mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
Add check for different embedding types in examples (#21881)
* Add check for different embedding types in examples * Correctly update summarization example
This commit is contained in:
parent
53735d7c3b
commit
1d3a1cc44b
@ -475,7 +475,15 @@ def main():
|
||||
|
||||
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
||||
# on a small vocab and want a smaller embedding size, remove this test.
|
||||
embedding_size = model.get_input_embeddings().weight.shape[0]
|
||||
embeddings = model.get_input_embeddings()
|
||||
|
||||
# Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings.
|
||||
# As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and
|
||||
# the weights will always be in embeddings.embeddings.
|
||||
if hasattr(embeddings, "embeddings"):
|
||||
embedding_size = embeddings.embeddings.shape[0]
|
||||
else:
|
||||
embedding_size = embeddings.weight.shape[0]
|
||||
if len(tokenizer) > embedding_size:
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
# endregion
|
||||
|
@ -491,7 +491,15 @@ def main():
|
||||
|
||||
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
||||
# on a small vocab and want a smaller embedding size, remove this test.
|
||||
embedding_size = model.get_input_embeddings().weight.shape[0]
|
||||
embeddings = model.get_input_embeddings()
|
||||
|
||||
# Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings.
|
||||
# As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and
|
||||
# the weights will always be in embeddings.embeddings.
|
||||
if hasattr(embeddings, "embeddings"):
|
||||
embedding_size = embeddings.embeddings.shape[0]
|
||||
else:
|
||||
embedding_size = embeddings.weight.shape[0]
|
||||
if len(tokenizer) > embedding_size:
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
# endregion
|
||||
|
@ -518,7 +518,15 @@ def main():
|
||||
|
||||
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
||||
# on a small vocab and want a smaller embedding size, remove this test.
|
||||
embedding_size = model.get_input_embeddings().weight.shape[0]
|
||||
embeddings = model.get_input_embeddings()
|
||||
|
||||
# Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings.
|
||||
# As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and
|
||||
# the weights will always be in embeddings.embeddings.
|
||||
if hasattr(embeddings, "embeddings"):
|
||||
embedding_size = embeddings.embeddings.shape[0]
|
||||
else:
|
||||
embedding_size = embeddings.weight.shape[0]
|
||||
if len(tokenizer) > embedding_size:
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
# endregion
|
||||
|
@ -387,7 +387,15 @@ def main():
|
||||
|
||||
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
||||
# on a small vocab and want a smaller embedding size, remove this test.
|
||||
embedding_size = model.get_input_embeddings().weight.shape[0]
|
||||
embeddings = model.get_input_embeddings()
|
||||
|
||||
# Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings.
|
||||
# As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and
|
||||
# the weights will always be in embeddings.embeddings.
|
||||
if hasattr(embeddings, "embeddings"):
|
||||
embedding_size = embeddings.embeddings.shape[0]
|
||||
else:
|
||||
embedding_size = embeddings.weight.shape[0]
|
||||
if len(tokenizer) > embedding_size:
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
# endregion
|
||||
|
@ -471,9 +471,18 @@ def main():
|
||||
|
||||
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
||||
# on a small vocab and want a smaller embedding size, remove this test.
|
||||
embedding_size = model.get_input_embeddings().weight.shape[0]
|
||||
embeddings = model.get_input_embeddings()
|
||||
|
||||
# Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings.
|
||||
# As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and
|
||||
# the weights will always be in embeddings.embeddings.
|
||||
if hasattr(embeddings, "embeddings"):
|
||||
embedding_size = embeddings.embeddings.shape[0]
|
||||
else:
|
||||
embedding_size = embeddings.weight.shape[0]
|
||||
if len(tokenizer) > embedding_size:
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
|
||||
model.config.forced_bos_token_id = forced_bos_token_id
|
||||
# endregion
|
||||
|
Loading…
Reference in New Issue
Block a user