mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 11:11:05 +06:00
Added documentation and changed parameters for special_tokens_sentences_pair.
This commit is contained in:
parent
912fdff899
commit
22ac004a7c
@ -167,12 +167,20 @@ class BertTokenizer(PreTrainedTokenizer):
|
||||
return out_string
|
||||
|
||||
def add_special_tokens_single_sentence(self, token_ids):
|
||||
"""
|
||||
Adds special tokens to the a sequence for sequence classification tasks.
|
||||
A BERT sequence has the following format: [CLS] X [SEP]
|
||||
"""
|
||||
return [self._convert_token_to_id(self.cls_token)] + token_ids + [self._convert_token_to_id(self.sep_token)]
|
||||
|
||||
def add_special_tokens_sentences_pair(self, *token_ids):
|
||||
def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
|
||||
"""
|
||||
Adds special tokens to a sequence pair for sequence classification tasks.
|
||||
A BERT sequence pair has the following format: [CLS] A [SEP] B [SEP]
|
||||
"""
|
||||
sep = [self._convert_token_to_id(self.sep_token)]
|
||||
cls = [self._convert_token_to_id(self.cls_token)]
|
||||
return cls + token_ids[0] + sep + token_ids[1] + sep
|
||||
return cls + token_ids_0 + sep + token_ids_1 + sep
|
||||
|
||||
def save_vocabulary(self, vocab_path):
|
||||
"""Save the tokenizer vocabulary to a directory or file."""
|
||||
|
@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tokenization classes for OpenAI GPT."""
|
||||
"""Tokenization classes for RoBERTa."""
|
||||
from __future__ import (absolute_import, division, print_function,
|
||||
unicode_literals)
|
||||
|
||||
@ -57,15 +57,15 @@ PRETRAINED_VOCAB_FILES_MAP = {
|
||||
}
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
'roberta-base': 1024,
|
||||
'roberta-large': 1024,
|
||||
'roberta-large-mnli': 1024,
|
||||
'roberta-base': 512,
|
||||
'roberta-large': 512,
|
||||
'roberta-large-mnli': 512,
|
||||
}
|
||||
|
||||
|
||||
class RobertaTokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
GPT-2 BPE tokenizer. Peculiarities:
|
||||
RoBERTa BPE tokenizer, derived from the GPT-2 tokenizer. Peculiarities:
|
||||
- Byte-level BPE
|
||||
"""
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
@ -161,12 +161,20 @@ class RobertaTokenizer(PreTrainedTokenizer):
|
||||
return text
|
||||
|
||||
def add_special_tokens_single_sentence(self, token_ids):
|
||||
"""
|
||||
Adds special tokens to a sequence for sequence classification tasks.
|
||||
A RoBERTa sequence has the following format: [CLS] X [SEP]
|
||||
"""
|
||||
return [self._convert_token_to_id(self.cls_token)] + token_ids + [self._convert_token_to_id(self.sep_token)]
|
||||
|
||||
def add_special_tokens_sentences_pair(self, *token_ids):
|
||||
def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
|
||||
"""
|
||||
Adds special tokens to a sequence pair for sequence classification tasks.
|
||||
A RoBERTa sequence pair has the following format: [CLS] A [SEP][SEP] B [SEP]
|
||||
"""
|
||||
sep = [self._convert_token_to_id(self.sep_token)]
|
||||
cls = [self._convert_token_to_id(self.cls_token)]
|
||||
return cls + token_ids[0] + sep + sep + token_ids[1] + sep
|
||||
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
||||
|
||||
def save_vocabulary(self, save_directory):
|
||||
"""Save the tokenizer vocabulary and merge files to a directory."""
|
||||
|
@ -546,7 +546,7 @@ class PreTrainedTokenizer(object):
|
||||
def add_special_tokens_single_sentence(self, token_ids):
|
||||
raise NotImplementedError
|
||||
|
||||
def add_special_tokens_sentences_pair(self, *token_ids):
|
||||
def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
|
||||
raise NotImplementedError
|
||||
|
||||
def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
|
||||
|
@ -215,12 +215,20 @@ class XLMTokenizer(PreTrainedTokenizer):
|
||||
return out_string
|
||||
|
||||
def add_special_tokens_single_sentence(self, token_ids):
|
||||
"""
|
||||
Adds special tokens to a sequence for sequence classification tasks.
|
||||
An XLM sequence has the following format: [CLS] X [SEP]
|
||||
"""
|
||||
return [self._convert_token_to_id(self.cls_token)] + token_ids + [self._convert_token_to_id(self.sep_token)]
|
||||
|
||||
def add_special_tokens_sentences_pair(self, *token_ids):
|
||||
def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
|
||||
"""
|
||||
Adds special tokens to a sequence pair for sequence classification tasks.
|
||||
An XLM sequence pair has the following format: [CLS] A [SEP] B [SEP]
|
||||
"""
|
||||
sep = [self._convert_token_to_id(self.sep_token)]
|
||||
cls = [self._convert_token_to_id(self.cls_token)]
|
||||
return cls + token_ids[0] + sep + token_ids[1] + sep
|
||||
return cls + token_ids_0 + sep + token_ids_1 + sep
|
||||
|
||||
def save_vocabulary(self, save_directory):
|
||||
"""Save the tokenizer vocabulary and merge files to a directory."""
|
||||
|
@ -178,14 +178,22 @@ class XLNetTokenizer(PreTrainedTokenizer):
|
||||
return out_string
|
||||
|
||||
def add_special_tokens_single_sentence(self, token_ids):
|
||||
logger.warning("No method was defined for special tokens and single sentence streams in XLNet. "
|
||||
"Returning token_ids")
|
||||
return token_ids
|
||||
|
||||
def add_special_tokens_sentences_pair(self, *token_ids):
|
||||
"""
|
||||
Adds special tokens to a sequence pair for sequence classification tasks.
|
||||
An XLNet sequence pair has the following format: A [SEP] B [SEP][CLS]
|
||||
"""
|
||||
sep = [self._convert_token_to_id(self.sep_token)]
|
||||
cls = [self._convert_token_to_id(self.cls_token)]
|
||||
return token_ids[0] + sep + token_ids[1] + sep + cls
|
||||
return token_ids + sep + cls
|
||||
|
||||
def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
|
||||
"""
|
||||
Adds special tokens to a sequence for sequence classification tasks.
|
||||
An XLNet sequence has the following format: X [SEP][CLS]
|
||||
"""
|
||||
sep = [self._convert_token_to_id(self.sep_token)]
|
||||
cls = [self._convert_token_to_id(self.cls_token)]
|
||||
return token_ids_0 + sep + token_ids_1 + sep + cls
|
||||
|
||||
def save_vocabulary(self, save_directory):
|
||||
""" Save the sentencepiece vocabulary (copy original file) and special tokens file
|
||||
|
Loading…
Reference in New Issue
Block a user