mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00
Add reduce_labels
to Mobilevit fast processor
This commit is contained in:
parent
d7ac282524
commit
23231d2e35
@ -103,31 +103,38 @@ class MobileNetV2ImageProcessorFast(BaseImageProcessorFast):
|
||||
do_rescale: bool,
|
||||
do_center_crop: bool,
|
||||
do_normalize: bool,
|
||||
size: SizeDict,
|
||||
size: Optional[SizeDict],
|
||||
interpolation: Optional["F.InterpolationMode"],
|
||||
rescale_factor: float,
|
||||
crop_size: SizeDict,
|
||||
rescale_factor: Optional[float],
|
||||
crop_size: Optional[SizeDict],
|
||||
image_mean: Optional[Union[float, list[float]]],
|
||||
image_std: Optional[Union[float, list[float]]],
|
||||
disable_grouping: bool,
|
||||
return_tensors: Optional[Union[str, TensorType]],
|
||||
**kwargs,
|
||||
) -> BatchFeature:
|
||||
processed_images = []
|
||||
|
||||
if do_reduce_labels:
|
||||
images = self.reduce_label(images)
|
||||
|
||||
# Group images by size for batched resizing
|
||||
grouped_images, grouped_images_index = group_images_by_shape(images)
|
||||
# Group images by shape for more efficient batch processing
|
||||
grouped_images, grouped_images_index = group_images_by_shape(images, disable_grouping=disable_grouping)
|
||||
resized_images_grouped = {}
|
||||
|
||||
# Process each group of images with the same shape
|
||||
for shape, stacked_images in grouped_images.items():
|
||||
if do_resize:
|
||||
stacked_images = self.resize(image=stacked_images, size=size, interpolation=interpolation)
|
||||
resized_images_grouped[shape] = stacked_images
|
||||
|
||||
# Reorder images to original sequence
|
||||
resized_images = reorder_images(resized_images_grouped, grouped_images_index)
|
||||
|
||||
# Group images by size for further processing
|
||||
# Needed in case do_resize is False, or resize returns images with different sizes
|
||||
grouped_images, grouped_images_index = group_images_by_shape(resized_images)
|
||||
# Group again after resizing (in case resize produced different sizes)
|
||||
grouped_images, grouped_images_index = group_images_by_shape(resized_images, disable_grouping=disable_grouping)
|
||||
processed_images_grouped = {}
|
||||
|
||||
for shape, stacked_images in grouped_images.items():
|
||||
if do_center_crop:
|
||||
stacked_images = self.center_crop(stacked_images, crop_size)
|
||||
@ -138,7 +145,10 @@ class MobileNetV2ImageProcessorFast(BaseImageProcessorFast):
|
||||
processed_images_grouped[shape] = stacked_images
|
||||
|
||||
processed_images = reorder_images(processed_images_grouped, grouped_images_index)
|
||||
|
||||
# Stack all processed images if return_tensors is specified
|
||||
processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images
|
||||
|
||||
return processed_images
|
||||
|
||||
def _preprocess_images(
|
||||
@ -170,12 +180,7 @@ class MobileNetV2ImageProcessorFast(BaseImageProcessorFast):
|
||||
|
||||
kwargs["do_normalize"] = False
|
||||
kwargs["do_rescale"] = False
|
||||
kwargs["interpolation"] = (
|
||||
pil_torch_interpolation_mapping[PILImageResampling.NEAREST]
|
||||
if PILImageResampling.NEAREST in pil_torch_interpolation_mapping
|
||||
else kwargs.get("interpolation")
|
||||
)
|
||||
kwargs["input_data_format"] = ChannelDimension.FIRST
|
||||
kwargs["interpolation"] = pil_torch_interpolation_mapping[PILImageResampling.NEAREST]
|
||||
processed_segmentation_maps = self._preprocess(images=processed_segmentation_maps, **kwargs)
|
||||
|
||||
processed_segmentation_maps = processed_segmentation_maps.squeeze(1)
|
||||
@ -233,15 +238,15 @@ class MobileNetV2ImageProcessorFast(BaseImageProcessorFast):
|
||||
images=images,
|
||||
**kwargs,
|
||||
)
|
||||
data = {"pixel_values": images}
|
||||
|
||||
if segmentation_maps is not None:
|
||||
segmentation_maps = self._preprocess_segmentation_maps(
|
||||
segmentation_maps=segmentation_maps,
|
||||
**kwargs,
|
||||
)
|
||||
data["labels"] = segmentation_maps
|
||||
return BatchFeature(data=data)
|
||||
return BatchFeature(data={"pixel_values": images, "labels": segmentation_maps})
|
||||
|
||||
return BatchFeature(data={"pixel_values": images})
|
||||
|
||||
# Copied from transformers.models.beit.image_processing_beit_fast.BeitImageProcessorFast.post_process_semantic_segmentation with Beit->MobileNetV2
|
||||
def post_process_semantic_segmentation(self, outputs, target_sizes: Optional[list[tuple]] = None):
|
||||
|
@ -14,9 +14,7 @@
|
||||
# limitations under the License.
|
||||
"""Fast Image processor class for MobileViT."""
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from typing import Optional, Union
|
||||
|
||||
from ...image_processing_utils import BatchFeature
|
||||
from ...image_processing_utils_fast import (
|
||||
@ -27,23 +25,46 @@ from ...image_processing_utils_fast import (
|
||||
)
|
||||
from ...image_utils import (
|
||||
ChannelDimension,
|
||||
ImageInput,
|
||||
PILImageResampling,
|
||||
SizeDict,
|
||||
is_torch_tensor,
|
||||
make_list_of_images,
|
||||
pil_torch_interpolation_mapping,
|
||||
validate_kwargs,
|
||||
)
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import auto_docstring
|
||||
from ...utils import (
|
||||
TensorType,
|
||||
auto_docstring,
|
||||
is_torch_available,
|
||||
is_torchvision_available,
|
||||
is_torchvision_v2_available,
|
||||
)
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_torchvision_available():
|
||||
if is_torchvision_v2_available():
|
||||
from torchvision.transforms.v2 import functional as F
|
||||
else:
|
||||
from torchvision.transforms import functional as F
|
||||
|
||||
|
||||
class MobileVitFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
|
||||
"""
|
||||
do_flip_channel_order (`bool`, *optional*, defaults to `self.do_flip_channel_order`):
|
||||
Whether to flip the color channels from RGB to BGR or vice versa.
|
||||
do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
|
||||
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
|
||||
is used for background, and background itself is not included in all classes of a dataset (e.g.
|
||||
ADE20k). The background label will be replaced by 255.
|
||||
"""
|
||||
|
||||
do_flip_channel_order: Optional[bool]
|
||||
do_reduce_labels: Optional[bool]
|
||||
|
||||
|
||||
@auto_docstring
|
||||
@ -58,28 +79,44 @@ class MobileViTImageProcessorFast(BaseImageProcessorFast):
|
||||
do_normalize = None
|
||||
do_convert_rgb = None
|
||||
do_flip_channel_order = True
|
||||
do_reduce_labels = False
|
||||
valid_kwargs = MobileVitFastImageProcessorKwargs
|
||||
|
||||
def __init__(self, **kwargs: Unpack[MobileVitFastImageProcessorKwargs]):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# Copied from transformers.models.beit.image_processing_beit_fast.BeitImageProcessorFast.reduce_label
|
||||
def reduce_label(self, labels: list["torch.Tensor"]):
|
||||
for idx in range(len(labels)):
|
||||
label = labels[idx]
|
||||
label = torch.where(label == 0, torch.tensor(255, dtype=label.dtype), label)
|
||||
label = label - 1
|
||||
label = torch.where(label == 254, torch.tensor(255, dtype=label.dtype), label)
|
||||
labels[idx] = label
|
||||
|
||||
return label
|
||||
|
||||
def _preprocess(
|
||||
self,
|
||||
images,
|
||||
images: list["torch.Tensor"],
|
||||
do_reduce_labels: bool,
|
||||
do_resize: bool,
|
||||
size: Optional[dict],
|
||||
interpolation: Optional[str],
|
||||
size: Optional[SizeDict],
|
||||
interpolation: Optional["F.InterpolationMode"],
|
||||
do_rescale: bool,
|
||||
rescale_factor: Optional[float],
|
||||
do_center_crop: bool,
|
||||
crop_size: Optional[dict],
|
||||
crop_size: Optional[SizeDict],
|
||||
do_flip_channel_order: bool,
|
||||
disable_grouping: bool,
|
||||
return_tensors: Optional[str],
|
||||
return_tensors: Optional[Union[str, TensorType]],
|
||||
**kwargs,
|
||||
):
|
||||
) -> BatchFeature:
|
||||
processed_images = []
|
||||
|
||||
if do_reduce_labels:
|
||||
images = self.reduce_label(images)
|
||||
|
||||
# Group images by shape for more efficient batch processing
|
||||
grouped_images, grouped_images_index = group_images_by_shape(images, disable_grouping=disable_grouping)
|
||||
resized_images_grouped = {}
|
||||
@ -119,6 +156,16 @@ class MobileViTImageProcessorFast(BaseImageProcessorFast):
|
||||
|
||||
return processed_images
|
||||
|
||||
def _preprocess_images(
|
||||
self,
|
||||
images,
|
||||
**kwargs,
|
||||
):
|
||||
"""Preprocesses images."""
|
||||
kwargs["do_reduce_labels"] = False
|
||||
processed_images = self._preprocess(images=images, **kwargs)
|
||||
return processed_images
|
||||
|
||||
def _preprocess_segmentation_maps(
|
||||
self,
|
||||
segmentation_maps,
|
||||
@ -149,8 +196,8 @@ class MobileViTImageProcessorFast(BaseImageProcessorFast):
|
||||
@auto_docstring
|
||||
def preprocess(
|
||||
self,
|
||||
images,
|
||||
segmentation_maps=None,
|
||||
images: ImageInput,
|
||||
segmentation_maps: Optional[ImageInput] = None,
|
||||
**kwargs: Unpack[MobileVitFastImageProcessorKwargs],
|
||||
) -> BatchFeature:
|
||||
r"""
|
||||
@ -192,7 +239,7 @@ class MobileViTImageProcessorFast(BaseImageProcessorFast):
|
||||
kwargs.pop("default_to_square")
|
||||
kwargs.pop("data_format")
|
||||
|
||||
images = self._preprocess(
|
||||
images = self._preprocess_images(
|
||||
images=images,
|
||||
**kwargs,
|
||||
)
|
||||
@ -207,6 +254,21 @@ class MobileViTImageProcessorFast(BaseImageProcessorFast):
|
||||
return BatchFeature(data={"pixel_values": images})
|
||||
|
||||
def post_process_semantic_segmentation(self, outputs, target_sizes: Optional[list[tuple]] = None):
|
||||
"""
|
||||
Converts the output of [`MobileNetV2ForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
|
||||
|
||||
Args:
|
||||
outputs ([`MobileNetV2ForSemanticSegmentation`]):
|
||||
Raw outputs of the model.
|
||||
target_sizes (`list[Tuple]` of length `batch_size`, *optional*):
|
||||
List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
|
||||
predictions will not be resized.
|
||||
|
||||
Returns:
|
||||
semantic_segmentation: `list[torch.Tensor]` of length `batch_size`, where each item is a semantic
|
||||
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
|
||||
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
|
||||
"""
|
||||
logits = outputs.logits
|
||||
|
||||
# Resize logits and compute semantic segmentation maps
|
||||
|
@ -15,6 +15,7 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import requests
|
||||
from datasets import load_dataset
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
@ -89,23 +90,14 @@ class MobileNetV2ImageProcessingTester:
|
||||
|
||||
|
||||
def prepare_semantic_single_inputs():
|
||||
dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test", trust_remote_code=True)
|
||||
|
||||
image = Image.open(dataset[0]["file"])
|
||||
map = Image.open(dataset[1]["file"])
|
||||
|
||||
return image, map
|
||||
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
|
||||
example = ds[0]
|
||||
return example["image"], example["map"]
|
||||
|
||||
|
||||
def prepare_semantic_batch_inputs():
|
||||
dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test", trust_remote_code=True)
|
||||
|
||||
image1 = Image.open(dataset[0]["file"])
|
||||
map1 = Image.open(dataset[1]["file"])
|
||||
image2 = Image.open(dataset[2]["file"])
|
||||
map2 = Image.open(dataset[3]["file"])
|
||||
|
||||
return [image1, image2], [map1, map2]
|
||||
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
|
||||
return list(ds["image"][:2]), list(ds["map"][:2])
|
||||
|
||||
|
||||
@require_torch
|
||||
@ -275,41 +267,21 @@ class MobileNetV2ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase
|
||||
if self.image_processing_class is None or self.fast_image_processing_class is None:
|
||||
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
|
||||
|
||||
dummy_image, dummy_map = prepare_semantic_single_inputs()
|
||||
|
||||
# Test with single image
|
||||
dummy_image = Image.open(
|
||||
requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw
|
||||
)
|
||||
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
|
||||
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
|
||||
|
||||
image_encoding_slow = image_processor_slow(dummy_image, segmentation_maps=dummy_map, return_tensors="pt")
|
||||
image_encoding_fast = image_processor_fast(dummy_image, segmentation_maps=dummy_map, return_tensors="pt")
|
||||
encoding_slow = image_processor_slow(dummy_image, return_tensors="pt")
|
||||
encoding_fast = image_processor_fast(dummy_image, return_tensors="pt")
|
||||
self._assert_slow_fast_tensors_equivalence(encoding_slow.pixel_values, encoding_fast.pixel_values)
|
||||
|
||||
self.assertTrue(torch.allclose(image_encoding_slow.pixel_values, image_encoding_fast.pixel_values, atol=1e-1))
|
||||
self.assertLessEqual(
|
||||
torch.mean(torch.abs(image_encoding_slow.pixel_values - image_encoding_fast.pixel_values)).item(), 1e-3
|
||||
)
|
||||
self.assertTrue(torch.allclose(image_encoding_slow.labels, image_encoding_fast.labels, atol=1e-1))
|
||||
# Test with single image and segmentation map
|
||||
image, segmentation_map = prepare_semantic_single_inputs()
|
||||
|
||||
def test_slow_fast_equivalence_batched(self):
|
||||
if not self.test_slow_image_processor or not self.test_fast_image_processor:
|
||||
self.skipTest(reason="Skipping slow/fast equivalence test")
|
||||
|
||||
if self.image_processing_class is None or self.fast_image_processing_class is None:
|
||||
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
|
||||
|
||||
if hasattr(self.image_processor_tester, "do_center_crop") and self.image_processor_tester.do_center_crop:
|
||||
self.skipTest(
|
||||
reason="Skipping as do_center_crop is True and center_crop functions are not equivalent for fast and slow processors"
|
||||
)
|
||||
|
||||
dummy_images, dummy_maps = prepare_semantic_batch_inputs()
|
||||
|
||||
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
|
||||
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
|
||||
|
||||
encoding_slow = image_processor_slow(dummy_images, segmentation_maps=dummy_maps, return_tensors="pt")
|
||||
encoding_fast = image_processor_fast(dummy_images, segmentation_maps=dummy_maps, return_tensors="pt")
|
||||
|
||||
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1))
|
||||
self.assertLessEqual(
|
||||
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 1e-3
|
||||
)
|
||||
encoding_slow = image_processor_slow(image, segmentation_map, return_tensors="pt")
|
||||
encoding_fast = image_processor_fast(image, segmentation_map, return_tensors="pt")
|
||||
self._assert_slow_fast_tensors_equivalence(encoding_slow.pixel_values, encoding_fast.pixel_values)
|
||||
torch.testing.assert_close(encoding_slow.labels, encoding_fast.labels, atol=1e-1, rtol=1e-3)
|
||||
|
@ -248,6 +248,22 @@ class MobileViTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
self.assertTrue(encoding["labels"].min().item() >= 0)
|
||||
self.assertTrue(encoding["labels"].max().item() <= 255)
|
||||
|
||||
def test_reduce_labels(self):
|
||||
for image_processing_class in self.image_processor_list:
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
|
||||
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
|
||||
image, map = prepare_semantic_single_inputs()
|
||||
encoding = image_processing(image, map, return_tensors="pt")
|
||||
self.assertTrue(encoding["labels"].min().item() >= 0)
|
||||
self.assertTrue(encoding["labels"].max().item() <= 150)
|
||||
|
||||
image_processing.do_reduce_labels = True
|
||||
encoding = image_processing(image, map, return_tensors="pt")
|
||||
self.assertTrue(encoding["labels"].min().item() >= 0)
|
||||
self.assertTrue(encoding["labels"].max().item() <= 255)
|
||||
|
||||
@require_vision
|
||||
@require_torch
|
||||
def test_slow_fast_equivalence(self):
|
||||
@ -275,19 +291,3 @@ class MobileViTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
encoding_fast = image_processor_fast(image, segmentation_map, return_tensors="pt")
|
||||
self._assert_slow_fast_tensors_equivalence(encoding_slow.pixel_values, encoding_fast.pixel_values)
|
||||
torch.testing.assert_close(encoding_slow.labels, encoding_fast.labels, atol=1e-1, rtol=1e-3)
|
||||
|
||||
def test_reduce_labels(self):
|
||||
for image_processing_class in self.image_processor_list:
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
|
||||
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
|
||||
image, map = prepare_semantic_single_inputs()
|
||||
encoding = image_processing(image, map, return_tensors="pt")
|
||||
self.assertTrue(encoding["labels"].min().item() >= 0)
|
||||
self.assertTrue(encoding["labels"].max().item() <= 150)
|
||||
|
||||
image_processing.do_reduce_labels = True
|
||||
encoding = image_processing(image, map, return_tensors="pt")
|
||||
self.assertTrue(encoding["labels"].min().item() >= 0)
|
||||
self.assertTrue(encoding["labels"].max().item() <= 255)
|
||||
|
Loading…
Reference in New Issue
Block a user