mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-03 03:31:05 +06:00
Add type hints to TFPegasusModel (#19858)
* added typing to call in TFPegasusModel and TFPegasusForConditionalGeneration * fixed type for TFPegasusForConditionalGeneration call
This commit is contained in:
parent
ecf29db0e5
commit
1e6141c3d4
@ -33,6 +33,7 @@ from ...modeling_tf_outputs import (
|
||||
from ...modeling_tf_utils import (
|
||||
DUMMY_INPUTS,
|
||||
TFCausalLanguageModelingLoss,
|
||||
TFModelInputType,
|
||||
TFPreTrainedModel,
|
||||
keras_serializable,
|
||||
unpack_inputs,
|
||||
@ -1232,25 +1233,25 @@ class TFPegasusModel(TFPegasusPreTrainedModel):
|
||||
)
|
||||
def call(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
decoder_input_ids=None,
|
||||
decoder_attention_mask=None,
|
||||
decoder_position_ids=None,
|
||||
head_mask=None,
|
||||
decoder_head_mask=None,
|
||||
cross_attn_head_mask=None,
|
||||
input_ids: Optional[TFModelInputType] = None,
|
||||
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
decoder_position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
decoder_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
cross_attn_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
||||
past_key_values=None,
|
||||
inputs_embeds=None,
|
||||
decoder_inputs_embeds=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
training=False,
|
||||
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
||||
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
decoder_inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
training: bool = False,
|
||||
**kwargs
|
||||
):
|
||||
) -> Union[TFSeq2SeqModelOutput, Tuple[tf.Tensor]]:
|
||||
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
@ -1361,25 +1362,25 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua
|
||||
@add_end_docstrings(PEGASUS_GENERATION_EXAMPLE)
|
||||
def call(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
decoder_input_ids=None,
|
||||
decoder_attention_mask=None,
|
||||
decoder_position_ids=None,
|
||||
head_mask=None,
|
||||
decoder_head_mask=None,
|
||||
cross_attn_head_mask=None,
|
||||
input_ids: Optional[TFModelInputType] = None,
|
||||
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
decoder_position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
decoder_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
cross_attn_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
encoder_outputs: Optional[TFBaseModelOutput] = None,
|
||||
past_key_values=None,
|
||||
inputs_embeds=None,
|
||||
decoder_inputs_embeds=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
training=False,
|
||||
):
|
||||
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
||||
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
decoder_inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
training: bool = False,
|
||||
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
|
||||
"""
|
||||
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
|
Loading…
Reference in New Issue
Block a user