Fix reproducible tests in Trainer (#7119)

* Fix reproducible tests in Trainer

* Deal with multiple GPUs
This commit is contained in:
Sylvain Gugger 2020-09-15 03:32:44 -04:00 committed by GitHub
parent 9e89390ce1
commit 2bf70e2150
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -4,7 +4,7 @@ import datasets
import numpy as np
from transformers import AutoTokenizer, TrainingArguments, is_torch_available
from transformers.testing_utils import get_tests_dir, require_non_multigpu, require_torch
from transformers.testing_utils import get_tests_dir, require_torch
if is_torch_available():
@ -94,25 +94,24 @@ if is_torch_available():
@require_torch
class TrainerIntegrationTest(unittest.TestCase):
def check_trained_model(self, model, alternate_seed=False):
# Checks a training seeded with learning_rate = 0.1
if alternate_seed:
# With args.seed = 314
self.assertTrue(torch.abs(model.a - 1.0171) < 1e-4)
self.assertTrue(torch.abs(model.b - 1.2494) < 1e-4)
else:
# With default args.seed
self.assertTrue(torch.abs(model.a - 0.6975) < 1e-4)
self.assertTrue(torch.abs(model.b - 1.2415) < 1e-4)
def setUp(self):
# Get the default values (in case they change):
args = TrainingArguments(".")
self.n_epochs = args.num_train_epochs
self.batch_size = args.per_device_train_batch_size
self.batch_size = args.train_batch_size
trainer = get_regression_trainer(learning_rate=0.1)
trainer.train()
self.default_trained_model = (trainer.model.a, trainer.model.b)
trainer = get_regression_trainer(learning_rate=0.1, seed=314)
trainer.train()
self.alternate_trained_model = (trainer.model.a, trainer.model.b)
def check_trained_model(self, model, alternate_seed=False):
# Checks a training seeded with learning_rate = 0.1
(a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
self.assertTrue(torch.allclose(model.a, a))
self.assertTrue(torch.allclose(model.b, b))
@require_non_multigpu
@unittest.skip("Change in seed by external dependency causing this test to fail.")
def test_reproducible_training(self):
# Checks that training worked, model trained and seed made a reproducible training.
trainer = get_regression_trainer(learning_rate=0.1)
@ -124,7 +123,6 @@ class TrainerIntegrationTest(unittest.TestCase):
trainer.train()
self.check_trained_model(trainer.model, alternate_seed=True)
@require_non_multigpu
def test_number_of_steps_in_training(self):
# Regular training has n_epochs * len(train_dl) steps
trainer = get_regression_trainer(learning_rate=0.1)
@ -141,19 +139,19 @@ class TrainerIntegrationTest(unittest.TestCase):
train_output = trainer.train()
self.assertEqual(train_output.global_step, 10)
@require_non_multigpu
def test_train_and_eval_dataloaders(self):
n_gpu = max(1, torch.cuda.device_count())
trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
self.assertEqual(trainer.get_train_dataloader().batch_size, 16)
self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu)
trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
self.assertEqual(trainer.get_eval_dataloader().batch_size, 16)
self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu)
# Check drop_last works
trainer = get_regression_trainer(
train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
)
self.assertEqual(len(trainer.get_train_dataloader()), 66 // 16 + 1)
self.assertEqual(len(trainer.get_eval_dataloader()), 74 // 32 + 1)
self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
trainer = get_regression_trainer(
train_len=66,
@ -163,12 +161,12 @@ class TrainerIntegrationTest(unittest.TestCase):
per_device_eval_batch_size=32,
dataloader_drop_last=True,
)
self.assertEqual(len(trainer.get_train_dataloader()), 66 // 16)
self.assertEqual(len(trainer.get_eval_dataloader()), 74 // 32)
self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
# Check passing a new dataset fpr evaluation wors
# Check passing a new dataset for evaluation wors
new_eval_dataset = RegressionDataset(length=128)
self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // 32)
self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
def test_evaluate(self):
trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
@ -204,8 +202,6 @@ class TrainerIntegrationTest(unittest.TestCase):
x = trainer.eval_dataset.x
self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
@require_non_multigpu
@unittest.skip("Change in seed by external dependency causing this test to fail.")
def test_trainer_with_datasets(self):
np.random.seed(42)
x = np.random.normal(size=(64,)).astype(np.float32)
@ -234,8 +230,6 @@ class TrainerIntegrationTest(unittest.TestCase):
trainer.train()
self.check_trained_model(trainer.model)
@require_non_multigpu
@unittest.skip("Change in seed by external dependency causing this test to fail.")
def test_custom_optimizer(self):
train_dataset = RegressionDataset()
args = TrainingArguments("./regression")
@ -245,12 +239,11 @@ class TrainerIntegrationTest(unittest.TestCase):
trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
trainer.train()
self.assertTrue(torch.abs(trainer.model.a - 1.8950) < 1e-4)
self.assertTrue(torch.abs(trainer.model.b - 2.5656) < 1e-4)
(a, b) = self.default_trained_model
self.assertFalse(torch.allclose(trainer.model.a, a))
self.assertFalse(torch.allclose(trainer.model.b, b))
self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)
@require_non_multigpu
@unittest.skip("Change in seed by external dependency causing this test to fail.")
def test_model_init(self):
train_dataset = RegressionDataset()
args = TrainingArguments("./regression", learning_rate=0.1)