VLMs: enable generation tests - last batch (#34484)

* add tests for 3 more vlms

* fix fuyu back

* skip test
This commit is contained in:
Raushan Turganbay 2024-11-21 11:00:22 +01:00 committed by GitHub
parent 40821a2478
commit 28fb02fc05
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 129 additions and 9 deletions

View File

@ -346,7 +346,7 @@ class FuyuForCausalLM(FuyuPreTrainedModel, GenerationMixin):
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
if past_key_values:
if past_key_values is not None:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
@ -355,7 +355,7 @@ class FuyuForCausalLM(FuyuPreTrainedModel, GenerationMixin):
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
position_ids = position_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
@ -377,3 +377,12 @@ class FuyuForCausalLM(FuyuPreTrainedModel, GenerationMixin):
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past

View File

@ -91,6 +91,10 @@ class Pix2StructTextConfig(PretrainedConfig):
"hidden_size": "hidden_size",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
"decoder_attention_heads": "num_heads",
"encoder_attention_heads": "num_heads",
"encoder_layers": "num_layers",
"decoder_layers": "num_layers",
}
def __init__(
@ -354,6 +358,8 @@ class Pix2StructConfig(PretrainedConfig):
vision_config = {}
logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values.")
text_config["is_encoder_decoder"] = is_encoder_decoder
text_config["tie_word_embeddings"] = tie_word_embeddings
self.text_config = Pix2StructTextConfig(**text_config)
self.vision_config = Pix2StructVisionConfig(**vision_config)

View File

@ -1382,19 +1382,22 @@ class GenerationTesterMixin:
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
for model_class in self.all_generative_model_classes:
config, inputs_dict = self.prepare_config_and_inputs_for_generate()
text_config = config.get_text_config()
# We want to test only encoder-decoder models
if not config.is_encoder_decoder:
if not text_config.is_encoder_decoder:
continue
model = model_class(config).to(torch_device)
head_masking = {
"head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device),
"head_mask": torch.zeros(
text_config.encoder_layers, text_config.encoder_attention_heads, device=torch_device
),
"decoder_head_mask": torch.zeros(
config.decoder_layers, config.decoder_attention_heads, device=torch_device
text_config.decoder_layers, text_config.decoder_attention_heads, device=torch_device
),
"cross_attn_head_mask": torch.zeros(
config.decoder_layers, config.decoder_attention_heads, device=torch_device
text_config.decoder_layers, text_config.decoder_attention_heads, device=torch_device
),
}

View File

@ -17,12 +17,15 @@
import io
import unittest
import pytest
import requests
from parameterized import parameterized
from transformers import FuyuConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
@ -263,8 +266,9 @@ class FuyuModelTester:
@require_torch
class FuyuModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
class FuyuModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (FuyuForCausalLM,) if is_torch_available() else ()
all_generative_model_classes = (FuyuForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{"text-generation": FuyuForCausalLM, "image-text-to-text": FuyuForCausalLM} if is_torch_available() else {}
)
@ -296,6 +300,16 @@ class FuyuModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@pytest.mark.generate
@parameterized.expand([("random",), ("same",)])
@unittest.skip("Fuyu doesn't support assisted generation due to the need to crop/extend image patches indices")
def test_assisted_decoding_matches_greedy_search(self):
pass
@unittest.skip("Fuyu doesn't support assisted generation due to the need to crop/extend image patches indices")
def test_assisted_decoding_sample(self):
pass
# TODO: Fix me (once this model gets more usage)
@unittest.skip(reason="Does not work on the tiny model.")
def test_disk_offload_bin(self):

View File

@ -21,7 +21,9 @@ import tempfile
import unittest
import numpy as np
import pytest
import requests
from parameterized import parameterized
from transformers import AutoModelForImageTextToText, AutoProcessor, Kosmos2Config
from transformers.models.kosmos2.configuration_kosmos2 import Kosmos2TextConfig, Kosmos2VisionConfig
@ -37,6 +39,7 @@ from transformers.utils import (
is_vision_available,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
@ -205,6 +208,7 @@ class Kosmos2ModelTester:
self.text_model_tester = Kosmos2TextModelTester(parent, **text_kwargs)
self.vision_model_tester = Kosmos2VisionModelTester(parent, **vision_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.seq_length = self.text_model_tester.seq_length
self.latent_query_num = latent_query_num
self.is_training = is_training
@ -253,7 +257,7 @@ class Kosmos2ModelTester:
@require_torch
class Kosmos2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
class Kosmos2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (Kosmos2Model, Kosmos2ForConditionalGeneration) if is_torch_available() else ()
all_generative_model_classes = (Kosmos2ForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
@ -451,6 +455,68 @@ class Kosmos2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase)
# self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
# self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))
@pytest.mark.generate
@parameterized.expand([("greedy", 1), ("beam search", 2)])
@unittest.skip(
"KOSMOS-2 doesn't support inputs embeds. The test isn't skipped by checking input args because KOSMOS-2 has `generate()` overwritten"
)
def test_generate_from_inputs_embeds(self):
pass
@pytest.mark.generate
def test_left_padding_compatibility(self):
# Overwrite because Kosmos-2 need to padd pixel values and pad image-attn-mask
def _prepare_model_kwargs(input_ids, attention_mask, pad_size, signature):
model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
if "position_ids" in signature:
position_ids = torch.cumsum(attention_mask, dim=-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
model_kwargs["position_ids"] = position_ids
if "cache_position" in signature:
cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
model_kwargs["cache_position"] = cache_position
if "image_embeds_position_mask" in signature:
image_embeds_position_mask = torch.zeros_like(input_ids)
image_embeds_position_mask[:, (pad_size + 1) : pad_size + 1 + self.model_tester.latent_query_num] = 1
model_kwargs["image_embeds_position_mask"] = image_embeds_position_mask
return model_kwargs
for model_class in self.all_generative_model_classes:
config, inputs_dict = self.prepare_config_and_inputs_for_generate()
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"]
attention_mask = inputs_dict.get("attention_mask")
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
model = model_class(config).to(torch_device).eval()
signature = inspect.signature(model.forward).parameters.keys()
# no cache as some models require special cache classes to be init outside forward
model.generation_config.use_cache = False
# Without padding
model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, pad_size=0, signature=signature)
next_logits_wo_padding = model(**model_kwargs, pixel_values=pixel_values).logits[:, -1, :]
# With left-padding (length 32)
# can hardcode pad_token to be 0 as we'll do attn masking anyway
pad_token_id = (
config.get_text_config().pad_token_id if config.get_text_config().pad_token_id is not None else 0
)
pad_size = (input_ids.shape[0], 32)
padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * pad_token_id
padded_input_ids = torch.cat((padding, input_ids), dim=1)
padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
model_kwargs = _prepare_model_kwargs(
padded_input_ids, padded_attention_mask, pad_size=32, signature=signature
)
next_logits_with_padding = model(**model_kwargs, pixel_values=pixel_values).logits[:, -1, :]
# They should result in very similar logits
self.assertTrue(torch.allclose(next_logits_wo_padding, next_logits_with_padding, atol=1e-3))
@slow
def test_model_from_pretrained(self):
model_name = "microsoft/kosmos-2-patch14-224"

View File

@ -27,6 +27,7 @@ from transformers import Pix2StructConfig, Pix2StructTextConfig, Pix2StructVisio
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
@ -388,6 +389,7 @@ class Pix2StructModelTester:
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.seq_length = self.text_model_tester.seq_length # need seq_length for common tests
self.is_training = is_training
self.max_patches = self.vision_model_tester.max_patches
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
@ -417,7 +419,7 @@ class Pix2StructModelTester:
@require_torch
class Pix2StructModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
class Pix2StructModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (Pix2StructForConditionalGeneration,) if is_torch_available() else ()
all_generative_model_classes = (Pix2StructForConditionalGeneration,) if is_torch_available() else {}
pipeline_model_mapping = (
@ -751,6 +753,26 @@ class Pix2StructModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa
text_config = Pix2StructTextConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
# overwrite because # pix2struct seq length depends on image inputs
seq_length = self.model_tester.max_patches
encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length)
self.assertIsInstance(attentions, tuple)
self.assertListEqual(
[layer_attentions.shape for layer_attentions in attentions],
[encoder_expected_shape] * len(attentions),
)
def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length):
# overwrite because # pix2struct seq length depends on image inputs
seq_length = self.model_tester.max_patches
encoder_expected_shape = (batch_size, seq_length, config.hidden_size)
self.assertIsInstance(hidden_states, tuple)
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in hidden_states],
[encoder_expected_shape] * len(hidden_states),
)
# We will verify our results on an image of a stop sign
def prepare_img():