mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
Update altCLIP model card (#38306)
* Update altclip.md * Update altclip.md * Update altclip.md * Update altclip.md * Update altclip.md * Update altclip.md * Rename altclip.md to altclip.mdx * Rename altclip.mdx to altclip.md * Update altclip.md * Update altclip.md * Update altclip.md --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
This commit is contained in:
parent
1dcb022e8f
commit
32dbf4bddb
@ -14,103 +14,107 @@ rendered properly in your Markdown viewer.
|
|||||||
|
|
||||||
-->
|
-->
|
||||||
|
|
||||||
# AltCLIP
|
<div style="float: right;">
|
||||||
|
<div class="flex flex-wrap space-x-1">
|
||||||
<div class="flex flex-wrap space-x-1">
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
## Overview
|
# AltCLIP
|
||||||
|
|
||||||
The AltCLIP model was proposed in [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679v2) by Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye, Qinghong Yang, Ledell Wu. AltCLIP
|
[AltCLIP](https://huggingface.co/papers/2211.06679v2) replaces the [CLIP](./clip) text encoder with a multilingual XLM-R encoder and aligns image and text representations with teacher learning and contrastive learning.
|
||||||
(Altering the Language Encoder in CLIP) is a neural network trained on a variety of image-text and text-text pairs. By switching CLIP's
|
|
||||||
text encoder with a pretrained multilingual text encoder XLM-R, we could obtain very close performances with CLIP on almost all tasks, and extended original CLIP's capabilities such as multilingual understanding.
|
|
||||||
|
|
||||||
The abstract from the paper is the following:
|
You can find all the original AltCLIP checkpoints under the [AltClip](https://huggingface.co/collections/BAAI/alt-clip-diffusion-66987a97de8525205f1221bf) collection.
|
||||||
|
|
||||||
*In this work, we present a conceptually simple and effective method to train a strong bilingual multimodal representation model.
|
> [!TIP]
|
||||||
Starting from the pretrained multimodal representation model CLIP released by OpenAI, we switched its text encoder with a pretrained
|
> Click on the AltCLIP models in the right sidebar for more examples of how to apply AltCLIP to different tasks.
|
||||||
multilingual text encoder XLM-R, and aligned both languages and image representations by a two-stage training schema consisting of
|
|
||||||
teacher learning and contrastive learning. We validate our method through evaluations of a wide range of tasks. We set new state-of-the-art
|
|
||||||
performances on a bunch of tasks including ImageNet-CN, Flicker30k- CN, and COCO-CN. Further, we obtain very close performances with
|
|
||||||
CLIP on almost all tasks, suggesting that one can simply alter the text encoder in CLIP for extended capabilities such as multilingual understanding.*
|
|
||||||
|
|
||||||
This model was contributed by [jongjyh](https://huggingface.co/jongjyh).
|
The examples below demonstrates how to calculate similarity scores between an image and one or more captions with the [`AutoModel`] class.
|
||||||
|
|
||||||
## Usage tips and example
|
<hfoptions id="usage">
|
||||||
|
<hfoption id="AutoModel">
|
||||||
The usage of AltCLIP is very similar to the CLIP. the difference between CLIP is the text encoder. Note that we use bidirectional attention instead of casual attention
|
|
||||||
and we take the [CLS] token in XLM-R to represent text embedding.
|
|
||||||
|
|
||||||
AltCLIP is a multi-modal vision and language model. It can be used for image-text similarity and for zero-shot image
|
|
||||||
classification. AltCLIP uses a ViT like transformer to get visual features and a bidirectional language model to get the text
|
|
||||||
features. Both the text and visual features are then projected to a latent space with identical dimension. The dot
|
|
||||||
product between the projected image and text features is then used as a similar score.
|
|
||||||
|
|
||||||
To feed images to the Transformer encoder, each image is split into a sequence of fixed-size non-overlapping patches,
|
|
||||||
which are then linearly embedded. A [CLS] token is added to serve as representation of an entire image. The authors
|
|
||||||
also add absolute position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder.
|
|
||||||
The [`CLIPImageProcessor`] can be used to resize (or rescale) and normalize images for the model.
|
|
||||||
|
|
||||||
The [`AltCLIPProcessor`] wraps a [`CLIPImageProcessor`] and a [`XLMRobertaTokenizer`] into a single instance to both
|
|
||||||
encode the text and prepare the images. The following example shows how to get the image-text similarity scores using
|
|
||||||
[`AltCLIPProcessor`] and [`AltCLIPModel`].
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
>>> from PIL import Image
|
import torch
|
||||||
>>> import requests
|
import requests
|
||||||
|
from PIL import Image
|
||||||
|
from transformers import AltCLIPModel, AltCLIPProcessor
|
||||||
|
|
||||||
>>> from transformers import AltCLIPModel, AltCLIPProcessor
|
model = AltCLIPModel.from_pretrained("BAAI/AltCLIP", torch_dtype=torch.bfloat16)
|
||||||
|
processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
|
||||||
|
|
||||||
>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||||
>>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
|
image = Image.open(requests.get(url, stream=True).raw)
|
||||||
|
|
||||||
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
|
||||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
||||||
|
|
||||||
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
|
outputs = model(**inputs)
|
||||||
|
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
||||||
|
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
||||||
|
|
||||||
>>> outputs = model(**inputs)
|
labels = ["a photo of a cat", "a photo of a dog"]
|
||||||
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
for label, prob in zip(labels, probs[0]):
|
||||||
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
print(f"{label}: {prob.item():.4f}")
|
||||||
```
|
```
|
||||||
|
|
||||||
<Tip>
|
</hfoption>
|
||||||
|
</hfoptions>
|
||||||
|
|
||||||
This model is based on `CLIPModel`, use it like you would use the original [CLIP](clip).
|
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||||
|
|
||||||
</Tip>
|
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# !pip install torchao
|
||||||
|
import torch
|
||||||
|
import requests
|
||||||
|
from PIL import Image
|
||||||
|
from transformers import AltCLIPModel, AltCLIPProcessor, TorchAoConfig
|
||||||
|
|
||||||
|
model = AltCLIPModel.from_pretrained(
|
||||||
|
"BAAI/AltCLIP",
|
||||||
|
quantization_config=TorchAoConfig("int4_weight_only", group_size=128),
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
)
|
||||||
|
|
||||||
|
processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
|
||||||
|
|
||||||
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||||
|
image = Image.open(requests.get(url, stream=True).raw)
|
||||||
|
|
||||||
|
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
|
||||||
|
|
||||||
|
outputs = model(**inputs)
|
||||||
|
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
||||||
|
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
||||||
|
|
||||||
|
labels = ["a photo of a cat", "a photo of a dog"]
|
||||||
|
for label, prob in zip(labels, probs[0]):
|
||||||
|
print(f"{label}: {prob.item():.4f}")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Notes
|
||||||
|
|
||||||
|
- AltCLIP uses bidirectional attention instead of causal attention and it uses the `[CLS]` token in XLM-R to represent a text embedding.
|
||||||
|
- Use [`CLIPImageProcessor`] to resize (or rescale) and normalize images for the model.
|
||||||
|
- [`AltCLIPProcessor`] combines [`CLIPImageProcessor`] and [`XLMRobertaTokenizer`] into a single instance to encode text and prepare images.
|
||||||
|
|
||||||
## AltCLIPConfig
|
## AltCLIPConfig
|
||||||
|
|
||||||
[[autodoc]] AltCLIPConfig
|
[[autodoc]] AltCLIPConfig
|
||||||
- from_text_vision_configs
|
|
||||||
|
|
||||||
## AltCLIPTextConfig
|
## AltCLIPTextConfig
|
||||||
|
|
||||||
[[autodoc]] AltCLIPTextConfig
|
[[autodoc]] AltCLIPTextConfig
|
||||||
|
|
||||||
## AltCLIPVisionConfig
|
## AltCLIPVisionConfig
|
||||||
|
|
||||||
[[autodoc]] AltCLIPVisionConfig
|
[[autodoc]] AltCLIPVisionConfig
|
||||||
|
|
||||||
## AltCLIPProcessor
|
|
||||||
|
|
||||||
[[autodoc]] AltCLIPProcessor
|
|
||||||
|
|
||||||
## AltCLIPModel
|
## AltCLIPModel
|
||||||
|
|
||||||
[[autodoc]] AltCLIPModel
|
[[autodoc]] AltCLIPModel
|
||||||
- forward
|
|
||||||
- get_text_features
|
|
||||||
- get_image_features
|
|
||||||
|
|
||||||
## AltCLIPTextModel
|
## AltCLIPTextModel
|
||||||
|
|
||||||
[[autodoc]] AltCLIPTextModel
|
[[autodoc]] AltCLIPTextModel
|
||||||
- forward
|
|
||||||
|
|
||||||
## AltCLIPVisionModel
|
## AltCLIPVisionModel
|
||||||
|
|
||||||
[[autodoc]] AltCLIPVisionModel
|
[[autodoc]] AltCLIPVisionModel
|
||||||
- forward
|
|
||||||
|
## AltCLIPProcessor
|
||||||
|
[[autodoc]] AltCLIPProcessor
|
||||||
|
Loading…
Reference in New Issue
Block a user