mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 03:01:07 +06:00
again
This commit is contained in:
parent
3dfebf2fc0
commit
1fdb9f3908
@ -842,11 +842,8 @@ def prepare_img():
|
||||
|
||||
# Helper functions for optical flow integration test
|
||||
def prepare_optical_flow_images():
|
||||
dataset = load_dataset("hf-internal-testing/fixtures_sintel", split="test")
|
||||
image1 = Image.open(dataset[0]["file"]).convert("RGB")
|
||||
image2 = Image.open(dataset[0]["file"]).convert("RGB")
|
||||
|
||||
return image1, image2
|
||||
ds = load_dataset("hf-internal-testing/fixtures_sintel", split="test")
|
||||
return list(ds["image"][:2])
|
||||
|
||||
|
||||
def normalize(img):
|
||||
|
@ -637,9 +637,9 @@ class ViltModelIntegrationTest(unittest.TestCase):
|
||||
|
||||
processor = self.default_processor
|
||||
|
||||
dataset = load_dataset("hf-internal-testing/fixtures_nlvr2", split="test")
|
||||
image1 = Image.open(dataset[0]["file"]).convert("RGB")
|
||||
image2 = Image.open(dataset[1]["file"]).convert("RGB")
|
||||
dataset = load_dataset("hf-internal-testing/fixtures_nlvr2", split="train")
|
||||
image1 = dataset[0]["image"]
|
||||
image2 = dataset[1]["image"]
|
||||
|
||||
text = (
|
||||
"The left image contains twice the number of dogs as the right image, and at least two dogs in total are"
|
||||
|
@ -1149,8 +1149,8 @@ class TrOCRModelIntegrationTest(unittest.TestCase):
|
||||
def test_inference_handwritten(self):
|
||||
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten").to(torch_device)
|
||||
|
||||
dataset = load_dataset("hf-internal-testing/fixtures_ocr", split="test")
|
||||
image = Image.open(dataset[0]["file"]).convert("RGB")
|
||||
dataset = load_dataset("hf-internal-testing/fixtures_ocr", split="train")
|
||||
image = dataset[0]["image"]
|
||||
|
||||
processor = self.default_processor
|
||||
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
|
||||
@ -1175,7 +1175,7 @@ class TrOCRModelIntegrationTest(unittest.TestCase):
|
||||
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed").to(torch_device)
|
||||
|
||||
dataset = load_dataset("hf-internal-testing/fixtures_ocr", split="test")
|
||||
image = Image.open(dataset[1]["file"]).convert("RGB")
|
||||
image = dataset[0]["image"]
|
||||
|
||||
processor = self.default_processor
|
||||
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
|
||||
|
@ -265,9 +265,7 @@ class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase):
|
||||
@require_torch
|
||||
@require_pyctcdecode
|
||||
def test_large_model_pt_with_lm(self):
|
||||
dataset = load_dataset("Narsil/asr_dummy", streaming=True)
|
||||
third_item = next(iter(dataset["test"].skip(3)))
|
||||
filename = third_item["file"]
|
||||
filename = hf_hub_download("Narsil/asr_dummy", filename="4.flac", repo_type="dataset")
|
||||
|
||||
speech_recognizer = pipeline(
|
||||
task="automatic-speech-recognition",
|
||||
|
Loading…
Reference in New Issue
Block a user