mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Fix single letter stop strings (#31448)
* Fix single letter stop strings * Change the 0 to a 1 to avoid potential empty vector headaches later * Restructure for clarity * Update tests/generation/test_stopping_criteria.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Add the unsqueeze --------- Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
This commit is contained in:
parent
dabf01973a
commit
28316d0e8b
@ -372,10 +372,11 @@ class StopStringCriteria(StoppingCriteria):
|
||||
token_valid_positions, token_end_overlaps = StopStringCriteria._stop_string_get_matching_positions(
|
||||
token_list, token_indices, stop_strings
|
||||
)
|
||||
|
||||
max_valid_positions = max(
|
||||
len(val) for positions in token_valid_positions.values() for val in positions.values()
|
||||
)
|
||||
all_valid_positions = [len(val) for positions in token_valid_positions.values() for val in positions.values()]
|
||||
# In some cases, tokens may have no valid internal positions (such as single-character stop strings), so
|
||||
# we need a fallback to handle this case
|
||||
max_valid_positions = max(all_valid_positions) if all_valid_positions else 1
|
||||
# There should always be at least one valid end_len, however, so no fallback needed here
|
||||
max_valid_end_lens = max(len(val) for positions in token_end_overlaps.values() for val in positions.values())
|
||||
vec_size = len(stop_strings) * (max_valid_positions + max_valid_end_lens) + 1
|
||||
gather_vec = np.full((len(token_list), vec_size), dtype=np.int32, fill_value=-1)
|
||||
|
@ -208,6 +208,24 @@ class StoppingCriteriaTestCase(unittest.TestCase):
|
||||
token_lengths = embedding_vec[:, 2].tolist()
|
||||
self.assertEqual(token_lengths, [len(token) for token in token_list])
|
||||
|
||||
def test_single_letter_stop_string(self):
|
||||
true_strings = ["a", "baa", "abc"] # "abc" is a single token
|
||||
false_strings = ["abbbbbbb", "b"] # "abbbbbbb" is split into multiple tokens
|
||||
stop_strings = ["a"]
|
||||
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
||||
tokenizer.pad_token_id = tokenizer.eos_token_id
|
||||
tokenizer.padding_side = "left"
|
||||
|
||||
true_input_ids = tokenizer(true_strings, return_tensors="pt", padding="longest", add_special_tokens=False)
|
||||
false_input_ids = tokenizer(false_strings, return_tensors="pt", padding="longest", add_special_tokens=False)
|
||||
|
||||
scores = None
|
||||
criteria = StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings)
|
||||
for input_ids in true_input_ids["input_ids"]:
|
||||
self.assertTrue(criteria(input_ids.unsqueeze(0), scores))
|
||||
for input_ids in false_input_ids["input_ids"]:
|
||||
self.assertFalse(criteria(input_ids.unsqueeze(0), scores))
|
||||
|
||||
def test_criterias_per_row(self):
|
||||
text = "They completed the challenging puzzle, revealing the hidden image at the end"
|
||||
stop_strings = ["end"]
|
||||
|
Loading…
Reference in New Issue
Block a user