Reorganize and cleanup

This commit is contained in:
Lysandre 2019-10-29 23:23:18 +00:00 committed by Lysandre Debut
parent 12290c0d5c
commit 1b92564330

View File

@ -100,6 +100,138 @@ class AlbertEmbeddings(BertEmbeddings):
self.LayerNorm = torch.nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
class AlbertAttention(BertSelfAttention):
def __init__(self, config):
super(AlbertAttention, self).__init__(config)
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.attention_head_size = config.hidden_size // config.num_attention_heads
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
mask = torch.ones(self.num_attention_heads, self.attention_head_size)
heads = set(heads) - self.pruned_heads # Convert to set and emove already pruned heads
for head in heads:
# Compute how many pruned heads are before the head and move the index accordingly
head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index = torch.arange(len(mask))[mask].long()
# Prune linear layers
self.query = prune_linear_layer(self.query, index)
self.key = prune_linear_layer(self.key, index)
self.value = prune_linear_layer(self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.num_attention_heads = self.num_attention_heads - len(heads)
self.all_head_size = self.attention_head_size * self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, input_ids, attention_mask=None, head_mask=None):
mixed_query_layer = self.query(input_ids)
mixed_key_layer = self.key(input_ids)
mixed_value_layer = self.value(input_ids)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
reshaped_context_layer = context_layer.view(*new_context_layer_shape)
# Should find a better way to do this
w = self.dense.weight.T.view(self.num_attention_heads, self.attention_head_size, self.hidden_size)
b = self.dense.bias
projected_context_layer = torch.einsum("bfnd,ndh->bfh", context_layer, w) + b
projected_context_layer = self.dropout(projected_context_layer)
layernormed_context_layer = self.LayerNorm(input_ids + projected_context_layer)
return layernormed_context_layer, projected_context_layer, reshaped_context_layer, context_layer, attention_scores, attention_probs, attention_mask
class AlbertLayer(nn.Module):
def __init__(self, config):
super(AlbertLayer, self).__init__()
self.config = config
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attention = AlbertAttention(config)
self.ffn = nn.Linear(config.hidden_size, config.intermediate_size)
self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states, attention_mask=None, head_mask=None):
attention_output = self.attention(hidden_states, attention_mask)[0]
ffn_output = self.ffn(attention_output)
ffn_output = gelu_new(ffn_output)
ffn_output = self.ffn_output(ffn_output)
hidden_states = self.LayerNorm(ffn_output + attention_output)
return hidden_states
class AlbertLayerGroup(nn.Module):
def __init__(self, config):
super(AlbertLayerGroup, self).__init__()
self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)])
def forward(self, hidden_states, attention_mask=None, head_mask=None):
for albert_layer in self.albert_layers:
hidden_states = albert_layer(hidden_states, attention_mask, head_mask)
return hidden_states
class AlbertTransformer(nn.Module):
def __init__(self, config):
super(AlbertTransformer, self).__init__()
self.config = config
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size)
self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)])
def forward(self, hidden_states, attention_mask=None, head_mask=None):
hidden_states = self.embedding_hidden_mapping_in(hidden_states)
for layer_idx in range(self.config.num_hidden_layers):
group_idx = int(layer_idx / self.config.num_hidden_layers * self.config.num_hidden_groups)
hidden_states = self.albert_layer_groups[group_idx](hidden_states, attention_mask, head_mask)
return (hidden_states,)
class AlbertModel(BertModel):
def __init__(self, config):
super(AlbertModel, self).__init__(config)
@ -169,158 +301,3 @@ class AlbertForMaskedLM(nn.Module):
logits = self.word_embeddings(hidden_states)
return logits
class AlbertAttention(BertSelfAttention):
def __init__(self, config):
super(AlbertAttention, self).__init__(config)
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.attention_head_size = config.hidden_size // config.num_attention_heads
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
mask = torch.ones(self.num_attention_heads, self.attention_head_size)
heads = set(heads) - self.pruned_heads # Convert to set and emove already pruned heads
for head in heads:
# Compute how many pruned heads are before the head and move the index accordingly
head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index = torch.arange(len(mask))[mask].long()
# Prune linear layers
self.query = prune_linear_layer(self.query, index)
self.key = prune_linear_layer(self.key, index)
self.value = prune_linear_layer(self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.num_attention_heads = self.num_attention_heads - len(heads)
self.all_head_size = self.attention_head_size * self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, input_ids, attention_mask=None, head_mask=None):
mixed_query_layer = self.query(input_ids)
mixed_key_layer = self.key(input_ids)
mixed_value_layer = self.value(input_ids)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
reshaped_context_layer = context_layer.view(*new_context_layer_shape)
print(self.dense.weight.T.shape)
w = self.dense.weight.T.view(self.num_attention_heads, self.attention_head_size, self.hidden_size)
b = self.dense.bias
projected_context_layer = torch.einsum("bfnd,ndh->bfh", context_layer, w) + b
projected_context_layer = self.dropout(projected_context_layer)
layernormed_context_layer = self.LayerNorm(input_ids + projected_context_layer)
return layernormed_context_layer, projected_context_layer, reshaped_context_layer, context_layer, attention_scores, attention_probs, attention_mask
class AlbertLayer(nn.Module):
def __init__(self, config):
super(AlbertLayer, self).__init__()
self.config = config
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attention = AlbertAttention(config)
self.ffn = nn.Linear(config.hidden_size, config.intermediate_size)
self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states, attention_mask=None, head_mask=None):
attention_output = self.attention(hidden_states, attention_mask)[0]
ffn_output = self.ffn(attention_output)
ffn_output = gelu_new(ffn_output)
ffn_output = self.ffn_output(ffn_output)
hidden_states = self.LayerNorm(ffn_output + attention_output)
return hidden_states
class AlbertLayerGroup(nn.Module):
def __init__(self, config):
super(AlbertLayerGroup, self).__init__()
self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)])
def forward(self, hidden_states, attention_mask=None, head_mask=None):
for albert_layer in self.albert_layers:
hidden_states = albert_layer(hidden_states, attention_mask, head_mask)
return hidden_states
class AlbertTransformer(nn.Module):
def __init__(self, config):
super(AlbertTransformer, self).__init__()
self.config = config
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size)
self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)])
def forward(self, hidden_states, attention_mask=None, head_mask=None):
hidden_states = self.embedding_hidden_mapping_in(hidden_states)
for layer_idx in range(self.config.num_hidden_layers):
group_idx = int(layer_idx / self.config.num_hidden_layers * self.config.num_hidden_groups)
hidden_states = self.albert_layer_groups[group_idx](hidden_states, attention_mask, head_mask)
return (hidden_states,)
# model_size = 'base'
# hidden_groups = 1
# inner_groups = 2
# config = AlbertConfig.from_json_file("/home/hf/google-research/albert/config_{}-{}-hg-{}-ig.json".format(model_size, hidden_groups, inner_groups))
# model = AlbertModel(config)
# # print(model)
# model = load_tf_weights_in_albert(model, config, "/home/hf/transformers/albert-{}-{}-hg-{}-ig/albert-{}-{}-hg-{}-ig".format(model_size, hidden_groups, inner_groups, model_size, hidden_groups, inner_groups))
# # model.eval()
# # print(sum(p.numel() for p in model.parameters() if p.requires_grad))
# input_ids = [[31, 51, 99, 88, 54, 34, 23, 23, 12], [15, 5, 0, 88, 54, 34, 23, 23, 12]]
# input_mask = [[1, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 0, 0, 0]]
# segment_ids = [[0, 0, 1, 0, 0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0]]
# pt_input_ids = torch.tensor(input_ids)
# pt_input_mask = torch.tensor(input_mask)
# pt_segment_ids = torch.tensor(segment_ids)
# pt_dict = {"input_ids": pt_input_ids, "attention_mask": pt_input_mask, "token_type_ids": pt_segment_ids}
# pt_output = model(**pt_dict)
# print(pt_output)