mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Use huggingface_hub helper function to split state dict (#31091)
* shard saving from hf hub * index = None * fix tests * indent
This commit is contained in:
parent
1c73d85b86
commit
254b25abd9
2
setup.py
2
setup.py
@ -117,7 +117,7 @@ _deps = [
|
||||
"fugashi>=1.0",
|
||||
"GitPython<3.1.19",
|
||||
"hf-doc-builder>=0.3.0",
|
||||
"huggingface-hub>=0.23.0,<1.0",
|
||||
"huggingface-hub>=0.23.2,<1.0",
|
||||
"importlib_metadata",
|
||||
"ipadic>=1.0.0,<2.0",
|
||||
"isort>=5.5.4",
|
||||
|
@ -24,7 +24,7 @@ deps = {
|
||||
"fugashi": "fugashi>=1.0",
|
||||
"GitPython": "GitPython<3.1.19",
|
||||
"hf-doc-builder": "hf-doc-builder>=0.3.0",
|
||||
"huggingface-hub": "huggingface-hub>=0.23.0,<1.0",
|
||||
"huggingface-hub": "huggingface-hub>=0.23.2,<1.0",
|
||||
"importlib_metadata": "importlib_metadata",
|
||||
"ipadic": "ipadic>=1.0.0,<2.0",
|
||||
"isort": "isort>=5.5.4",
|
||||
|
@ -34,6 +34,7 @@ from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
||||
from zipfile import is_zipfile
|
||||
|
||||
import torch
|
||||
from huggingface_hub import split_torch_state_dict_into_shards
|
||||
from packaging import version
|
||||
from torch import Tensor, nn
|
||||
from torch.nn import CrossEntropyLoss, Identity
|
||||
@ -362,6 +363,10 @@ def shard_checkpoint(
|
||||
weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
|
||||
The name of the model save file.
|
||||
"""
|
||||
logger.warning(
|
||||
"Note that `shard_checkpoint` is deprecated and will be removed in v4.44. We recommend you using "
|
||||
"split_torch_state_dict_into_shards from huggingface_hub library"
|
||||
)
|
||||
max_shard_size = convert_file_size_to_int(max_shard_size)
|
||||
|
||||
sharded_state_dicts = [{}]
|
||||
@ -2618,7 +2623,17 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
else:
|
||||
weights_name = ADAPTER_SAFE_WEIGHTS_NAME if safe_serialization else ADAPTER_WEIGHTS_NAME
|
||||
|
||||
shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
|
||||
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
||||
state_dict_split = split_torch_state_dict_into_shards(
|
||||
state_dict, filename_pattern=filename_pattern, max_shard_size=max_shard_size
|
||||
)
|
||||
# Save index if sharded
|
||||
index = None
|
||||
if state_dict_split.is_sharded:
|
||||
index = {
|
||||
"metadata": state_dict_split.metadata,
|
||||
"weight_map": state_dict_split.tensor_to_filename,
|
||||
}
|
||||
|
||||
# Clean the folder from a previous save
|
||||
for filename in os.listdir(save_directory):
|
||||
@ -2634,14 +2649,15 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
if (
|
||||
filename.startswith(weights_no_suffix)
|
||||
and os.path.isfile(full_filename)
|
||||
and filename not in shards.keys()
|
||||
and filename not in state_dict_split.filename_to_tensors.keys()
|
||||
and is_main_process
|
||||
and reg.fullmatch(filename_no_suffix) is not None
|
||||
):
|
||||
os.remove(full_filename)
|
||||
|
||||
# Save the model
|
||||
for shard_file, shard in shards.items():
|
||||
for shard_file, tensors in state_dict_split.filename_to_tensors.items():
|
||||
shard = {tensor: state_dict[tensor] for tensor in tensors}
|
||||
# remake shard with onloaded parameters if necessary
|
||||
if module_map:
|
||||
if accelerate_version < version.parse("0.31"):
|
||||
@ -2680,7 +2696,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
f.write(content)
|
||||
logger.info(
|
||||
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
|
||||
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
|
||||
f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the "
|
||||
f"index located at {save_index_file}."
|
||||
)
|
||||
|
||||
|
@ -669,7 +669,7 @@ class ModelUtilsTest(TestCasePlus):
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
# We use the same folder for various sizes to make sure a new save erases the old checkpoint.
|
||||
for max_size in ["50kB", "50kiB", "100kB", "100kiB", "200kB", "200kiB"]:
|
||||
for max_size in ["50kB", "100kB", "200kB"]:
|
||||
model.save_pretrained(tmp_dir, max_shard_size=max_size, safe_serialization=False)
|
||||
|
||||
# Get each shard file and its size
|
||||
@ -686,10 +686,7 @@ class ModelUtilsTest(TestCasePlus):
|
||||
|
||||
# Check a file is bigger than max_size only when it has a single weight
|
||||
for shard_file, size in shard_to_size.items():
|
||||
if max_size.endswith("kiB"):
|
||||
max_size_int = int(max_size[:-3]) * 2**10
|
||||
else:
|
||||
max_size_int = int(max_size[:-2]) * 10**3
|
||||
max_size_int = int(max_size[:-2]) * 10**3
|
||||
# Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
|
||||
# the size asked for (since we count parameters)
|
||||
if size >= max_size_int + 50000:
|
||||
|
Loading…
Reference in New Issue
Block a user