Documentation additions

This commit is contained in:
LysandreJik 2019-08-28 09:37:27 -04:00
parent 912a377e90
commit 1dc43e56c9
4 changed files with 56 additions and 4 deletions

View File

@ -48,3 +48,4 @@ The library currently contains PyTorch implementations, pre-trained model weight
model_doc/xlm
model_doc/xlnet
model_doc/roberta
model_doc/distilbert

View File

@ -0,0 +1,43 @@
DistilBERT
----------------------------------------------------
``DistilBertConfig``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.DistilBertConfig
:members:
``DistilBertTokenizer``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.DistilBertTokenizer
:members:
``DistilBertModel``
~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.DistilBertModel
:members:
``DistilBertForMaskedLM``
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.DistilBertForMaskedLM
:members:
``DistilBertForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.DistilBertForSequenceClassification
:members:
``DistilBertForQuestionAnswering``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.DistilBertForQuestionAnswering
:members:

View File

@ -111,5 +111,13 @@ Here is the full list of the currently provided pretrained models together with
| | | | ``roberta-large`` fine-tuned on `MNLI <http://www.nyu.edu/projects/bowman/multinli/>`__. |
| | | (see `details <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`__) |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| DistilBERT | ``distilbert-base-uncased`` | | 6-layer, 768-hidden, 12-heads, 66M parameters |
| | | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint |
| | | (see `details <https://medium.com/@victorsanh/8cf3380435b5>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``distilbert-base-uncased-distilled-squad`` | | 6-layer, 768-hidden, 12-heads, 66M parameters |
| | | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint, with an additional linear layer. |
| | | (see `details <https://medium.com/@victorsanh/8cf3380435b5>`__) |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
.. <https://huggingface.co/pytorch-transformers/examples.html>`__

View File

@ -433,7 +433,7 @@ DISTILBERT_START_DOCSTRING = r"""
Here are the differences between the interface of Bert and DistilBert:
- DistilBert doesn't have `token_type_ids`, you don't need to indicate which token belong to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`)
- DistilBert doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`)
- DistilBert doesn't have options to select the input positions (`position_ids` input). This could be added if necessary though, just let's us know if you need this option.
For more information on DistilBERT, please refer to our
@ -450,9 +450,9 @@ DISTILBERT_START_DOCSTRING = r"""
DISTILBERT_INPUTS_DOCSTRING = r"""
Inputs:
**input_ids**L ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Indices oof input sequence tokens in the vocabulary.
The input sequences should start with `[CLS]` and `[SEP]` tokens.
**input_ids** ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Indices of input sequence tokens in the vocabulary.
The input sequences should start with `[CLS]` and end with `[SEP]` tokens.
For now, ONLY BertTokenizer(`bert-base-uncased`) is supported and you should use this tokenizer when using DistilBERT.
**attention_mask**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: