Clean up vision tests (#17024)

* Clean up tests

* Make fixup

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
This commit is contained in:
NielsRogge 2022-05-02 16:28:58 +02:00 committed by GitHub
parent 4be8b95a9f
commit 2de2c9ecca
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 48 additions and 699 deletions

View File

@ -96,9 +96,9 @@ class BeitModelTester:
self.out_indices = out_indices
self.num_labels = num_labels
# in BeiT, the expected seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.expected_seq_length = num_patches + 1
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
@ -136,16 +136,14 @@ class BeitModelTester:
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.expected_seq_length, self.hidden_size)
)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(self, config, pixel_values, labels, pixel_labels):
model = BeitForMaskedImageModeling(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.expected_seq_length - 1, self.vocab_size))
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size))
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.type_sequence_label_size
@ -155,7 +153,7 @@ class BeitModelTester:
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
def create_and_check_for_image_segmentation(self, config, pixel_values, labels, pixel_labels):
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = BeitForSemanticSegmentation(config)
model.to(torch_device)
@ -200,8 +198,8 @@ class BeitModelTest(ModelTesterMixin, unittest.TestCase):
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="BEiT does not use inputs_embeds")
def test_inputs_embeds(self):
# BEiT does not use inputs_embeds
pass
def test_model_common_attributes(self):
@ -229,9 +227,17 @@ class BeitModelTest(ModelTesterMixin, unittest.TestCase):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_image_segmentation(self):
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs)
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
def test_for_semantic_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
def test_training(self):
if not self.model_tester.is_training:
@ -267,13 +273,7 @@ class BeitModelTest(ModelTesterMixin, unittest.TestCase):
or not model_class.supports_gradient_checkpointing
):
continue
# TODO: remove the following 3 lines once we have a MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING
# this can then be incorporated into _prepare_for_class in test_modeling_common.py
elif model_class.__name__ == "BeitForSemanticSegmentation":
batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
inputs_dict["labels"] = torch.zeros(
[self.model_tester.batch_size, height, width], device=torch_device
).long()
model = model_class(config)
model.gradient_checkpointing_enable()
model.to(torch_device)
@ -300,106 +300,6 @@ class BeitModelTest(ModelTesterMixin, unittest.TestCase):
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
# BEiT has a different seq_length
seq_len = self.model_tester.expected_seq_length
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
# BEiT has a different seq_length
seq_length = self.model_tester.expected_seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:

View File

@ -75,9 +75,9 @@ class FlaxBeitModelTester(unittest.TestCase):
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
# in BeiT, the expected seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.expected_seq_length = num_patches + 1
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
@ -108,14 +108,12 @@ class FlaxBeitModelTester(unittest.TestCase):
model = FlaxBeitModel(config=config)
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.expected_seq_length, self.hidden_size)
)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(self, config, pixel_values, labels):
model = FlaxBeitForMaskedImageModeling(config=config)
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.expected_seq_length - 1, self.vocab_size))
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size))
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.type_sequence_label_size
@ -148,51 +146,7 @@ class FlaxBeitModelTest(FlaxModelTesterMixin, unittest.TestCase):
def test_config(self):
self.config_tester.run_common_tests()
# We need to override this test because in Beit, the seq_len equals the number of patches + 1
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_length = self.model_tester.expected_seq_length
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_length, seq_length],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_length, seq_length],
)
# We neeed to override this test because Beit's forward signature is different than text models.
# We need to override this test because Beit's forward signature is different than text models.
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
@ -229,34 +183,6 @@ class FlaxBeitModelTest(FlaxModelTesterMixin, unittest.TestCase):
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
# We need to override this test because in Beit, the seq_len equals the number of patches + 1
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
seq_length = self.model_tester.expected_seq_length
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)

View File

@ -92,9 +92,9 @@ class DeiTModelTester:
self.scope = scope
self.encoder_stride = encoder_stride
# in DeiT, the expected seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
num_patches = (image_size // patch_size) ** 2
self.expected_seq_length = num_patches + 2
self.seq_length = num_patches + 2
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
@ -129,9 +129,7 @@ class DeiTModelTester:
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.expected_seq_length, self.hidden_size)
)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.type_sequence_label_size
@ -181,8 +179,8 @@ class DeiTModelTest(ModelTesterMixin, unittest.TestCase):
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds")
def test_inputs_embeds(self):
# DeiT does not use inputs_embeds
pass
def test_model_common_attributes(self):
@ -210,94 +208,9 @@ class DeiTModelTest(ModelTesterMixin, unittest.TestCase):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = self.model_tester.expected_seq_length
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
seq_length = self.model_tester.expected_seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
# special case for DeiTForImageClassificationWithTeacher model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
@ -403,10 +316,6 @@ class DeiTModelTest(ModelTesterMixin, unittest.TestCase):
loss.backward()
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:

View File

@ -81,9 +81,9 @@ class DPTModelTester:
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
# expected sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.expected_seq_length = num_patches + 1
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
@ -118,9 +118,7 @@ class DPTModelTester:
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.expected_seq_length, self.hidden_size)
)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_depth_estimation(self, config, pixel_values, labels):
config.num_labels = self.num_labels
@ -167,8 +165,8 @@ class DPTModelTest(ModelTesterMixin, unittest.TestCase):
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="DPT does not use inputs_embeds")
def test_inputs_embeds(self):
# DPT does not use inputs_embeds
pass
def test_model_common_attributes(self):
@ -204,97 +202,6 @@ class DPTModelTest(ModelTesterMixin, unittest.TestCase):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
# in DPT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
seq_len = self.model_tester.expected_seq_length
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(len(outputs.attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
# DPT has a different seq_length
seq_len = self.model_tester.expected_seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_len, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_training(self):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":

View File

@ -67,9 +67,9 @@ class FlaxViTModelTester(unittest.TestCase):
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
# in ViT, the expected seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.expected_seq_length = num_patches + 1
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
@ -123,50 +123,6 @@ class FlaxViTModelTest(FlaxModelTesterMixin, unittest.TestCase):
def test_config(self):
self.config_tester.run_common_tests()
# We need to override this test because in ViT, the seq_len equals the number of patches + 1
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_length = self.model_tester.expected_seq_length
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_length, seq_length],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_length, seq_length],
)
# We neeed to override this test because ViT's forward signature is different than text models.
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
@ -180,7 +136,7 @@ class FlaxViTModelTest(FlaxModelTesterMixin, unittest.TestCase):
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
# We neeed to override this test because ViT expects pixel_values instead of input_ids
# We need to override this test because ViT expects pixel_values instead of input_ids
def test_jit_compilation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
@ -204,35 +160,6 @@ class FlaxViTModelTest(FlaxModelTesterMixin, unittest.TestCase):
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
# We need to override this test because in ViT, the seq_len equals the number of patches + 1
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
seq_length = self.model_tester.expected_seq_length
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:

View File

@ -16,12 +16,10 @@
import inspect
import os
import tempfile
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow, tooslow
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ..test_configuration_common import ConfigTester
@ -80,9 +78,9 @@ class TFViTModelTester:
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the expected seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.expected_seq_length = num_patches + 1
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
@ -114,18 +112,14 @@ class TFViTModelTester:
def create_and_check_model(self, config, pixel_values, labels):
model = TFViTModel(config=config)
result = model(pixel_values, training=False)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.expected_seq_length, self.hidden_size)
)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
# Test with an image with different size than the one specified in config.
image_size = self.image_size // 2
pixel_values = pixel_values[:, :, :image_size, :image_size]
result = model(pixel_values, interpolate_pos_encoding=True, training=False)
expected_seq_length = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, expected_seq_length, self.hidden_size)
)
seq_length = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, seq_length, self.hidden_size))
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.type_sequence_label_size
@ -166,12 +160,12 @@ class TFViTModelTest(TFModelTesterMixin, unittest.TestCase):
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds")
def test_inputs_embeds(self):
# ViT does not use inputs_embeds
pass
@unittest.skip(reason="ViT does not use inputs_embeds")
def test_graph_mode_with_inputs_embeds(self):
# ViT does not use inputs_embeds
pass
def test_model_common_attributes(self):
@ -199,131 +193,6 @@ class TFViTModelTest(TFModelTesterMixin, unittest.TestCase):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
# overwrite from common since `encoder_seq_length` and `encoder_key_length` are calculated
# in a different way than in text models.
@tooslow
def test_saved_model_creation_extended(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
if hasattr(config, "use_cache"):
config.use_cache = True
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
seq_len = self.model_tester.expected_seq_length
for model_class in self.all_model_classes:
class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
num_out = len(model(class_inputs_dict))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, saved_model=True)
saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
model = tf.keras.models.load_model(saved_model_dir)
outputs = model(class_inputs_dict)
output_hidden_states = outputs["hidden_states"]
output_attentions = outputs["attentions"]
self.assertEqual(len(outputs), num_out)
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(output_hidden_states), expected_num_layers)
self.assertListEqual(
list(output_hidden_states[0].shape[-2:]),
[seq_len, self.model_tester.hidden_size],
)
self.assertEqual(len(output_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(output_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
seq_len = self.model_tester.expected_seq_length
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False)
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False)
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False)
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
# ViT has a different seq_length
seq_length = self.model_tester.expected_seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

View File

@ -81,9 +81,9 @@ class ViTModelTester:
self.scope = scope
self.encoder_stride = encoder_stride
# in ViT, the expected seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.expected_seq_length = num_patches + 1
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
@ -118,9 +118,7 @@ class ViTModelTester:
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.expected_seq_length, self.hidden_size)
)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.type_sequence_label_size
@ -169,8 +167,8 @@ class ViTModelTest(ModelTesterMixin, unittest.TestCase):
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds")
def test_inputs_embeds(self):
# ViT does not use inputs_embeds
pass
def test_model_common_attributes(self):
@ -198,93 +196,6 @@ class ViTModelTest(ModelTesterMixin, unittest.TestCase):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = self.model_tester.expected_seq_length
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.expected_seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)