[modular] Allow method with the same name in case of @property decorator (#39308)

* fix

* add example

* fix

* Update modular_model_converter.py
This commit is contained in:
Cyril Vallez 2025-07-09 15:46:53 +02:00 committed by GitHub
parent 4798c05c64
commit 1cefb5d788
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 264 additions and 8 deletions

View File

@ -0,0 +1,216 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from examples/modular-transformers/modular_duplicated_method.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_duplicated_method.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class DuplicatedMethodConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DuplicatedMethodModel`]. It is used to instantiate an DuplicatedMethod
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the DuplicatedMethod-7B.
e.g. [meta-duplicated_method/DuplicatedMethod-2-7b-hf](https://huggingface.co/meta-duplicated_method/DuplicatedMethod-2-7b-hf)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the DuplicatedMethod model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`DuplicatedMethodModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. DuplicatedMethod 1 supports up to 2048 tokens,
DuplicatedMethod 2 up to 4096, CodeLlama up to 16384.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'duplicated_method3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'duplicated_method3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'duplicated_method3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'duplicated_method3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
```python
>>> from transformers import DuplicatedMethodModel, DuplicatedMethodConfig
>>> # Initializing a DuplicatedMethod duplicated_method-7b style configuration
>>> configuration = DuplicatedMethodConfig()
>>> # Initializing a model from the duplicated_method-7b style configuration
>>> model = DuplicatedMethodModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "duplicated_method"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `DuplicatedMethodModel`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
head_dim=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
@property
def vocab_size(self):
return 45
@vocab_size.setter
def vocab_size(self, value):
self.vocab_size = value

View File

@ -498,6 +498,7 @@ class Multimodal2VisionPreTrainedModel(PreTrainedModel):
supports_gradient_checkpointing = True
_supports_sdpa = True
_supports_flash_attn_2 = True
_supports_flash_attn_3 = True
_supports_flex_attn = True
_supports_attention_backend = True

View File

@ -65,7 +65,7 @@ class MyNewModel2RotaryEmbedding(nn.Module):
def __init__(self, config: MyNewModel2Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
@ -290,6 +290,7 @@ class MyNewModel2PreTrainedModel(PreTrainedModel):
_no_split_modules = ["MyNewModel2DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_flash_attn_3 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True

View File

@ -96,6 +96,7 @@ class NewTaskModelPreTrainedModel(PreTrainedModel):
_supports_quantized_cache = True
_supports_static_cache = True
_supports_flash_attn_2 = True
_supports_flash_attn_3 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_attention_backend = True

View File

@ -48,7 +48,7 @@ class SuperRotaryEmbedding(nn.Module):
def __init__(self, config: SuperConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
@ -289,6 +289,7 @@ class SuperPreTrainedModel(PreTrainedModel):
_no_split_modules = ["SuperDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_flash_attn_3 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True

View File

@ -0,0 +1,11 @@
from transformers.models.llama.configuration_llama import LlamaConfig
class DuplicatedMethodConfig(LlamaConfig):
@property
def vocab_size(self):
return 45
@vocab_size.setter
def vocab_size(self, value):
self.vocab_size = value

View File

@ -972,12 +972,37 @@ def replace_class_node(
# Use all original modeling attributes, and potentially override some with values in the modular
new_class_attributes = list({**original_modeling_class_attributes, **modular_class_attributes}.values())
original_modeling_methods = {
node.name.value: node for node in original_modeling_node.body.body if m.matches(node, m.FunctionDef())
}
modular_methods = {
node.name.value: node for node in modular_class_node.body.body if m.matches(node, m.FunctionDef())
}
# Check class methods defined in the modular and associated modeling
original_modeling_methods = {}
for node in original_modeling_node.body.body:
if m.matches(node, m.FunctionDef()):
# Due to the @property and @name.setter decorators, methods can sometimes have the same name, so we need a way
# to separate them
if node.name.value in original_modeling_methods:
# If it's already present, and the decorator is @property, it means the node already added was the setter
if node.decorators[0].decorator.value == "property":
original_modeling_methods[f"{node.name.value}_setter"] = original_modeling_methods[node.name.value]
original_modeling_methods[node.name.value] = node
# In this case current node is the setter
else:
original_modeling_methods[f"{node.name.value}_setter"] = node
else:
original_modeling_methods[node.name.value] = node
modular_methods = {}
for node in modular_class_node.body.body:
if m.matches(node, m.FunctionDef()):
# Due to the @property and @name.setter decorators, methods can sometimes have the same name, so we need a way
# to separate them
if node.name.value in modular_methods:
# If it's already present, and the decorator is @property, it means the node already added was the setter
if node.decorators[0].decorator.value == "property":
modular_methods[f"{node.name.value}_setter"] = modular_methods[node.name.value]
modular_methods[node.name.value] = node
# In this case current node is the setter
else:
modular_methods[f"{node.name.value}_setter"] = node
else:
modular_methods[node.name.value] = node
new_class_methods = []
# Iterate over the methods of the original modeling code, and add them to the list of methods to add