Add optional RMSNorm support to BitNet quantization (config + layers) (#38087)

* enable optional RMS in BitLinear

* Fix naming

* Import RMS from Llama using config.*

* make fix-copies

* ran CI loop

* remove default BitNetQuantConfig values

* Fix BitNetQuantConfig to be Optional

* Fix config docstrings to match Optoinal

* Edit docstrings to match standards

---------

Co-authored-by: steinmetzc <codysteinmetz7@gmail.com>
Co-authored-by: codys12 <steinmetzc@dh-mgmt4.hpc.msoe.edu>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
This commit is contained in:
Codys12 2025-05-16 05:38:06 -05:00 committed by GitHub
parent 57a79f51b2
commit 1e921a3a9c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 50 additions and 3 deletions

View File

@ -1584,7 +1584,9 @@ class TikTokenConverter:
self.pattern = pattern
self.add_prefix_space = add_prefix_space
self.additional_special_tokens = (
additional_special_tokens.keys() if type(additional_special_tokens) is dict else additional_special_tokens
additional_special_tokens.keys()
if isinstance(additional_special_tokens, dict)
else additional_special_tokens
)
def extract_vocab_merges_from_model(self, tiktoken_url: str):

View File

@ -124,7 +124,16 @@ def unpack_weights(packed: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
class BitLinear(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool, device=None, dtype=None):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool,
device=None,
dtype=None,
use_rms_norm: bool = False,
rms_norm_eps: float = 1e-6,
):
super().__init__()
self.dtype = dtype
self.in_features = in_features
@ -150,6 +159,13 @@ class BitLinear(nn.Module):
else:
self.bias = None
# Optional RMSNorm (applied on the activations before quantization).
self.rms_norm = None
if use_rms_norm:
from ..models.llama.modeling_llama import LlamaRMSNorm
self.rms_norm = LlamaRMSNorm(in_features, eps=rms_norm_eps)
@torch.compile
def activation_quant(self, input, num_bits=8):
"""
@ -180,6 +196,10 @@ class BitLinear(nn.Module):
return out
def forward(self, input):
# Apply RMSNorm on the input if requested.
if self.rms_norm is not None:
input = self.rms_norm(input)
w = self.weight
w_quant = unpack_weights(w, dtype=self.dtype)
input_quant, input_scale = self.activation_quant(input)
@ -245,9 +265,17 @@ class AutoBitLinear(nn.Linear):
device=None,
dtype=None,
online_quant: bool = False,
use_rms_norm: bool = False,
rms_norm_eps: float = 1e-6,
):
super().__init__(in_features, out_features, bias)
self.online_quant = online_quant
# Optional RMSNorm
self.rms_norm = None
if use_rms_norm:
from ..models.llama.modeling_llama import LlamaRMSNorm
self.rms_norm = LlamaRMSNorm(in_features, eps=rms_norm_eps)
if not online_quant:
self.register_buffer(
"weight_scale",
@ -271,6 +299,10 @@ class AutoBitLinear(nn.Linear):
return state_dict
def forward(self, input):
# Optional RMSNorm on activations prior to quantization.
if self.rms_norm is not None:
input = self.rms_norm(input)
if self.online_quant:
weight = WeightQuant.apply(self.weight)
else:
@ -318,6 +350,8 @@ def _replace_with_bitnet_linear(
device=module.weight.device,
dtype=module.weight.dtype,
online_quant=(quantization_config.quantization_mode == "online"),
use_rms_norm=quantization_config.use_rms_norm,
rms_norm_eps=quantization_config.rms_norm_eps,
)
if quantization_config.quantization_mode == "offline":
model._modules[name].requires_grad_(False)
@ -328,6 +362,8 @@ def _replace_with_bitnet_linear(
bias=module.bias is not None,
device=module.weight.device,
dtype=module.weight.dtype,
use_rms_norm=quantization_config.use_rms_norm,
rms_norm_eps=quantization_config.rms_norm_eps,
)
model._modules[name].requires_grad_(False)
has_been_replaced = True
@ -363,7 +399,7 @@ def replace_with_bitnet_linear(
model (`torch.nn.Module`):
Input model or `torch.nn.Module` as the function is run recursively.
modules_to_not_convert (`List[`str`]`, *optional*, defaults to `["lm_head"]`):
Names of the modules to not convert in `EetqLinear`. In practice we keep the `lm_head` in full precision
Names of the modules to not convert in `BitLinear`. In practice we keep the `lm_head` in full precision
for numerical stability reasons.
current_key_name (`List[`str`]`, *optional*):
An array to track the current key of the recursion. This is used to check whether the current key (part of

View File

@ -1791,6 +1791,11 @@ class BitNetQuantConfig(QuantizationConfigMixin):
In `offline` mode, quantization parameters are pre-calculated *before* inference.
These parameters are then fixed and loaded into the quantized model. This
generally results in lower runtime overhead compared to online quantization.
use_rms_norm (`bool`, *optional*, defaults to `False`):
Whether to apply RMSNorm on the activations before quantization. This matches the original BitNet paper's approach
of normalizing activations before quantization/packing.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon value used in the RMSNorm layer for numerical stability.
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments that may be used by specific quantization
backends or future versions.
@ -1801,6 +1806,8 @@ class BitNetQuantConfig(QuantizationConfigMixin):
modules_to_not_convert: Optional[List] = None,
linear_class: Optional[str] = "bitlinear",
quantization_mode: Optional[str] = "offline",
use_rms_norm: Optional[bool] = False,
rms_norm_eps: Optional[float] = 1e-6,
**kwargs,
):
if linear_class not in ["bitlinear", "autobitlinear"]:
@ -1811,6 +1818,8 @@ class BitNetQuantConfig(QuantizationConfigMixin):
self.modules_to_not_convert = modules_to_not_convert
self.linear_class = linear_class
self.quantization_mode = quantization_mode
self.use_rms_norm = use_rms_norm
self.rms_norm_eps = rms_norm_eps
self.post_init()
def post_init(self):