mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Model Card for abhilash1910/financial_roberta (#8625)
* Model Card for abhilash1910/financial_roberta * Update model_cards/abhilash1910/financial_roberta/README.md Co-authored-by: Julien Chaumond <chaumond@gmail.com>
This commit is contained in:
parent
26dc6593f3
commit
2d8fbf012a
132
model_cards/abhilash1910/financial_roberta/README.md
Normal file
132
model_cards/abhilash1910/financial_roberta/README.md
Normal file
@ -0,0 +1,132 @@
|
||||
---
|
||||
tags:
|
||||
- finance
|
||||
---
|
||||
# Roberta Masked Language Model Trained On Financial Phrasebank Corpus
|
||||
|
||||
|
||||
This is a Masked Language Model trained with [Roberta](https://huggingface.co/transformers/model_doc/roberta.html) on a Financial Phrasebank Corpus.
|
||||
The model is built using Huggingface transformers.
|
||||
The model can be found at :[Financial_Roberta](https://huggingface.co/abhilash1910/financial_roberta)
|
||||
|
||||
|
||||
## Specifications
|
||||
|
||||
|
||||
The corpus for training is taken from the Financial Phrasebank (Malo et al)[https://www.researchgate.net/publication/251231107_Good_Debt_or_Bad_Debt_Detecting_Semantic_Orientations_in_Economic_Texts].
|
||||
|
||||
|
||||
## Model Specification
|
||||
|
||||
|
||||
The model chosen for training is [Roberta](https://arxiv.org/abs/1907.11692) with the following specifications:
|
||||
1. vocab_size=56000
|
||||
2. max_position_embeddings=514
|
||||
3. num_attention_heads=12
|
||||
4. num_hidden_layers=6
|
||||
5. type_vocab_size=1
|
||||
|
||||
|
||||
This is trained by using RobertaConfig from transformers package.
|
||||
The model is trained for 10 epochs with a gpu batch size of 64 units.
|
||||
|
||||
|
||||
|
||||
## Usage Specifications
|
||||
|
||||
|
||||
For using this model, we have to first import AutoTokenizer and AutoModelWithLMHead Modules from transformers
|
||||
After that we have to specify, the pre-trained model,which in this case is 'abhilash1910/financial_roberta' for the tokenizers and the model.
|
||||
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelWithLMHead
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("abhilash1910/financial_roberta")
|
||||
|
||||
model = AutoModelWithLMHead.from_pretrained("abhilash1910/financial_roberta")
|
||||
```
|
||||
|
||||
|
||||
After this the model will be downloaded, it will take some time to download all the model files.
|
||||
For testing the model, we have to import pipeline module from transformers and create a masked output model for inference as follows:
|
||||
|
||||
|
||||
```python
|
||||
from transformers import pipeline
|
||||
model_mask = pipeline('fill-mask', model='abhilash1910/inancial_roberta')
|
||||
model_mask("The company had a <mask> of 20% in 2020.")
|
||||
```
|
||||
|
||||
|
||||
Some of the examples are also provided with generic financial statements:
|
||||
|
||||
Example 1:
|
||||
|
||||
|
||||
```python
|
||||
model_mask("The company had a <mask> of 20% in 2020.")
|
||||
```
|
||||
|
||||
|
||||
Output:
|
||||
|
||||
|
||||
```bash
|
||||
[{'sequence': '<s>The company had a profit of 20% in 2020.</s>',
|
||||
'score': 0.023112965747714043,
|
||||
'token': 421,
|
||||
'token_str': 'Ġprofit'},
|
||||
{'sequence': '<s>The company had a loss of 20% in 2020.</s>',
|
||||
'score': 0.021379893645644188,
|
||||
'token': 616,
|
||||
'token_str': 'Ġloss'},
|
||||
{'sequence': '<s>The company had a year of 20% in 2020.</s>',
|
||||
'score': 0.0185744296759367,
|
||||
'token': 443,
|
||||
'token_str': 'Ġyear'},
|
||||
{'sequence': '<s>The company had a sales of 20% in 2020.</s>',
|
||||
'score': 0.018143286928534508,
|
||||
'token': 428,
|
||||
'token_str': 'Ġsales'},
|
||||
{'sequence': '<s>The company had a value of 20% in 2020.</s>',
|
||||
'score': 0.015319528989493847,
|
||||
'token': 776,
|
||||
'token_str': 'Ġvalue'}]
|
||||
```
|
||||
|
||||
Example 2:
|
||||
|
||||
```python
|
||||
model_mask("The <mask> is listed under NYSE")
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```bash
|
||||
[{'sequence': '<s>The company is listed under NYSE</s>',
|
||||
'score': 0.1566661298274994,
|
||||
'token': 359,
|
||||
'token_str': 'Ġcompany'},
|
||||
{'sequence': '<s>The total is listed under NYSE</s>',
|
||||
'score': 0.05542507395148277,
|
||||
'token': 522,
|
||||
'token_str': 'Ġtotal'},
|
||||
{'sequence': '<s>The value is listed under NYSE</s>',
|
||||
'score': 0.04729423299431801,
|
||||
'token': 776,
|
||||
'token_str': 'Ġvalue'},
|
||||
{'sequence': '<s>The order is listed under NYSE</s>',
|
||||
'score': 0.02533523552119732,
|
||||
'token': 798,
|
||||
'token_str': 'Ġorder'},
|
||||
{'sequence': '<s>The contract is listed under NYSE</s>',
|
||||
'score': 0.02087237872183323,
|
||||
'token': 635,
|
||||
'token_str': 'Ġcontract'}]
|
||||
```
|
||||
|
||||
|
||||
## Resources
|
||||
|
||||
For all resources , please look into the [HuggingFace](https://huggingface.co/) Site and the [Repositories](https://github.com/huggingface).
|
Loading…
Reference in New Issue
Block a user