice_h = multiple_choice_h.contiguous().view(-1, self.n_embd)
multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
return multiple_choice_logits
class OpenAIGPTPreTrainedModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
@ -142,7 +295,7 @@ class OpenAIGPTPreTrainedModel(nn.Module):
if not isinstance(config, OpenAIGPTConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
"To create a model from a Google pretrained model use "
"To create a model from a pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
))
@ -161,11 +314,12 @@ class OpenAIGPTPreTrainedModel(nn.Module):
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def post_loading(self):
def set_num_special_tokens(self, num_special_tokens):
pass
@classmethod
def from_pretrained(cls, pretrained_model_name, state_dict=None, cache_dir=None, *inputs, **kwargs):
def from_pretrained(cls, pretrained_model_name, num_special_tokens=0, state_dict=None, cache_dir=None,
*inputs, **kwargs):
"""
Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
@ -178,7 +332,7 @@ class OpenAIGPTPreTrainedModel(nn.Module):
. `openai_gpt_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
@ -263,167 +417,15 @@ class OpenAIGPTPreTrainedModel(nn.Module):
model.__class__.__name__, unexpected_keys))
if len(error_msgs) > 0:
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
self.__class__.__name__, "\n\t".join(error_msgs)))
model.post_loading()
model.__class__.__name__, "\n\t".join(error_msgs)))
# Add additional embeddings for special tokens if needed
if num_special_tokens != config.n_special:
model.set_num_special_tokens(num_special_tokens)
if tempdir:
# Clean up temp dir
shutil.rmtree(tempdir)
return model
class Conv1D(nn.Module):
def __init__(self, nf, rf, nx):
super(Conv1D, self).__init__()
self.rf = rf
self.nf = nf
if rf == 1: # faster 1x1 conv
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
self.weight = Parameter(w)
self.bias = Parameter(torch.zeros(nf))
else: # was used to train LM
raise NotImplementedError
def forward(self, x):
if self.rf == 1:
size_out = x.size()[:-1] + (self.nf,)
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
x = x.view(*size_out)
else:
raise NotImplementedError
return x
class Attention(nn.Module):
def __init__(self, nx, n_ctx, cfg, scale=False):
super(Attention, self).__init__()
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
assert n_state % cfg.n_head == 0
self.register_buffer('b', torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
self.n_head = cfg.n_head
self.split_size = n_state
self.scale = scale
self.c_attn = Conv1D(n_state * 3, 1, nx)
self.c_proj = Conv1D(n_state, 1, nx)
self.attn_dropout = nn.Dropout(cfg.attn_pdrop)
self.resid_dropout = nn.Dropout(cfg.resid_pdrop)
def _attn(self, q, k, v):
w = torch.matmul(q, k)
if self.scale:
w = w / math.sqrt(v.size(-1))
w = w * self.b + -1e9 * (1 - self.b) # TF implem method: mask_attn_weights
w = nn.Softmax(dim=-1)(w)
w = self.attn_dropout(w)
return torch.matmul(w, v)
def merge_heads(self, x):
x = x.permute(0, 2, 1, 3).contiguous()
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
def split_heads(self, x, k=False):
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
if k:
return x.permute(0, 2, 3, 1)
else:
return x.permute(0, 2, 1, 3)
def forward(self, x):
x = self.c_attn(x)
query, key, value = x.split(self.split_size, dim=2)
query = self.split_heads(query)
key = self.split_heads(key, k=True)
value = self.split_heads(value)
a = self._attn(query, key, value)
a = self.merge_heads(a)
a = self.c_proj(a)
a = self.resid_dropout(a)
return a
class MLP(nn.Module):
def __init__(self, n_state, cfg): # in MLP: n_state=3072 (4 * n_embd)
super(MLP, self).__init__()
nx = cfg.n_embd
self.c_fc = Conv1D(n_state, 1, nx)
self.c_proj = Conv1D(nx, 1, n_state)
self.act = ACT_FNS[cfg.afn]
self.dropout = nn.Dropout(cfg.resid_pdrop)
def forward(self, x):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
return self.dropout(h2)
class Block(nn.Module):
def __init__(self, n_ctx, cfg, scale=False):
super(Block, self).__init__()
nx = cfg.n_embd
self.attn = Attention(nx, n_ctx, cfg, scale)
self.ln_1 = LayerNorm(nx)
self.mlp = MLP(4 * nx, cfg)
self.ln_2 = LayerNorm(nx)
def forward(self, x):
a = self.attn(x)
n = self.ln_1(x + a)
m = self.mlp(n)
h = self.ln_2(n + m)
return h
class OpenAIGPTLMHead(nn.Module):
""" Language Model Head for the transformer """
def __init__(self, model_embeddings_weights, cfg):
super(OpenAIGPTLMHead, self).__init__()
self.n_embd = cfg.n_embd
self.set_embeddings_weights(model_embeddings_weights)
def set_embeddings_weights(self, model_embeddings_weights):
embed_shape = model_embeddings_weights.shape
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
self.decoder.weight = model_embeddings_weights # Tied weights
def forward(self, h):
# Truncated Language modeling logits (we remove the last token)
h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
lm_logits = self.decoder(h_trunc)
return lm_logits
class OpenAIGPTClfHead(nn.Module):
""" Classifier Head for the transformer """
def __init__(self, clf_token, cfg):
super(OpenAIGPTClfHead, self).__init__()
self.n_embd = cfg.n_embd
self.clf_token = clf_token
self.dropout = nn.Dropout2d(cfg.resid_pdrop) # To reproduce the noise_shape parameter of TF implementation
self.linear = nn.Linear(cfg.n_embd, 1)
nn.init.normal_(self.linear.weight, std = 0.02)
nn.init.normal_(self.linear.bias, 0)
def forward(self, h, x):
# Classification logits
clf_h = h.view(-1, self.n_embd)
flat = x[..., 0].contiguous().view(-1)
clf_h = clf_h[flat == self.clf_token, :]
clf_h = clf_h.view(-1, x.size(1), self.n_embd, 1)
# This double transposition is there to replicate the behavior
# of the noise_shape argument in the tensorflow
# implementation. For more details, see
# https://github.com/huggingface/pytorch-openai-transformer-lm/issues/11
clf_h = self.dropout(clf_h.transpose(1, 2)).transpose(1, 2)
clf_h = clf_h.contiguous().view(-1, self.n_embd)
clf_logits = self.linear(clf_h)
return clf_logits.view(-1, x.size(1))
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
""" OpenAI GPT model """
@ -440,6 +442,7 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
# nn.init.normal_(self.embed.weight, std=0.02)
def set_num_special_tokens(self, num_special_tokens):
" Update input embeddings with new embedding matrice "
# Update config
self.config.n_special = num_special_tokens
# # Build new embeddings and initialize
@ -451,45 +454,83 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
self.embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
self.embed.weight.data[-self.config.n_ctx:, :] = old_embed.weight.data[-self.config.n_ctx:, :]
def forward(self, x):
x = x.view(-1, x.size(-2), x.size(-1))
e = self.embed(x)
def forward(self, input_ids, position_ids=None, token_type_ids=None):
if position_ids is None:
start = self.config.vocab_size + self.config.n_special
end = start + input_ids.size(-1)
position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_ids.size(-1))
position_ids = position_ids.view(-1, position_ids.size(-1))
inputs_embeds = self.embed(input_ids)
position_embeds = self.embed(position_ids)
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
token_type_embeds = self.embed(token_type_ids)
else:
token_type_embeds = 0
# Add the position information to the input embeddings
h = e.sum(dim=2)
# h = e.sum(dim=2)
hidden_states = inputs_embeds + position_embeds + token_type_embeds
for block in self.h:
h = block(h)
return h
hidden_states = block(hidden_states)
return hidden_states.view(*input_shape, hidden_states.size(-1))
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
""" OpenAI GPT model with language model and classification heads """
def __init__(self, cfg, clf_token='[CLS]'):
super(OpenAIGPTDoubleHeadsModel, self).__init__(cfg)
def __init__(self, cfg):
super(OpenAIGPTLMHeadModel, self).__init__(cfg)
self.transformer = OpenAIGPTModel(cfg)
self.lm_head = OpenAIGPTLMHead(self.transformer.embed.weight, cfg)
self.clf_head = OpenAIGPTClfHead(clf_token, cfg)
self.apply(self.init_weights)
def post_loading(self):
" Set the number of special tokens to 1 (for the [CLS] token) "
self.set_num_special_tokens(1)
def set_num_special_tokens(self, num_special_tokens):
" Update input and output embeddings with new embedding matrice "
self.transformer.set_num_special_tokens(num_special_tokens)
self.lm_head.set_embeddings_weights(self.transformer.embed.weight)
def forward(self, x, lm_labels=None, clf_labels=None):
h = self.transformer(x)
lm_logits = self.lm_head(h)
clf_logits = self.clf_head(h, x)
losses = []
def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None):
hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
lm_logits = self.lm_head(hidden_states)
if lm_labels is not None:
loss_fct = CrossEntropyLoss()
losses.append(loss_fct(lm_logits, lm_labels))
if clf_labels is not None:
loss = loss_fct(lm_logits, lm_labels)
return loss
return lm_logits
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
""" OpenAI GPT model with language model and classification heads """
def __init__(self, cfg):
super(OpenAIGPTDoubleHeadsModel, self).__init__(cfg)
self.transformer = OpenAIGPTModel(cfg)
self.lm_head = OpenAIGPTLMHead(self.transformer.embed.weight, cfg)
self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(cfg)
self.apply(self.init_weights)
def set_num_special_tokens(self, num_special_tokens):
" Update input and output embeddings with new embedding matrice "
self.transformer.set_num_special_tokens(num_special_tokens)
self.lm_head.set_embeddings_weights(self.transformer.embed.weight)
def forward(self, input_ids, classification_token_mask, position_ids=None, token_type_ids=None,
lm_labels=None, multiple_choice_labels=None):
"""
input_ids as to be of shape B x C x S
lm_labels can be masked using the -1 value
"""
hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
lm_logits = self.lm_head(hidden_states)
multiple_choice_logits = self.multiple_choice_head(hidden_states, classification_token_mask)
losses = []
if lm_labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
losses.append(loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1)))
if multiple_choice_labels is not None:
loss_fct = CrossEntropyLoss()
losses.append(loss_fct(clf_logits, clf_labels))
losses.append(loss_fct(multiple_choice_logits, multiple_choice_labels.view(-1)))
if losses:
return losses
return lm_logits, clf_logits
return lm_logits, multiple_choice_logits

View File

@ -67,19 +67,17 @@ class OpenAIGPTTokenizer(object):
mostly a wrapper for a public python bpe tokenizer
"""
@classmethod
def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwargs):
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
"""
Instantiate a PreTrainedBertModel from a pre-trained model file.
Download and cache the pre-trained model file if needed.
"""
if pretrained_model_name in PRETRAINED_VOCAB_ARCHIVE_MAP:
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name]
merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name]
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
vocab_file = pretrained_model_name
if os.path.isdir(vocab_file):
vocab_file = os.path.join(vocab_file, VOCAB_NAME)
merges_file = os.path.join(vocab_file, MERGES_NAME)
vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
# redirect to the cache, if necessary
try:
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
@ -87,11 +85,12 @@ class OpenAIGPTTokenizer(object):
except FileNotFoundError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find any file "
"associated to this path or url.".format(
pretrained_model_name,
"We assumed '{}' was a path or url but couldn't find files {} and {} "
"at this path or url.".format(
pretrained_model_name_or_path,
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
vocab_file))
pretrained_model_name_or_path,
vocab_file, merges_file))
return None
if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
logger.info("loading vocabulary file {}".format(vocab_file))
@ -101,29 +100,38 @@ class OpenAIGPTTokenizer(object):
vocab_file, resolved_vocab_file))
logger.info("loading merges file {} from cache at {}".format(
merges_file, resolved_merges_file))
if pretrained_model_name in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer
# than the number of positional embeddings
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name]
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
# Instantiate tokenizer.
tokenizer = cls(resolved_vocab_file, resolved_merges_file, *inputs, **kwargs)
return tokenizer
def __init__(self, vocab_file, merges_file):
def __init__(self, vocab_file, merges_file, special_tokens=None, max_len=None):
try:
import ftfy
import spacy
except ImportError:
raise ImportError("Please install ftfy and spacy to use OpenAI GPT tokenizer.")
self.max_len = max_len if max_len is not None else int(1e12)
self.nlp = spacy.load('en', disable=['parser', 'tagger', 'ner', 'textcat'])
self.fix_text = ftfy.fix_text
self.encoder = json.load(open(vocab_file))
self.decoder = {v:k for k,v in self.encoder.items()}
merges = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
merges = [tuple(merge.split()) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
if not special_tokens:
self.special_tokens = {}
else:
self.special_tokens = dict((tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens))
def set_special_tokens(self, special_tokens):
self.special_tokens = dict((tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens))
def bpe(self, token):
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
@ -168,20 +176,38 @@ class OpenAIGPTTokenizer(object):
self.cache[token] = word
return word
def tokenize(self, texts, verbose=True):
texts_tokens = []
if verbose:
for text in tqdm(texts, ncols=80, leave=False):
text = self.nlp(text_standardize(ftfy.fix_text(text)))
text_tokens = []
for token in text:
text_tokens.extend([self.encoder.get(t, 0) for t in self.bpe(token.text.lower()).split(' ')])
texts_tokens.append(text_tokens)
else:
for text in texts:
text = self.nlp(text_standardize(ftfy.fix_text(text)))
text_tokens = []
for token in text:
text_tokens.extend([self.encoder.get(t, 0) for t in self.bpe(token.text.lower()).split(' ')])
texts_tokens.append(text_tokens)
return texts_tokens
def tokenize(self, text):
split_tokens = []
text = self.nlp(text_standardize(self.fix_text(text)))
for token in text:
split_tokens.extend([t for t in self.bpe(token.text.lower()).split(' ')])
return split_tokens
def convert_tokens_to_ids(self, tokens):
"""Converts a sequence of tokens into ids using the vocab."""
ids = []
for token in tokens:
if token in self.special_tokens:
ids.append(self.special_tokens[token])
else:
ids.append(self.encoder.get(token, 0))
if len(ids) > self.max_len:
raise ValueError(
"Token indices sequence length is longer than the specified maximum "
" sequence length for this BERT model ({} > {}). Running this"
" sequence through BERT will result in indexing errors".format(len(ids), self.max_len)
)
return ids
def convert_ids_to_tokens(self, ids):
"""Converts a sequence of ids in BPE tokens using the vocab."""
tokens = []
for i in ids:
tokens.append(self.decoder[i])
return tokens
def decode(self, ids):
"""Converts a sequence of ids in a string."""
tokens = self.convert_ids_to_tokens(ids)
out_string = ''.join(tokens).replace('</w>', ' ')
return out_string

View File

@ -0,0 +1,192 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import json
import random
import torch
from pytorch_pretrained_bert import (OpenAIGPTConfig, OpenAIGPTModel, OpenAIGPTDoubleHeadsModel)
class OpenAIGPTModelTest(unittest.TestCase):
class OpenAIGPTModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_position_ids=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
n_special=1,
n_ctx=33,
n_embd=32,
n_layer=5,
n_head=4,
n_choices=3,
afn="gelu",
resid_pdrop=0.1,
attn_pdrop=0.1,
embd_pdrop=0.1,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
scope=None):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_position_ids = use_position_ids
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.n_special = n_special
self.n_ctx = n_ctx
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.afn = afn
self.n_choices = n_choices
self.resid_pdrop = resid_pdrop
self.attn_pdrop = attn_pdrop
self.embd_pdrop = embd_pdrop
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.vocab_size)
position_ids = None
if self.use_position_ids:
position_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.n_ctx)
position_ids = position_ids + self.n_special + self.vocab_size
token_type_ids = None
if self.use_token_type_ids:
total_voc = self.n_ctx + self.n_special + self.vocab_size
token_type_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_voc)
multiple_choice_labels = None
lm_labels = None
classification_token_mask = None
if self.use_labels:
multiple_choice_labels = OpenAIGPTModelTest.ids_tensor([self.batch_size], self.type_sequence_label_size)
lm_labels = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.num_labels)
classification_token_mask = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], 2).float()
config = OpenAIGPTConfig(
vocab_size_or_config_json_file=self.vocab_size,
n_ctx=self.n_ctx,
n_special=self.n_special,
n_embd=self.n_embd,
n_layer=self.n_layer,
n_head=self.n_head,
afn=self.afn,
resid_pdrop=self.resid_pdrop,
attn_pdrop=self.attn_pdrop,
embd_pdrop=self.embd_pdrop,
initializer_range=self.initializer_range)
return (config, input_ids, token_type_ids, position_ids,
multiple_choice_labels, lm_labels, classification_token_mask)
def create_openai_model(self, config, input_ids, token_type_ids, position_ids,
multiple_choice_labels, lm_labels, classification_token_mask):
model = OpenAIGPTModel(config)
hidden_states = model(input_ids, position_ids, token_type_ids)
outputs = {
"hidden_states": hidden_states,
}
return outputs
def check_openai_model_output(self, result):
self.parent.assertListEqual(
list(result["hidden_states"].size()),
[self.batch_size, self.n_choices, self.seq_length, self.n_embd])
def create_openai_double_heads(self, config, input_ids, token_type_ids, position_ids,
multiple_choice_labels, lm_labels, classification_token_mask):
model = OpenAIGPTDoubleHeadsModel(config)
loss = model(input_ids, classification_token_mask, position_ids,
token_type_ids, lm_labels, multiple_choice_labels)
lm_logits, multiple_choice_logits = model(input_ids, classification_token_mask, position_ids, token_type_ids)
outputs = {
"loss": loss,
"lm_logits": lm_logits,
"multiple_choice_logits": multiple_choice_logits,
}
return outputs
def check_openai_double_heads_output(self, result):
total_voc = self.n_ctx + self.n_special + self.vocab_size
self.parent.assertListEqual(
list(result["lm_logits"].size()),
[self.batch_size, self.n_choices, self.seq_length, total_voc])
self.parent.assertListEqual(
list(result["multiple_choice_logits"].size()),
[self.batch_size, self.n_choices])
def check_openai_double_heads_loss_output(self, result):
self.parent.assertListEqual(
[list(l.size()) for l in result["loss"]],
[[], []])
def test_default(self):
self.run_tester(OpenAIGPTModelTest.OpenAIGPTModelTester(self))
def test_config_to_json_string(self):
config = OpenAIGPTConfig(vocab_size_or_config_json_file=99, n_embd=37)
obj = json.loads(config.to_json_string())
self.assertEqual(obj["vocab_size"], 99)
self.assertEqual(obj["n_embd"], 37)
def run_tester(self, tester):
config_and_inputs = tester.prepare_config_and_inputs()
output_result = tester.create_openai_model(*config_and_inputs)
tester.check_openai_model_output(output_result)
output_result = tester.create_openai_double_heads(*config_and_inputs)
tester.check_openai_double_heads_output(output_result)
tester.check_openai_double_heads_loss_output(output_result)
@classmethod
def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
if __name__ == "__main__":
unittest.main()