mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
adding tokenizer
This commit is contained in:
parent
88e5bef58f
commit
3835e1e651
@ -16,16 +16,15 @@
|
||||
|
||||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||
|
||||
import collections
|
||||
import logging
|
||||
import os
|
||||
import unicodedata
|
||||
from io import open
|
||||
|
||||
from .tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
SPIECE_UNDERLINE = u'▁'
|
||||
|
||||
####################################################
|
||||
# Mapping from the keyword arguments names of Tokenizer `__init__`
|
||||
# to file names for serializing Tokenizer instances
|
||||
@ -39,8 +38,7 @@ VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'}
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
'vocab_file':
|
||||
{
|
||||
't5-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-base-uncased-vocab.txt",
|
||||
't5-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-large-uncased-vocab.txt",
|
||||
't5': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-spiece.model",
|
||||
}
|
||||
}
|
||||
|
||||
@ -48,167 +46,83 @@ PRETRAINED_VOCAB_FILES_MAP = {
|
||||
# Mapping from model shortcut names to max length of inputs
|
||||
####################################################
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
't5-base-uncased': 512,
|
||||
't5-large-uncased': 512,
|
||||
't5': 512,
|
||||
}
|
||||
|
||||
####################################################
|
||||
# Mapping from model shortcut names to a dictionary of additional
|
||||
# keyword arguments for Tokenizer `__init__`.
|
||||
# To be used for checkpoint specific configurations.
|
||||
####################################################
|
||||
PRETRAINED_INIT_CONFIGURATION = {
|
||||
't5-base-uncased': {'do_lower_case': True},
|
||||
't5-large-uncased': {'do_lower_case': True},
|
||||
}
|
||||
|
||||
|
||||
def load_vocab(vocab_file):
|
||||
"""Loads a vocabulary file into a dictionary."""
|
||||
vocab = collections.OrderedDict()
|
||||
with open(vocab_file, "r", encoding="utf-8") as reader:
|
||||
tokens = reader.readlines()
|
||||
for index, token in enumerate(tokens):
|
||||
token = token.rstrip('\n')
|
||||
vocab[token] = index
|
||||
return vocab
|
||||
|
||||
|
||||
class T5Tokenizer(PreTrainedTokenizer):
|
||||
r"""
|
||||
Constructs a T5Tokenizer.
|
||||
:class:`~transformers.T5Tokenizer` runs end-to-end tokenization: punctuation splitting + wordpiece
|
||||
|
||||
Args:
|
||||
vocab_file: Path to a one-wordpiece-per-line vocabulary file
|
||||
do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False
|
||||
"""
|
||||
SentencePiece based tokenizer. Peculiarities:
|
||||
|
||||
- requires `SentencePiece <https://github.com/google/sentencepiece>`_
|
||||
"""
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
|
||||
def __init__(self, vocab_file, do_lower_case=True,
|
||||
unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]",
|
||||
mask_token="[MASK]", **kwargs):
|
||||
"""Constructs a T5Tokenizer.
|
||||
def __init__(self, vocab_file, eos_token="</s>", unk_token="<unk>",
|
||||
pad_token="<pad>", **kwargs):
|
||||
super(T5Tokenizer, self).__init__(eos_token=eos_token, unk_token=unk_token,
|
||||
pad_token=pad_token, **kwargs)
|
||||
|
||||
Args:
|
||||
**vocab_file**: Path to a one-wordpiece-per-line vocabulary file
|
||||
**do_lower_case**: (`optional`) boolean (default True)
|
||||
Whether to lower case the input
|
||||
Only has an effect when do_basic_tokenize=True
|
||||
"""
|
||||
super(T5Tokenizer, self).__init__(unk_token=unk_token, sep_token=sep_token,
|
||||
pad_token=pad_token, cls_token=cls_token,
|
||||
mask_token=mask_token, **kwargs)
|
||||
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens
|
||||
self.max_len_sentences_pair = self.max_len - 3 # take into account special tokens
|
||||
try:
|
||||
import sentencepiece as spm
|
||||
except ImportError:
|
||||
logger.warning("You need to install SentencePiece to use T5Tokenizer:"
|
||||
"https://github.com/google/sentencepiece"
|
||||
"pip install sentencepiece")
|
||||
|
||||
if not os.path.isfile(vocab_file):
|
||||
raise ValueError(
|
||||
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
|
||||
"model use `tokenizer = T5Tokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file))
|
||||
self.vocab = load_vocab(vocab_file)
|
||||
self.vocab_file = vocab_file
|
||||
|
||||
self.sp_model = spm.SentencePieceProcessor()
|
||||
self.sp_model.Load(vocab_file)
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return len(self.vocab)
|
||||
return self.sp_model.get_piece_size()
|
||||
|
||||
def __getstate__(self):
|
||||
state = self.__dict__.copy()
|
||||
state["sp_model"] = None
|
||||
return state
|
||||
|
||||
def __setstate__(self, d):
|
||||
self.__dict__ = d
|
||||
try:
|
||||
import sentencepiece as spm
|
||||
except ImportError:
|
||||
logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
|
||||
"pip install sentencepiece")
|
||||
self.sp_model = spm.SentencePieceProcessor()
|
||||
self.sp_model.Load(self.vocab_file)
|
||||
|
||||
def _tokenize(self, text):
|
||||
""" Take as input a string and return a list of strings (tokens) for words/sub-words
|
||||
"""
|
||||
split_tokens = []
|
||||
if self.do_basic_tokenize:
|
||||
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
|
||||
for sub_token in self.wordpiece_tokenizer.tokenize(token):
|
||||
split_tokens.append(sub_token)
|
||||
else:
|
||||
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
||||
return split_tokens
|
||||
return self.sp_model.EncodeAsPieces(text)
|
||||
|
||||
def _convert_token_to_id(self, token):
|
||||
""" Converts a token (str/unicode) in an id using the vocab. """
|
||||
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
||||
return self.sp_model.piece_to_id(token)
|
||||
|
||||
def _convert_id_to_token(self, index):
|
||||
"""Converts an index (integer) in a token (string/unicode) using the vocab."""
|
||||
return self.ids_to_tokens.get(index, self.unk_token)
|
||||
return self.sp_model.id_to_piece(index)
|
||||
|
||||
def convert_tokens_to_string(self, tokens):
|
||||
""" Converts a sequence of tokens (string) in a single string. """
|
||||
out_string = ' '.join(tokens).replace(' ##', '').strip()
|
||||
out_string = self.sp_model.decode_pieces(tokens)
|
||||
return out_string
|
||||
|
||||
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
||||
def save_vocabulary(self, save_directory):
|
||||
""" Save the sentencepiece vocabulary (copy original file) and special tokens file
|
||||
to a directory.
|
||||
"""
|
||||
Build model inputs from a sequence or a pair of sequence for sequence classification tasks
|
||||
by concatenating and adding special tokens.
|
||||
A BERT sequence has the following format:
|
||||
single sequence: [CLS] X [SEP]
|
||||
pair of sequences: [CLS] A [SEP] B [SEP]
|
||||
"""
|
||||
if token_ids_1 is None:
|
||||
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
||||
cls = [self.cls_token_id]
|
||||
sep = [self.sep_token_id]
|
||||
return cls + token_ids_0 + sep + token_ids_1 + sep
|
||||
if not os.path.isdir(save_directory):
|
||||
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
|
||||
return
|
||||
out_vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
|
||||
|
||||
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
|
||||
"""
|
||||
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
||||
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
|
||||
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
||||
copyfile(self.vocab_file, out_vocab_file)
|
||||
|
||||
Args:
|
||||
token_ids_0: list of ids (must not contain special tokens)
|
||||
token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids
|
||||
for sequence pairs
|
||||
already_has_special_tokens: (default False) Set to True if the token list is already formated with
|
||||
special tokens for the model
|
||||
|
||||
Returns:
|
||||
A list of integers in the range [0, 1]: 0 for a special token, 1 for a sequence token.
|
||||
"""
|
||||
|
||||
if already_has_special_tokens:
|
||||
if token_ids_1 is not None:
|
||||
raise ValueError("You should not supply a second sequence if the provided sequence of "
|
||||
"ids is already formated with special tokens for the model.")
|
||||
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
|
||||
|
||||
if token_ids_1 is not None:
|
||||
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
||||
return [1] + ([0] * len(token_ids_0)) + [1]
|
||||
|
||||
def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
|
||||
"""
|
||||
Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
|
||||
A BERT sequence pair mask has the following format:
|
||||
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
|
||||
| first sequence | second sequence
|
||||
|
||||
if token_ids_1 is None, only returns the first portion of the mask (0's).
|
||||
"""
|
||||
sep = [self.sep_token_id]
|
||||
cls = [self.cls_token_id]
|
||||
if token_ids_1 is None:
|
||||
return len(cls + token_ids_0 + sep) * [0]
|
||||
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
||||
|
||||
def save_vocabulary(self, vocab_path):
|
||||
"""Save the tokenizer vocabulary to a directory or file."""
|
||||
index = 0
|
||||
if os.path.isdir(vocab_path):
|
||||
vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['vocab_file'])
|
||||
else:
|
||||
vocab_file = vocab_path
|
||||
with open(vocab_file, "w", encoding="utf-8") as writer:
|
||||
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
||||
if index != token_index:
|
||||
logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive."
|
||||
" Please check that the vocabulary is not corrupted!".format(vocab_file))
|
||||
index = token_index
|
||||
writer.write(token + u'\n')
|
||||
index += 1
|
||||
return (vocab_file,)
|
||||
return (out_vocab_file,)
|
||||
|
Loading…
Reference in New Issue
Block a user