mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
add test for initialization of Bert2Rnd
This commit is contained in:
parent
fa218e648a
commit
1e68c28670
49
examples/run_summarization.py
Normal file
49
examples/run_summarization.py
Normal file
@ -0,0 +1,49 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Finetuning seq2seq models for abstractive summarization.
|
||||
|
||||
The finetuning method for abstractive summarization is inspired by [1]. We
|
||||
concatenate the document and summary, mask words of the summary at random and
|
||||
maximizing the likelihood of masked words.
|
||||
|
||||
[1] Dong Li, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng
|
||||
Gao, Ming Zhou, and Hsiao-Wuen Hon. “Unified Language Model Pre-Training for
|
||||
Natural Language Understanding and Generation.” (May 2019) ArXiv:1905.03197
|
||||
"""
|
||||
|
||||
import logging
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def set_seed(args):
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
if args.n_gpu > 0:
|
||||
torch.cuda.manual_seed_all(args.seed)
|
||||
|
||||
|
||||
def train(args, train_dataset, model, tokenizer):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def evaluate(args, model, tokenizer, prefix=""):
|
||||
raise NotImplementedError
|
@ -259,12 +259,12 @@ class BertModelTest(CommonTestCases.CommonModelTester):
|
||||
config.num_choices = self.num_choices
|
||||
model = Bert2Rnd(config=config)
|
||||
model.eval()
|
||||
bert2bert_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
||||
bert2bert_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
||||
bert2bert_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
||||
_ = model(bert2bert_inputs_ids,
|
||||
attention_mask=bert2bert_input_mask,
|
||||
token_type_ids=bert2bert_token_type_ids)
|
||||
bert2rnd_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
||||
bert2rnd_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
||||
bert2rnd_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
||||
_ = model(bert2rnd_inputs_ids,
|
||||
attention_mask=bert2rnd_input_mask,
|
||||
token_type_ids=bert2rnd_token_type_ids)
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
Loading…
Reference in New Issue
Block a user