mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Raise unused kwargs image processor (#29063)
* draft processor arg capture * add missing vivit model * add new common test for image preprocess signature * fix quality * fix up * add back missing validations * quality * move info level to warning for unused kwargs
This commit is contained in:
parent
b8b16475d4
commit
1c81132e80
@ -759,3 +759,11 @@ def validate_annotations(
|
||||
"(batch of images) with the following keys: `image_id`, `file_name` and `segments_info`, with "
|
||||
"the latter being a list of annotations in the COCO format."
|
||||
)
|
||||
|
||||
|
||||
def validate_kwargs(valid_processor_keys: List[str], captured_kwargs: List[str]):
|
||||
unused_keys = set(captured_kwargs).difference(set(valid_processor_keys))
|
||||
if unused_keys:
|
||||
unused_key_str = ", ".join(unused_keys)
|
||||
# TODO raise a warning here instead of simply logging?
|
||||
logger.warning(f"Unused or unrecognized kwargs: {unused_key_str}.")
|
||||
|
@ -32,6 +32,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
|
||||
@ -130,6 +131,24 @@ class BeitImageProcessor(BaseImageProcessor):
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self.do_reduce_labels = do_reduce_labels
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"segmentation_maps",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_reduce_labels",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
||||
@ -337,6 +356,9 @@ class BeitImageProcessor(BaseImageProcessor):
|
||||
images (`ImageInput`):
|
||||
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
||||
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
||||
segmentation_maps (`ImageInput`, *optional*)
|
||||
Segmentation maps to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
||||
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
||||
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
||||
Whether to resize the image.
|
||||
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
||||
@ -396,6 +418,8 @@ class BeitImageProcessor(BaseImageProcessor):
|
||||
image_std = image_std if image_std is not None else self.image_std
|
||||
do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
if segmentation_maps is not None:
|
||||
|
@ -36,6 +36,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -121,6 +122,23 @@ class BitImageProcessor(BaseImageProcessor):
|
||||
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
||||
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
||||
self.do_convert_rgb = do_convert_rgb
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_convert_rgb",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
# Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize
|
||||
def resize(
|
||||
@ -256,6 +274,8 @@ class BitImageProcessor(BaseImageProcessor):
|
||||
image_std = image_std if image_std is not None else self.image_std
|
||||
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
if not valid_images(images):
|
||||
|
@ -31,6 +31,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -106,6 +107,21 @@ class BlipImageProcessor(BaseImageProcessor):
|
||||
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
||||
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
||||
self.do_convert_rgb = do_convert_rgb
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_convert_rgb",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
|
||||
def resize(
|
||||
@ -234,6 +250,8 @@ class BlipImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -32,6 +32,7 @@ from ...image_utils import (
|
||||
is_scaled_image,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -204,6 +205,24 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
|
||||
self.do_pad = do_pad
|
||||
self.do_center_crop = do_center_crop
|
||||
self.crop_size = crop_size
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"size_divisor",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_pad",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
# Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.resize
|
||||
def resize(
|
||||
@ -465,6 +484,8 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
|
||||
size = size if size is not None else self.size
|
||||
size = get_size_dict(size, default_to_square=False)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not is_batched(images):
|
||||
images = [images]
|
||||
|
||||
|
@ -36,6 +36,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -121,6 +122,23 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
|
||||
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
||||
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
||||
self.do_convert_rgb = do_convert_rgb
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_convert_rgb",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
@ -247,6 +265,8 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -36,6 +36,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -121,6 +122,23 @@ class CLIPImageProcessor(BaseImageProcessor):
|
||||
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
||||
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
||||
self.do_convert_rgb = do_convert_rgb
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_convert_rgb",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
# for backwards compatibility of KOSMOS-2
|
||||
if "use_square_size" in kwargs:
|
||||
@ -259,6 +277,8 @@ class CLIPImageProcessor(BaseImageProcessor):
|
||||
image_std = image_std if image_std is not None else self.image_std
|
||||
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
if not valid_images(images):
|
||||
|
@ -49,6 +49,7 @@ from ...image_utils import (
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_annotations,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import (
|
||||
@ -845,6 +846,26 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
||||
self.do_pad = do_pad
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"annotations",
|
||||
"return_segmentation_masks",
|
||||
"masks_path",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"do_convert_annotations",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_pad",
|
||||
"format",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
@classmethod
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.from_dict with Detr->ConditionalDetr
|
||||
@ -1299,6 +1320,7 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
"torch.Tensor, tf.Tensor or jax.ndarray."
|
||||
)
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
# Here, the pad() method pads to the maximum of (width, height). It does not need to be validated.
|
||||
|
||||
|
@ -36,6 +36,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -113,6 +114,21 @@ class ConvNextImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"crop_pct",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
@ -260,6 +276,8 @@ class ConvNextImageProcessor(BaseImageProcessor):
|
||||
size = size if size is not None else self.size
|
||||
size = get_size_dict(size, default_to_square=False)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
if not valid_images(images):
|
||||
|
@ -49,6 +49,7 @@ from ...image_utils import (
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_annotations,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import (
|
||||
@ -843,6 +844,26 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
||||
self.do_pad = do_pad
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"annotations",
|
||||
"return_segmentation_masks",
|
||||
"masks_path",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"do_convert_annotations",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_pad",
|
||||
"format",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
@classmethod
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.from_dict with Detr->DeformableDetr
|
||||
@ -1297,6 +1318,7 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
"torch.Tensor, tf.Tensor or jax.ndarray."
|
||||
)
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
# Here, the pad() method pads to the maximum of (width, height). It does not need to be validated.
|
||||
|
||||
|
@ -31,6 +31,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -109,6 +110,22 @@ class DeiTImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
|
||||
def resize(
|
||||
@ -240,6 +257,8 @@ class DeiTImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -48,6 +48,7 @@ from ...image_utils import (
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_annotations,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import (
|
||||
@ -828,6 +829,26 @@ class DetrImageProcessor(BaseImageProcessor):
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
||||
self.do_pad = do_pad
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"annotations",
|
||||
"return_segmentation_masks",
|
||||
"masks_path",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"do_convert_annotations",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_pad",
|
||||
"format",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
||||
@ -1269,6 +1290,7 @@ class DetrImageProcessor(BaseImageProcessor):
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
"torch.Tensor, tf.Tensor or jax.ndarray."
|
||||
)
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
# Here, the pad() method pads to the maximum of (width, height). It does not need to be validated.
|
||||
|
||||
|
@ -37,6 +37,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, logging
|
||||
@ -123,6 +124,24 @@ class DonutImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_thumbnail",
|
||||
"do_align_long_axis",
|
||||
"do_pad",
|
||||
"random_padding",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def align_long_axis(
|
||||
self,
|
||||
@ -388,6 +407,8 @@ class DonutImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -35,6 +35,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -164,6 +165,24 @@ class DPTImageProcessor(BaseImageProcessor):
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self.do_pad = do_pad
|
||||
self.size_divisor = size_divisor
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"keep_aspect_ratio",
|
||||
"ensure_multiple_of",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_pad",
|
||||
"size_divisor",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
@ -350,6 +369,8 @@ class DPTImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -35,6 +35,7 @@ from ...image_utils import (
|
||||
is_scaled_image,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, logging
|
||||
@ -112,6 +113,22 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
|
||||
self.rescale_factor = rescale_factor
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
@ -238,6 +255,8 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
|
||||
size = size if size is not None else self.size
|
||||
size_dict = get_size_dict(size)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not is_batched(images):
|
||||
images = [images]
|
||||
|
||||
|
@ -31,6 +31,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -118,6 +119,24 @@ class EfficientNetImageProcessor(BaseImageProcessor):
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self.include_top = include_top
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"rescale_offset",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"include_top",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.NEAREST
|
||||
def resize(
|
||||
@ -297,6 +316,8 @@ class EfficientNetImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -34,6 +34,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -301,6 +302,41 @@ class FlavaImageProcessor(BaseImageProcessor):
|
||||
self.codebook_image_mean = codebook_image_mean
|
||||
self.codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else FLAVA_CODEBOOK_MEAN
|
||||
self.codebook_image_std = codebook_image_std if codebook_image_std is not None else FLAVA_CODEBOOK_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_image_mask",
|
||||
"input_size_patches",
|
||||
"total_mask_patches",
|
||||
"mask_group_min_patches",
|
||||
"mask_group_max_patches",
|
||||
"mask_group_min_aspect_ratio",
|
||||
"mask_group_max_aspect_ratio",
|
||||
"return_codebook_pixels",
|
||||
"codebook_do_resize",
|
||||
"codebook_size",
|
||||
"codebook_resample",
|
||||
"codebook_do_center_crop",
|
||||
"codebook_crop_size",
|
||||
"codebook_do_rescale",
|
||||
"codebook_rescale_factor",
|
||||
"codebook_do_map_pixels",
|
||||
"codebook_do_normalize",
|
||||
"codebook_image_mean",
|
||||
"codebook_image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
||||
@ -636,6 +672,8 @@ class FlavaImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -261,6 +261,24 @@ class FuyuImageProcessor(BaseImageProcessor):
|
||||
self.do_rescale = do_rescale
|
||||
self.rescale_factor = rescale_factor
|
||||
self.patch_size = patch_size if patch_size is not None else {"height": 30, "width": 30}
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_pad",
|
||||
"padding_value",
|
||||
"padding_mode",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"patch_size",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
|
@ -30,6 +30,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, logging
|
||||
@ -71,6 +72,16 @@ class GLPNImageProcessor(BaseImageProcessor):
|
||||
self.size_divisor = size_divisor
|
||||
self.resample = resample
|
||||
super().__init__(**kwargs)
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size_divisor",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
@ -176,6 +187,8 @@ class GLPNImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -29,6 +29,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -102,6 +103,18 @@ class ImageGPTImageProcessor(BaseImageProcessor):
|
||||
self.resample = resample
|
||||
self.do_normalize = do_normalize
|
||||
self.do_color_quantize = do_color_quantize
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_normalize",
|
||||
"do_color_quantize",
|
||||
"clusters",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
|
||||
def resize(
|
||||
@ -238,6 +251,8 @@ class ImageGPTImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -28,6 +28,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
|
||||
@ -137,6 +138,18 @@ class LayoutLMv2ImageProcessor(BaseImageProcessor):
|
||||
self.apply_ocr = apply_ocr
|
||||
self.ocr_lang = ocr_lang
|
||||
self.tesseract_config = tesseract_config
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"apply_ocr",
|
||||
"ocr_lang",
|
||||
"tesseract_config",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
|
||||
def resize(
|
||||
@ -244,6 +257,8 @@ class LayoutLMv2ImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -31,6 +31,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
|
||||
@ -164,6 +165,23 @@ class LayoutLMv3ImageProcessor(BaseImageProcessor):
|
||||
self.apply_ocr = apply_ocr
|
||||
self.ocr_lang = ocr_lang
|
||||
self.tesseract_config = tesseract_config
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"apply_ocr",
|
||||
"ocr_lang",
|
||||
"tesseract_config",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
|
||||
def resize(
|
||||
@ -298,6 +316,8 @@ class LayoutLMv3ImageProcessor(BaseImageProcessor):
|
||||
tesseract_config = tesseract_config if tesseract_config is not None else self.tesseract_config
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -35,6 +35,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, logging
|
||||
@ -115,6 +116,22 @@ class LevitImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
@ -254,6 +271,8 @@ class LevitImageProcessor(BaseImageProcessor):
|
||||
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -39,6 +39,7 @@ from ...image_utils import (
|
||||
is_scaled_image,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import (
|
||||
@ -439,6 +440,25 @@ class Mask2FormerImageProcessor(BaseImageProcessor):
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
||||
self.ignore_index = ignore_index
|
||||
self.reduce_labels = reduce_labels
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"segmentation_maps",
|
||||
"instance_id_to_semantic_id",
|
||||
"do_resize",
|
||||
"size",
|
||||
"size_divisor",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"ignore_index",
|
||||
"reduce_labels",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
||||
@ -708,6 +728,8 @@ class Mask2FormerImageProcessor(BaseImageProcessor):
|
||||
ignore_index = ignore_index if ignore_index is not None else self.ignore_index
|
||||
reduce_labels = reduce_labels if reduce_labels is not None else self.reduce_labels
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -39,6 +39,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import (
|
||||
@ -448,6 +449,25 @@ class MaskFormerImageProcessor(BaseImageProcessor):
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
||||
self.ignore_index = ignore_index
|
||||
self.do_reduce_labels = do_reduce_labels
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"segmentation_maps",
|
||||
"instance_id_to_semantic_id",
|
||||
"do_resize",
|
||||
"size",
|
||||
"size_divisor",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"ignore_index",
|
||||
"do_reduce_labels",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
||||
@ -730,6 +750,8 @@ class MaskFormerImageProcessor(BaseImageProcessor):
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
"torch.Tensor, tf.Tensor or jax.ndarray."
|
||||
)
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
validate_preprocess_arguments(
|
||||
do_rescale=do_rescale,
|
||||
rescale_factor=rescale_factor,
|
||||
|
@ -35,6 +35,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, logging
|
||||
@ -113,6 +114,22 @@ class MobileNetV1ImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
# Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize
|
||||
def resize(
|
||||
@ -245,6 +262,8 @@ class MobileNetV1ImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -35,6 +35,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
|
||||
@ -117,6 +118,22 @@ class MobileNetV2ImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
# Copied from transformers.models.mobilenet_v1.image_processing_mobilenet_v1.MobileNetV1ImageProcessor.resize
|
||||
def resize(
|
||||
@ -249,6 +266,8 @@ class MobileNetV2ImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -29,6 +29,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
|
||||
@ -104,6 +105,21 @@ class MobileViTImageProcessor(BaseImageProcessor):
|
||||
self.do_center_crop = do_center_crop
|
||||
self.crop_size = crop_size
|
||||
self.do_flip_channel_order = do_flip_channel_order
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"segmentation_maps",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_flip_channel_order",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
# Copied from transformers.models.mobilenet_v1.image_processing_mobilenet_v1.MobileNetV1ImageProcessor.resize with PILImageResampling.BICUBIC->PILImageResampling.BILINEAR
|
||||
def resize(
|
||||
@ -366,6 +382,9 @@ class MobileViTImageProcessor(BaseImageProcessor):
|
||||
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if segmentation_maps is not None:
|
||||
segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
|
||||
|
||||
|
@ -38,6 +38,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, logging
|
||||
@ -125,6 +126,24 @@ class NougatImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_crop_margin",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_thumbnail",
|
||||
"do_align_long_axis",
|
||||
"do_pad",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def python_find_non_zero(self, image: np.array):
|
||||
"""This is a reimplementation of a findNonZero function equivalent to cv2."""
|
||||
@ -442,6 +461,8 @@ class NougatImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -42,6 +42,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import (
|
||||
@ -467,6 +468,25 @@ class OneFormerImageProcessor(BaseImageProcessor):
|
||||
self.repo_path = repo_path
|
||||
self.metadata = prepare_metadata(load_metadata(repo_path, class_info_file))
|
||||
self.num_text = num_text
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"task_inputs",
|
||||
"segmentation_maps",
|
||||
"instance_id_to_semantic_id",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"ignore_index",
|
||||
"do_reduce_labels",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
@ -714,6 +734,9 @@ class OneFormerImageProcessor(BaseImageProcessor):
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
"torch.Tensor, tf.Tensor or jax.ndarray."
|
||||
)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
validate_preprocess_arguments(
|
||||
do_rescale=do_rescale,
|
||||
rescale_factor=rescale_factor,
|
||||
|
@ -37,6 +37,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import (
|
||||
@ -232,6 +233,20 @@ class Owlv2ImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
||||
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_pad",
|
||||
"do_resize",
|
||||
"size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def pad(
|
||||
self,
|
||||
@ -401,6 +416,8 @@ class Owlv2ImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -38,6 +38,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_torch_available, logging
|
||||
@ -166,6 +167,22 @@ class OwlViTImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
||||
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
@ -356,6 +373,7 @@ class OwlViTImageProcessor(BaseImageProcessor):
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
"torch.Tensor, tf.Tensor or jax.ndarray."
|
||||
)
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
validate_preprocess_arguments(
|
||||
do_rescale=do_rescale,
|
||||
|
@ -32,6 +32,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -113,6 +114,22 @@ class PerceiverImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def center_crop(
|
||||
self,
|
||||
@ -286,6 +303,8 @@ class PerceiverImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -35,6 +35,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -132,6 +133,23 @@ class PoolFormerImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"crop_pct",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
@ -293,6 +311,8 @@ class PoolFormerImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -31,6 +31,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, logging
|
||||
@ -95,6 +96,20 @@ class PvtImageProcessor(BaseImageProcessor):
|
||||
self.rescale_factor = rescale_factor
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
|
||||
def resize(
|
||||
@ -218,6 +233,8 @@ class PvtImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -34,6 +34,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import (
|
||||
@ -160,6 +161,26 @@ class SamImageProcessor(BaseImageProcessor):
|
||||
self.pad_size = pad_size
|
||||
self.mask_pad_size = mask_pad_size
|
||||
self.do_convert_rgb = do_convert_rgb
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"segmentation_maps",
|
||||
"do_resize",
|
||||
"size",
|
||||
"mask_size",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_pad",
|
||||
"pad_size",
|
||||
"mask_pad_size",
|
||||
"do_convert_rgb",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def pad_image(
|
||||
self,
|
||||
@ -491,6 +512,8 @@ class SamImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -32,6 +32,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
|
||||
@ -118,6 +119,22 @@ class SegformerImageProcessor(BaseImageProcessor):
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
||||
self.do_reduce_labels = do_reduce_labels
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"segmentation_maps",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_reduce_labels",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
||||
@ -380,6 +397,9 @@ class SegformerImageProcessor(BaseImageProcessor):
|
||||
image_std = image_std if image_std is not None else self.image_std
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if segmentation_maps is not None:
|
||||
segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
|
||||
|
||||
|
@ -32,6 +32,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -101,6 +102,20 @@ class SiglipImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean
|
||||
self.image_std = image_std
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
@ -174,6 +189,8 @@ class SiglipImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -28,6 +28,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, logging
|
||||
@ -65,6 +66,16 @@ class Swin2SRImageProcessor(BaseImageProcessor):
|
||||
self.rescale_factor = rescale_factor
|
||||
self.do_pad = do_pad
|
||||
self.pad_size = pad_size
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_pad",
|
||||
"pad_size",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def pad(
|
||||
self,
|
||||
@ -161,6 +172,8 @@ class Swin2SRImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -34,6 +34,7 @@ from ...image_utils import (
|
||||
is_valid_image,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, logging
|
||||
@ -151,6 +152,25 @@ class TvltImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean
|
||||
self.image_std = image_std
|
||||
self._valid_processor_keys = [
|
||||
"videos",
|
||||
"do_resize",
|
||||
"size",
|
||||
"patch_size",
|
||||
"num_frames",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"is_mixed",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
@ -357,6 +377,8 @@ class TvltImageProcessor(BaseImageProcessor):
|
||||
patch_size = patch_size if patch_size is not None else self.patch_size
|
||||
num_frames = num_frames if patch_size is not None else self.num_frames
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(videos):
|
||||
raise ValueError(
|
||||
"Invalid image or video type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -36,6 +36,7 @@ from ...image_utils import (
|
||||
is_valid_image,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -172,6 +173,27 @@ class TvpImageProcessor(BaseImageProcessor):
|
||||
self.do_flip_channel_order = do_flip_channel_order
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self._valid_processor_keys = [
|
||||
"videos",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_pad",
|
||||
"pad_size",
|
||||
"constant_values",
|
||||
"pad_mode",
|
||||
"do_normalize",
|
||||
"do_flip_channel_order",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
@ -437,6 +459,8 @@ class TvpImageProcessor(BaseImageProcessor):
|
||||
crop_size = crop_size if crop_size is not None else self.crop_size
|
||||
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(videos):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -35,6 +35,7 @@ from ...image_utils import (
|
||||
is_valid_image,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -130,6 +131,22 @@ class VideoMAEImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self._valid_processor_keys = [
|
||||
"videos",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
@ -311,6 +328,8 @@ class VideoMAEImageProcessor(BaseImageProcessor):
|
||||
crop_size = crop_size if crop_size is not None else self.crop_size
|
||||
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(videos):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -32,6 +32,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -191,6 +192,22 @@ class ViltImageProcessor(BaseImageProcessor):
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self.do_pad = do_pad
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"size_divisor",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_pad",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
||||
@ -416,6 +433,8 @@ class ViltImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -31,6 +31,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, logging
|
||||
@ -95,6 +96,20 @@ class ViTImageProcessor(BaseImageProcessor):
|
||||
self.rescale_factor = rescale_factor
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
@ -217,6 +232,8 @@ class ViTImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -36,6 +36,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, is_vision_available, logging
|
||||
@ -121,6 +122,23 @@ class ViTHybridImageProcessor(BaseImageProcessor):
|
||||
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
||||
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
||||
self.do_convert_rgb = do_convert_rgb
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_convert_rgb",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
# Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize
|
||||
def resize(
|
||||
@ -258,6 +276,8 @@ class ViTHybridImageProcessor(BaseImageProcessor):
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -31,6 +31,7 @@ from ...image_utils import (
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import TensorType, logging
|
||||
@ -87,6 +88,20 @@ class VitMatteImageProcessor(BaseImageProcessor):
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self.size_divisibility = size_divisibility
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"trimaps",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_pad",
|
||||
"size_divisibility",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def pad_image(
|
||||
self,
|
||||
@ -198,14 +213,14 @@ class VitMatteImageProcessor(BaseImageProcessor):
|
||||
images = make_list_of_images(images)
|
||||
trimaps = make_list_of_images(trimaps, expected_ndims=2)
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(trimaps):
|
||||
raise ValueError(
|
||||
"Invalid trimap type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
"torch.Tensor, tf.Tensor or jax.ndarray."
|
||||
)
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -38,6 +38,7 @@ from ...image_utils import (
|
||||
is_valid_image,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import logging
|
||||
@ -137,6 +138,23 @@ class VivitImageProcessor(BaseImageProcessor):
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self._valid_processor_keys = [
|
||||
"videos",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_center_crop",
|
||||
"crop_size",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"offset",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
def resize(
|
||||
self,
|
||||
@ -368,6 +386,8 @@ class VivitImageProcessor(BaseImageProcessor):
|
||||
crop_size = crop_size if crop_size is not None else self.crop_size
|
||||
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
||||
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
if not valid_images(videos):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
|
@ -47,6 +47,7 @@ from ...image_utils import (
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
validate_annotations,
|
||||
validate_kwargs,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import (
|
||||
@ -750,6 +751,26 @@ class YolosImageProcessor(BaseImageProcessor):
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
||||
self.do_pad = do_pad
|
||||
self._valid_processor_keys = [
|
||||
"images",
|
||||
"annotations",
|
||||
"return_segmentation_masks",
|
||||
"masks_path",
|
||||
"do_resize",
|
||||
"size",
|
||||
"resample",
|
||||
"do_rescale",
|
||||
"rescale_factor",
|
||||
"do_normalize",
|
||||
"image_mean",
|
||||
"image_std",
|
||||
"do_convert_annotations",
|
||||
"do_pad",
|
||||
"format",
|
||||
"return_tensors",
|
||||
"data_format",
|
||||
"input_data_format",
|
||||
]
|
||||
|
||||
@classmethod
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.from_dict with Detr->Yolos
|
||||
@ -1185,6 +1206,7 @@ class YolosImageProcessor(BaseImageProcessor):
|
||||
)
|
||||
do_pad = self.do_pad if do_pad is None else do_pad
|
||||
format = self.format if format is None else format
|
||||
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
||||
|
||||
images = make_list_of_images(images)
|
||||
|
||||
|
@ -13,6 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
import json
|
||||
import os
|
||||
import pathlib
|
||||
@ -289,6 +290,16 @@ class ImageProcessingTestMixin:
|
||||
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
||||
)
|
||||
|
||||
def test_image_processor_preprocess_arguments(self):
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
if hasattr(image_processor, "_valid_processor_keys") and hasattr(image_processor, "preprocess"):
|
||||
preprocess_parameter_names = inspect.getfullargspec(image_processor.preprocess).args
|
||||
preprocess_parameter_names.remove("self")
|
||||
preprocess_parameter_names.sort()
|
||||
valid_processor_keys = image_processor._valid_processor_keys
|
||||
valid_processor_keys.sort()
|
||||
self.assertEqual(preprocess_parameter_names, valid_processor_keys)
|
||||
|
||||
|
||||
class AnnotationFormatTestMixin:
|
||||
# this mixin adds a test to assert that usages of the
|
||||
|
Loading…
Reference in New Issue
Block a user