mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-25 07:18:58 +06:00
parent
58a939c6b7
commit
21e23ffca7
@ -28,8 +28,9 @@ In this guide, we will:
|
|||||||
|
|
||||||
Before you begin, make sure you have all the necessary libraries installed:
|
Before you begin, make sure you have all the necessary libraries installed:
|
||||||
|
|
||||||
```bash
|
```py
|
||||||
pip install -q datasets transformers evaluate
|
# uncomment to install the necessary libraries
|
||||||
|
!pip install -q datasets transformers evaluate accelerate
|
||||||
```
|
```
|
||||||
|
|
||||||
We encourage you to log in to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to log in:
|
We encourage you to log in to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to log in:
|
||||||
@ -236,6 +237,9 @@ Then take a look at an example:
|
|||||||
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x683 at 0x7F9B0C201F90>,
|
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x683 at 0x7F9B0C201F90>,
|
||||||
'annotation': <PIL.PngImagePlugin.PngImageFile image mode=L size=512x683 at 0x7F9B0C201DD0>,
|
'annotation': <PIL.PngImagePlugin.PngImageFile image mode=L size=512x683 at 0x7F9B0C201DD0>,
|
||||||
'scene_category': 368}
|
'scene_category': 368}
|
||||||
|
|
||||||
|
# view the image
|
||||||
|
>>> train_ds[0]["image"]
|
||||||
```
|
```
|
||||||
|
|
||||||
- `image`: a PIL image of the scene.
|
- `image`: a PIL image of the scene.
|
||||||
@ -663,15 +667,19 @@ Congratulations! You have fine-tuned your model and shared it on the 🤗 Hub. Y
|
|||||||
</tf>
|
</tf>
|
||||||
</frameworkcontent>
|
</frameworkcontent>
|
||||||
|
|
||||||
|
|
||||||
### Inference
|
### Inference
|
||||||
|
|
||||||
Great, now that you've finetuned a model, you can use it for inference!
|
Great, now that you've finetuned a model, you can use it for inference!
|
||||||
|
|
||||||
Load an image for inference:
|
Reload the dataset and load an image for inference.
|
||||||
|
|
||||||
```py
|
```py
|
||||||
>>> image = ds[0]["image"]
|
>>> from datasets import load_dataset
|
||||||
|
|
||||||
|
>>> ds = load_dataset("scene_parse_150", split="train[:50]")
|
||||||
|
>>> ds = ds.train_test_split(test_size=0.2)
|
||||||
|
>>> test_ds = ds["test"]
|
||||||
|
>>> image = ds["test"][0]["image"]
|
||||||
>>> image
|
>>> image
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -749,7 +757,166 @@ Next, rescale the logits to the original image size and apply argmax on the clas
|
|||||||
</tf>
|
</tf>
|
||||||
</frameworkcontent>
|
</frameworkcontent>
|
||||||
|
|
||||||
To visualize the results, load the [dataset color palette](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51) as `ade_palette()` that maps each class to their RGB values. Then you can combine and plot your image and the predicted segmentation map:
|
To visualize the results, load the [dataset color palette](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51) as `ade_palette()` that maps each class to their RGB values.
|
||||||
|
|
||||||
|
```py
|
||||||
|
def ade_palette():
|
||||||
|
return np.asarray([
|
||||||
|
[0, 0, 0],
|
||||||
|
[120, 120, 120],
|
||||||
|
[180, 120, 120],
|
||||||
|
[6, 230, 230],
|
||||||
|
[80, 50, 50],
|
||||||
|
[4, 200, 3],
|
||||||
|
[120, 120, 80],
|
||||||
|
[140, 140, 140],
|
||||||
|
[204, 5, 255],
|
||||||
|
[230, 230, 230],
|
||||||
|
[4, 250, 7],
|
||||||
|
[224, 5, 255],
|
||||||
|
[235, 255, 7],
|
||||||
|
[150, 5, 61],
|
||||||
|
[120, 120, 70],
|
||||||
|
[8, 255, 51],
|
||||||
|
[255, 6, 82],
|
||||||
|
[143, 255, 140],
|
||||||
|
[204, 255, 4],
|
||||||
|
[255, 51, 7],
|
||||||
|
[204, 70, 3],
|
||||||
|
[0, 102, 200],
|
||||||
|
[61, 230, 250],
|
||||||
|
[255, 6, 51],
|
||||||
|
[11, 102, 255],
|
||||||
|
[255, 7, 71],
|
||||||
|
[255, 9, 224],
|
||||||
|
[9, 7, 230],
|
||||||
|
[220, 220, 220],
|
||||||
|
[255, 9, 92],
|
||||||
|
[112, 9, 255],
|
||||||
|
[8, 255, 214],
|
||||||
|
[7, 255, 224],
|
||||||
|
[255, 184, 6],
|
||||||
|
[10, 255, 71],
|
||||||
|
[255, 41, 10],
|
||||||
|
[7, 255, 255],
|
||||||
|
[224, 255, 8],
|
||||||
|
[102, 8, 255],
|
||||||
|
[255, 61, 6],
|
||||||
|
[255, 194, 7],
|
||||||
|
[255, 122, 8],
|
||||||
|
[0, 255, 20],
|
||||||
|
[255, 8, 41],
|
||||||
|
[255, 5, 153],
|
||||||
|
[6, 51, 255],
|
||||||
|
[235, 12, 255],
|
||||||
|
[160, 150, 20],
|
||||||
|
[0, 163, 255],
|
||||||
|
[140, 140, 140],
|
||||||
|
[250, 10, 15],
|
||||||
|
[20, 255, 0],
|
||||||
|
[31, 255, 0],
|
||||||
|
[255, 31, 0],
|
||||||
|
[255, 224, 0],
|
||||||
|
[153, 255, 0],
|
||||||
|
[0, 0, 255],
|
||||||
|
[255, 71, 0],
|
||||||
|
[0, 235, 255],
|
||||||
|
[0, 173, 255],
|
||||||
|
[31, 0, 255],
|
||||||
|
[11, 200, 200],
|
||||||
|
[255, 82, 0],
|
||||||
|
[0, 255, 245],
|
||||||
|
[0, 61, 255],
|
||||||
|
[0, 255, 112],
|
||||||
|
[0, 255, 133],
|
||||||
|
[255, 0, 0],
|
||||||
|
[255, 163, 0],
|
||||||
|
[255, 102, 0],
|
||||||
|
[194, 255, 0],
|
||||||
|
[0, 143, 255],
|
||||||
|
[51, 255, 0],
|
||||||
|
[0, 82, 255],
|
||||||
|
[0, 255, 41],
|
||||||
|
[0, 255, 173],
|
||||||
|
[10, 0, 255],
|
||||||
|
[173, 255, 0],
|
||||||
|
[0, 255, 153],
|
||||||
|
[255, 92, 0],
|
||||||
|
[255, 0, 255],
|
||||||
|
[255, 0, 245],
|
||||||
|
[255, 0, 102],
|
||||||
|
[255, 173, 0],
|
||||||
|
[255, 0, 20],
|
||||||
|
[255, 184, 184],
|
||||||
|
[0, 31, 255],
|
||||||
|
[0, 255, 61],
|
||||||
|
[0, 71, 255],
|
||||||
|
[255, 0, 204],
|
||||||
|
[0, 255, 194],
|
||||||
|
[0, 255, 82],
|
||||||
|
[0, 10, 255],
|
||||||
|
[0, 112, 255],
|
||||||
|
[51, 0, 255],
|
||||||
|
[0, 194, 255],
|
||||||
|
[0, 122, 255],
|
||||||
|
[0, 255, 163],
|
||||||
|
[255, 153, 0],
|
||||||
|
[0, 255, 10],
|
||||||
|
[255, 112, 0],
|
||||||
|
[143, 255, 0],
|
||||||
|
[82, 0, 255],
|
||||||
|
[163, 255, 0],
|
||||||
|
[255, 235, 0],
|
||||||
|
[8, 184, 170],
|
||||||
|
[133, 0, 255],
|
||||||
|
[0, 255, 92],
|
||||||
|
[184, 0, 255],
|
||||||
|
[255, 0, 31],
|
||||||
|
[0, 184, 255],
|
||||||
|
[0, 214, 255],
|
||||||
|
[255, 0, 112],
|
||||||
|
[92, 255, 0],
|
||||||
|
[0, 224, 255],
|
||||||
|
[112, 224, 255],
|
||||||
|
[70, 184, 160],
|
||||||
|
[163, 0, 255],
|
||||||
|
[153, 0, 255],
|
||||||
|
[71, 255, 0],
|
||||||
|
[255, 0, 163],
|
||||||
|
[255, 204, 0],
|
||||||
|
[255, 0, 143],
|
||||||
|
[0, 255, 235],
|
||||||
|
[133, 255, 0],
|
||||||
|
[255, 0, 235],
|
||||||
|
[245, 0, 255],
|
||||||
|
[255, 0, 122],
|
||||||
|
[255, 245, 0],
|
||||||
|
[10, 190, 212],
|
||||||
|
[214, 255, 0],
|
||||||
|
[0, 204, 255],
|
||||||
|
[20, 0, 255],
|
||||||
|
[255, 255, 0],
|
||||||
|
[0, 153, 255],
|
||||||
|
[0, 41, 255],
|
||||||
|
[0, 255, 204],
|
||||||
|
[41, 0, 255],
|
||||||
|
[41, 255, 0],
|
||||||
|
[173, 0, 255],
|
||||||
|
[0, 245, 255],
|
||||||
|
[71, 0, 255],
|
||||||
|
[122, 0, 255],
|
||||||
|
[0, 255, 184],
|
||||||
|
[0, 92, 255],
|
||||||
|
[184, 255, 0],
|
||||||
|
[0, 133, 255],
|
||||||
|
[255, 214, 0],
|
||||||
|
[25, 194, 194],
|
||||||
|
[102, 255, 0],
|
||||||
|
[92, 0, 255],
|
||||||
|
])
|
||||||
|
```
|
||||||
|
|
||||||
|
Then you can combine and plot your image and the predicted segmentation map:
|
||||||
|
|
||||||
```py
|
```py
|
||||||
>>> import matplotlib.pyplot as plt
|
>>> import matplotlib.pyplot as plt
|
||||||
|
Loading…
Reference in New Issue
Block a user