mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 02:31:11 +06:00
[chat-template] Unify tests and clean up 🧼 (#37275)
* fix tests and some clean up * make one general test for each modality * remove redundant merging of kwargs * edge cases * dont enforce slow when reloading * fix gemma3 tests * has to adapt llama 4 after rebase * remove also from overriden tests * should be green now
This commit is contained in:
parent
10144ff116
commit
1ae8d54b04
@ -181,35 +181,6 @@ processed_chat = processor.apply_chat_template(
|
||||
print(processed_chat.keys())
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="custom frame sampling">
|
||||
|
||||
Some models don't sample frames *uniformly* and require more complex logic to determine which frames to use. For example, the model may have an *adaptive frame selection* or if the model prioritizes *key moments* in a video rather than evenly spaced frames.
|
||||
|
||||
If a model has a different sampling strategy, you can write a function that customizes frame selection. The function should include the following requirements.
|
||||
|
||||
- Use the `sample_indices_fn` parameter to pass a callable function for sampling.
|
||||
- If provided, this function *overrides* the standard `num_frames` and `fps` parameters.
|
||||
- The function receives all the parameters passed to `load_video` and must return valid frame indices to sample from.
|
||||
|
||||
An example function is shown below. This gives you full control over frame selection, making the model more adaptable to different video scenarios.
|
||||
|
||||
```py
|
||||
def sample_indices_fn(metadata, **kwargs):
|
||||
# samples only the first and the second frame
|
||||
return [0, 1]
|
||||
|
||||
processed_chat = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
sample_indices_fn=sample_indices_fn,
|
||||
video_load_backend="decord",
|
||||
)
|
||||
print(processed_chat.keys())
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="list of image frames">
|
||||
|
||||
|
@ -20,10 +20,13 @@ import copy
|
||||
from datetime import timedelta
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ...feature_extraction_utils import BatchFeature
|
||||
from ...image_utils import (
|
||||
ImageInput,
|
||||
VideoInput,
|
||||
load_video,
|
||||
make_batched_videos,
|
||||
make_nested_list_of_images,
|
||||
)
|
||||
@ -425,32 +428,44 @@ class SmolVLMProcessor(ProcessorMixin):
|
||||
image_processor_input_names = self.image_processor.model_input_names
|
||||
return list(dict.fromkeys(image_processor_input_names + tokenizer_input_names))
|
||||
|
||||
# Add model-specific video sampling method when applying the template
|
||||
def apply_chat_template(
|
||||
# TODO: raushan, has to be public method under `VideoProcessorBase` when API is added
|
||||
def _load_video_for_model(
|
||||
self,
|
||||
conversation,
|
||||
max_frames=None,
|
||||
target_fps=None,
|
||||
skip_secs=1,
|
||||
video_load_backend="pyav",
|
||||
sample_indices_fn=None,
|
||||
**kwargs,
|
||||
):
|
||||
max_frames = self.default_max_frames if max_frames is None else max_frames
|
||||
target_fps = self.default_fps if target_fps is None else target_fps
|
||||
video: Union[str, "VideoInput"],
|
||||
num_frames: Optional[int] = None,
|
||||
fps: Optional[int] = None,
|
||||
backend: str = "opencv",
|
||||
skip_secs: int = 0.0,
|
||||
) -> np.array:
|
||||
"""
|
||||
Loads `video` to a numpy array.
|
||||
|
||||
Args:
|
||||
video (`str` or `VideoInput`):
|
||||
The video to convert to the numpy array format. Can be a link to video or local path.
|
||||
num_frames (`int`, *optional*):
|
||||
Number of frames to sample uniformly. If not passed, the whole video is loaded.
|
||||
fps (`int`, *optional*):
|
||||
Number of frames to sample per second. Should be passed only when `num_frames=None`.
|
||||
If not specified and `num_frames==None`, all frames are sampled.
|
||||
backend (`str`, *optional*, defaults to `"opencv"`):
|
||||
The backend to use when loading the video. Can be any of ["decord", "pyav", "opencv", "torchvision"]. Defaults to "opencv".
|
||||
|
||||
Returns:
|
||||
Tuple[`np.array`, Dict]: A tuple containing:
|
||||
- Numpy array of frames in RGB (shape: [num_frames, height, width, 3]).
|
||||
- Metadata dictionary.
|
||||
"""
|
||||
max_frames = self.default_max_frames if num_frames is None else num_frames
|
||||
target_fps = self.default_fps if fps is None else fps
|
||||
|
||||
def sample_indices_fn_func(metadata, **fn_kwargs):
|
||||
return smolvlm_sample_indices_fn(
|
||||
metadata, max_frames=max_frames, target_fps=target_fps, skip_secs=skip_secs, **fn_kwargs
|
||||
)
|
||||
|
||||
# word of caution- we are blindly overriding a callable kwarg here.
|
||||
# typed kwargs would be a way to avoid that @molbap
|
||||
if not sample_indices_fn:
|
||||
sample_indices_fn = sample_indices_fn_func
|
||||
return super().apply_chat_template(
|
||||
conversation, video_load_backend=video_load_backend, sample_indices_fn=sample_indices_fn, **kwargs
|
||||
)
|
||||
video, metadata = load_video(video, backend=backend, sample_indices_fn=sample_indices_fn_func)
|
||||
return video, metadata
|
||||
|
||||
|
||||
__all__ = ["SmolVLMProcessor"]
|
||||
|
@ -23,7 +23,7 @@ import sys
|
||||
import typing
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, List, Optional, TypedDict, Union
|
||||
from typing import Any, Dict, List, Optional, TypedDict, Union
|
||||
|
||||
import numpy as np
|
||||
import typing_extensions
|
||||
@ -415,7 +415,6 @@ class ChatTemplateLoadKwargs(TypedDict, total=False):
|
||||
video_load_backend: Optional[str] = "pyav"
|
||||
video_fps: Optional[int] = None
|
||||
sampling_rate: Optional[int] = 16_000
|
||||
sample_indices_fn: Optional[Callable] = None
|
||||
load_audio_from_video: Optional[bool] = False
|
||||
|
||||
|
||||
@ -435,7 +434,16 @@ class ProcessorChatTemplateKwargs(ChatTemplateLoadKwargs, TokenizerChatTemplateK
|
||||
|
||||
class AllKwargsForChatTemplate(
|
||||
TextKwargs, ImagesKwargs, VideosKwargs, AudioKwargs, CommonKwargs, ProcessorChatTemplateKwargs
|
||||
): ...
|
||||
):
|
||||
processor_kwargs: ProcessingKwargs = {
|
||||
**ProcessingKwargs.__annotations__,
|
||||
}
|
||||
mm_load_kwargs: ChatTemplateLoadKwargs = {
|
||||
**TextKwargs.__annotations__,
|
||||
}
|
||||
template_kwargs: ProcessorChatTemplateKwargs = {
|
||||
**ProcessorChatTemplateKwargs.__annotations__,
|
||||
}
|
||||
|
||||
|
||||
class ProcessorMixin(PushToHubMixin):
|
||||
@ -1315,19 +1323,20 @@ class ProcessorMixin(PushToHubMixin):
|
||||
"https://huggingface.co/docs/transformers/main/en/chat_templating for more information."
|
||||
)
|
||||
|
||||
# Fill two sets of kwargs that should be used by tokenizer's `apply_chat_template`
|
||||
# and for multimodal data loading. Everything else will be used in `__call__`
|
||||
tokenizer_template_kwargs = {}
|
||||
for tokenizer_key in TokenizerChatTemplateKwargs.__annotations__.keys():
|
||||
default_value = getattr(TokenizerChatTemplateKwargs, tokenizer_key, None)
|
||||
value = kwargs.pop(tokenizer_key, default_value)
|
||||
tokenizer_template_kwargs[tokenizer_key] = value
|
||||
# Fill sets of kwargs that should be used by different parts of template
|
||||
processed_kwargs = {
|
||||
"processor_kwargs": {},
|
||||
"mm_load_kwargs": {},
|
||||
"template_kwargs": {},
|
||||
}
|
||||
|
||||
mm_load_kwargs = {}
|
||||
for mm_load_key in ChatTemplateLoadKwargs.__annotations__.keys():
|
||||
default_value = getattr(ChatTemplateLoadKwargs, mm_load_key, None)
|
||||
value = kwargs.pop(mm_load_key, default_value)
|
||||
mm_load_kwargs[mm_load_key] = value
|
||||
for kwarg_type in processed_kwargs:
|
||||
for key in AllKwargsForChatTemplate.__annotations__[kwarg_type].__annotations__.keys():
|
||||
kwarg_type_defaults = AllKwargsForChatTemplate.__annotations__[kwarg_type]
|
||||
default_value = getattr(kwarg_type_defaults, key, None)
|
||||
value = kwargs.pop(key, default_value)
|
||||
if value is not None and not isinstance(value, dict):
|
||||
processed_kwargs[kwarg_type][key] = value
|
||||
|
||||
if isinstance(conversation, (list, tuple)) and (
|
||||
isinstance(conversation[0], (list, tuple)) or hasattr(conversation[0], "content")
|
||||
@ -1338,8 +1347,9 @@ class ProcessorMixin(PushToHubMixin):
|
||||
is_batched = False
|
||||
conversations = [conversation]
|
||||
|
||||
tokenize = kwargs.pop("tokenize", False)
|
||||
return_dict = kwargs.pop("return_dict", False)
|
||||
tokenize = processed_kwargs["template_kwargs"].pop("tokenize", False)
|
||||
return_dict = processed_kwargs["template_kwargs"].pop("return_dict", False)
|
||||
mm_load_kwargs = processed_kwargs["mm_load_kwargs"]
|
||||
|
||||
if tokenize:
|
||||
batch_images, batch_videos = [], []
|
||||
@ -1382,7 +1392,7 @@ class ProcessorMixin(PushToHubMixin):
|
||||
|
||||
for fname in video_fnames:
|
||||
if isinstance(fname, (list, tuple)) and isinstance(fname[0], str):
|
||||
video = [np.array(load_image(image_fname)).T for image_fname in fname]
|
||||
video = [np.array(load_image(image_fname)) for image_fname in fname]
|
||||
# create a 4D video because `load_video` always returns a 4D array
|
||||
video = np.stack(video)
|
||||
metadata = None
|
||||
@ -1391,12 +1401,13 @@ class ProcessorMixin(PushToHubMixin):
|
||||
"If your model uses this metadata during processing, please load the whole video and let the model sample frames instead."
|
||||
)
|
||||
else:
|
||||
video, metadata = load_video(
|
||||
# TODO: raushan, should be `self.video_processor.load_video_for_model` when API is added
|
||||
video, metadata = self._load_video_for_model(
|
||||
fname,
|
||||
num_frames=mm_load_kwargs["num_frames"],
|
||||
fps=mm_load_kwargs["video_fps"],
|
||||
num_frames=mm_load_kwargs.get("num_frames", None),
|
||||
fps=mm_load_kwargs.get("video_fps", None),
|
||||
backend=mm_load_kwargs["video_load_backend"],
|
||||
sample_indices_fn=mm_load_kwargs["sample_indices_fn"],
|
||||
**kwargs,
|
||||
)
|
||||
videos.append(video)
|
||||
video_metadata.append(metadata)
|
||||
@ -1415,7 +1426,7 @@ class ProcessorMixin(PushToHubMixin):
|
||||
batch_images=batch_images,
|
||||
batch_videos=batch_videos,
|
||||
batch_video_metadata=batch_video_metadata,
|
||||
**mm_load_kwargs,
|
||||
**processed_kwargs["mm_load_kwargs"],
|
||||
)
|
||||
|
||||
prompt = self.tokenizer.apply_chat_template(
|
||||
@ -1423,7 +1434,7 @@ class ProcessorMixin(PushToHubMixin):
|
||||
chat_template=chat_template,
|
||||
tokenize=False,
|
||||
return_dict=False,
|
||||
**tokenizer_template_kwargs,
|
||||
**processed_kwargs["template_kwargs"],
|
||||
)
|
||||
|
||||
if not is_batched:
|
||||
@ -1438,14 +1449,14 @@ class ProcessorMixin(PushToHubMixin):
|
||||
# without actionable solution for users
|
||||
single_prompt = prompt[0] if is_batched else prompt
|
||||
if self.tokenizer.bos_token is not None and single_prompt.startswith(self.tokenizer.bos_token):
|
||||
kwargs["add_special_tokens"] = False
|
||||
processed_kwargs["processor_kwargs"]["add_special_tokens"] = False
|
||||
|
||||
out = self(
|
||||
text=prompt,
|
||||
images=batch_images if batch_images else None,
|
||||
videos=batch_videos if batch_videos else None,
|
||||
audio=batch_audios if batch_audios else None,
|
||||
**kwargs,
|
||||
**processed_kwargs["processor_kwargs"],
|
||||
)
|
||||
if return_dict:
|
||||
return out
|
||||
@ -1453,6 +1464,37 @@ class ProcessorMixin(PushToHubMixin):
|
||||
return out["input_ids"]
|
||||
return prompt
|
||||
|
||||
# TODO: raushan, has to be public method under `VideoProcessorBase` when API is added
|
||||
# Keep private so we can simply remove when needed
|
||||
def _load_video_for_model(
|
||||
self,
|
||||
video: Union[str, "VideoInput"],
|
||||
num_frames: Optional[int] = None,
|
||||
fps: Optional[int] = None,
|
||||
backend: str = "opencv",
|
||||
) -> np.array:
|
||||
"""
|
||||
Loads `video` to a numpy array.
|
||||
|
||||
Args:
|
||||
video (`str` or `VideoInput`):
|
||||
The video to convert to the numpy array format. Can be a link to video or local path.
|
||||
num_frames (`int`, *optional*):
|
||||
Number of frames to sample uniformly. If not passed, the whole video is loaded.
|
||||
fps (`int`, *optional*):
|
||||
Number of frames to sample per second. Should be passed only when `num_frames=None`.
|
||||
If not specified and `num_frames==None`, all frames are sampled.
|
||||
backend (`str`, *optional*, defaults to `"opencv"`):
|
||||
The backend to use when loading the video. Can be any of ["decord", "pyav", "opencv", "torchvision"]. Defaults to "opencv".
|
||||
|
||||
Returns:
|
||||
Tuple[`np.array`, Dict]: A tuple containing:
|
||||
- Numpy array of frames in RGB (shape: [num_frames, height, width, 3]).
|
||||
- Metadata dictionary.
|
||||
"""
|
||||
video, metadata = load_video(video, num_frames, fps=fps, backend=backend)
|
||||
return video, metadata
|
||||
|
||||
def post_process_image_text_to_text(self, generated_outputs, skip_special_tokens=True, **kwargs):
|
||||
"""
|
||||
Post-process the output of a vlm to decode the text.
|
||||
|
@ -236,55 +236,6 @@ And who is that?<|im_end|>
|
||||
"""
|
||||
self.assertEqual(rendered, expected_rendered)
|
||||
|
||||
# Override as AriaImageProcessor doesn't accept `do_rescale`
|
||||
def test_image_chat_template_accepts_processing_kwargs(self):
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
]
|
||||
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
padding="max_length",
|
||||
max_length=50,
|
||||
)
|
||||
self.assertEqual(len(formatted_prompt_tokenized[0]), 50)
|
||||
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
truncation=True,
|
||||
max_length=5,
|
||||
)
|
||||
self.assertEqual(len(formatted_prompt_tokenized[0]), 5)
|
||||
|
||||
# Now test the ability to return dict
|
||||
messages[0][0]["content"].append(
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
||||
)
|
||||
out_dict = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
max_image_size=980,
|
||||
return_tensors="np",
|
||||
)
|
||||
self.assertListEqual(list(out_dict[self.images_input_name].shape), [1, 3, 980, 980])
|
||||
|
||||
# Override as AriaProcessor needs image tokens in prompts
|
||||
def prepare_text_inputs(self, batch_size: Optional[int] = None):
|
||||
if batch_size is None:
|
||||
|
@ -79,11 +79,6 @@ class AyaVisionProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
def tearDownClass(cls):
|
||||
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
|
||||
|
||||
# todo: yoni, fix this test
|
||||
@unittest.skip("Chat template has long system prompt")
|
||||
def test_chat_template_accepts_processing_kwargs(self, **kwargs):
|
||||
pass
|
||||
|
||||
# Override as AyaVisionProcessor needs image tokens in prompts
|
||||
def prepare_text_inputs(self, batch_size: Optional[int] = None):
|
||||
if batch_size is None:
|
||||
|
@ -86,67 +86,3 @@ class LlavaProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
processor = LlavaProcessor.from_pretrained(checkpoint)
|
||||
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
||||
self.assertEqual(processor.tokenizer.__class__, tokenizer.__class__)
|
||||
|
||||
def test_chat_template(self):
|
||||
processor = LlavaProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
||||
expected_prompt = "USER: <image>\nWhat is shown in this image? ASSISTANT:"
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
||||
self.assertEqual(expected_prompt, formatted_prompt)
|
||||
|
||||
def test_chat_template_dict(self):
|
||||
processor = LlavaProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True)
|
||||
expected_output = [[1, 3148, 1001, 29901, 29871, 32000, 29871, 13, 5618, 338, 4318, 297, 445, 1967, 29973, 319, 1799, 9047, 13566, 29901]] # fmt: skip
|
||||
self.assertListEqual(expected_output, formatted_prompt_tokenized)
|
||||
|
||||
out_dict = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True)
|
||||
self.assertListEqual(list(out_dict.keys()), ["input_ids", "attention_mask"])
|
||||
|
||||
# add image URL for return dict
|
||||
messages[0]["content"][0] = {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
||||
out_dict_with_image = processor.apply_chat_template(
|
||||
messages, add_generation_prompt=True, tokenize=True, return_dict=True
|
||||
)
|
||||
self.assertListEqual(list(out_dict_with_image.keys()), ["input_ids", "attention_mask", "pixel_values"])
|
||||
|
||||
def test_chat_template_with_continue_final_message(self):
|
||||
processor = LlavaProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
||||
expected_prompt = "USER: <image>\nDescribe this image. ASSISTANT: There is a dog and"
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "Describe this image."},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [
|
||||
{"type": "text", "text": "There is a dog and"},
|
||||
],
|
||||
},
|
||||
]
|
||||
prompt = processor.apply_chat_template(messages, continue_final_message=True)
|
||||
self.assertEqual(expected_prompt, prompt)
|
||||
|
@ -78,23 +78,6 @@ class LlavaNextProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
processor_dict = self.prepare_processor_dict()
|
||||
self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None))
|
||||
|
||||
def test_chat_template(self):
|
||||
processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-vicuna-7b-hf")
|
||||
expected_prompt = "USER: <image>\nWhat is shown in this image? ASSISTANT:"
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
||||
self.assertEqual(expected_prompt, formatted_prompt)
|
||||
|
||||
def test_image_token_filling(self):
|
||||
processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-vicuna-7b-hf")
|
||||
processor.patch_size = 14
|
||||
|
@ -18,7 +18,7 @@ import tempfile
|
||||
import unittest
|
||||
|
||||
from transformers import AutoProcessor, LlamaTokenizerFast, LlavaNextVideoProcessor
|
||||
from transformers.testing_utils import require_av, require_torch, require_vision
|
||||
from transformers.testing_utils import require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_processing_common import ProcessorTesterMixin
|
||||
@ -28,7 +28,7 @@ if is_vision_available():
|
||||
from transformers import LlavaNextImageProcessor, LlavaNextVideoImageProcessor
|
||||
|
||||
if is_torch_available:
|
||||
import torch
|
||||
pass
|
||||
|
||||
|
||||
@require_vision
|
||||
@ -90,79 +90,3 @@ class LlavaNextVideoProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
@classmethod
|
||||
def tearDownClass(cls):
|
||||
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
|
||||
|
||||
def test_chat_template(self):
|
||||
processor = AutoProcessor.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf")
|
||||
expected_prompt = "USER: <image>\nWhat is shown in this image? ASSISTANT:"
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
||||
self.assertEqual(expected_prompt, formatted_prompt)
|
||||
|
||||
@require_av
|
||||
def test_chat_template_dict(self):
|
||||
processor = AutoProcessor.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf")
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "video"},
|
||||
{"type": "text", "text": "What is shown in this video?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(
|
||||
messages, add_generation_prompt=True, tokenize=True, return_tensors=None
|
||||
)
|
||||
expected_output = [[1, 3148, 1001, 29901, 29871, 32000, 13, 5618, 338, 4318, 297, 445, 4863, 29973, 319, 1799, 9047, 13566, 29901]] # fmt: skip
|
||||
self.assertListEqual(expected_output, formatted_prompt_tokenized)
|
||||
|
||||
out_dict = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True)
|
||||
self.assertListEqual(list(out_dict.keys()), ["input_ids", "attention_mask"])
|
||||
|
||||
# add image URL for return dict
|
||||
messages[0]["content"][0] = {
|
||||
"type": "video",
|
||||
"url": "https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4",
|
||||
}
|
||||
out_dict_with_video = processor.apply_chat_template(
|
||||
messages, add_generation_prompt=True, tokenize=True, return_dict=True
|
||||
)
|
||||
self.assertListEqual(list(out_dict_with_video.keys()), ["input_ids", "attention_mask", "pixel_values_videos"])
|
||||
|
||||
@require_torch
|
||||
@require_av
|
||||
def test_chat_template_dict_torch(self):
|
||||
processor = AutoProcessor.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf")
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "video",
|
||||
"url": "https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4",
|
||||
},
|
||||
{"type": "text", "text": "What is shown in this video?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
out_dict_tensors = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
self.assertListEqual(list(out_dict_tensors.keys()), ["input_ids", "attention_mask", "pixel_values_videos"])
|
||||
self.assertTrue(isinstance(out_dict_tensors["input_ids"], torch.Tensor))
|
||||
|
@ -16,7 +16,7 @@ import shutil
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
from transformers.testing_utils import require_av, require_vision
|
||||
from transformers.testing_utils import require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_processing_common import ProcessorTesterMixin
|
||||
@ -93,50 +93,3 @@ class LlavaOnevisionProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
# so we check if the same template is loaded
|
||||
processor_dict = self.prepare_processor_dict()
|
||||
self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None))
|
||||
|
||||
def test_chat_template(self):
|
||||
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf")
|
||||
expected_prompt = "<|im_start|>user <image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
||||
self.assertEqual(expected_prompt, formatted_prompt)
|
||||
|
||||
@require_av
|
||||
def test_chat_template_dict(self):
|
||||
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf")
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "video"},
|
||||
{"type": "text", "text": "What is shown in this video?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True)
|
||||
expected_output = [[151644, 872, 220, 151647, 198, 3838, 374, 6839, 304, 419, 2766, 30, 151645, 151644, 77091, 198]] # fmt: skip
|
||||
self.assertListEqual(expected_output, formatted_prompt_tokenized)
|
||||
|
||||
out_dict = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True)
|
||||
self.assertListEqual(list(out_dict.keys()), ["input_ids", "attention_mask"])
|
||||
|
||||
# add image URL for return dict
|
||||
messages[0]["content"][0] = {
|
||||
"type": "video",
|
||||
"url": "https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4",
|
||||
}
|
||||
out_dict_with_video = processor.apply_chat_template(
|
||||
messages, add_generation_prompt=True, tokenize=True, return_dict=True
|
||||
)
|
||||
self.assertListEqual(list(out_dict_with_video.keys()), ["input_ids", "attention_mask", "pixel_values_videos"])
|
||||
|
@ -62,77 +62,6 @@ class Mistral3ProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
def tearDown(self):
|
||||
shutil.rmtree(self.tmpdirname)
|
||||
|
||||
def test_chat_template_accepts_processing_kwargs(self):
|
||||
# override to use slow image processor to return numpy arrays
|
||||
processor = self.processor_class.from_pretrained(self.tmpdirname, use_fast=False)
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
]
|
||||
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=50,
|
||||
)
|
||||
self.assertEqual(len(formatted_prompt_tokenized[0]), 50)
|
||||
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
truncation=True,
|
||||
max_length=5,
|
||||
)
|
||||
self.assertEqual(len(formatted_prompt_tokenized[0]), 5)
|
||||
|
||||
# Now test the ability to return dict
|
||||
messages[0][0]["content"].append(
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
||||
)
|
||||
out_dict = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
do_rescale=True,
|
||||
rescale_factor=-1,
|
||||
return_tensors="np",
|
||||
)
|
||||
self.assertLessEqual(out_dict[self.images_input_name][0][0].mean(), 0)
|
||||
|
||||
def test_chat_template(self):
|
||||
processor = self.processor_class.from_pretrained(self.tmpdirname, use_fast=False)
|
||||
expected_prompt = "<s>[SYSTEM_PROMPT][/SYSTEM_PROMPT][INST][IMG]What is shown in this image?[/INST]"
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
||||
self.assertEqual(expected_prompt, formatted_prompt)
|
||||
|
||||
def test_image_token_filling(self):
|
||||
processor = self.processor_class.from_pretrained(self.tmpdirname)
|
||||
# Important to check with non square image
|
||||
|
@ -51,22 +51,6 @@ class PixtralProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
def tearDown(self):
|
||||
shutil.rmtree(self.tmpdirname)
|
||||
|
||||
def test_chat_template(self):
|
||||
processor = self.processor_class.from_pretrained(self.tmpdirname)
|
||||
expected_prompt = "<s>[INST][IMG]What is shown in this image?[/INST]"
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
||||
self.assertEqual(expected_prompt, formatted_prompt)
|
||||
|
||||
def test_image_token_filling(self):
|
||||
processor = self.processor_class.from_pretrained(self.tmpdirname)
|
||||
# Important to check with non square image
|
||||
|
@ -17,12 +17,13 @@ import shutil
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
from transformers import AutoProcessor, Qwen2Tokenizer
|
||||
from transformers.testing_utils import require_av, require_torch, require_vision
|
||||
from transformers.utils import is_vision_available
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_processing_common import ProcessorTesterMixin
|
||||
|
||||
@ -30,6 +31,9 @@ from ...test_processing_common import ProcessorTesterMixin
|
||||
if is_vision_available():
|
||||
from transformers import Qwen2_5_VLProcessor, Qwen2VLImageProcessor
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
|
||||
@require_vision
|
||||
@require_torch
|
||||
@ -119,101 +123,97 @@ class Qwen2_5_VLProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
|
||||
self.assertListEqual(list(inputs.keys()), processor.model_input_names)
|
||||
|
||||
def test_image_chat_template_single(self):
|
||||
@require_torch
|
||||
def _test_apply_chat_template(
|
||||
self,
|
||||
modality: str,
|
||||
batch_size: int,
|
||||
return_tensors: str,
|
||||
input_name: str,
|
||||
processor_name: str,
|
||||
input_data: list[str],
|
||||
):
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
messages = [
|
||||
if processor_name not in self.processor_class.attributes:
|
||||
self.skipTest(f"{processor_name} attribute not present in {self.processor_class}")
|
||||
|
||||
batch_messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
"content": [{"type": "text", "text": "Describe this."}],
|
||||
},
|
||||
]
|
||||
]
|
||||
] * batch_size
|
||||
|
||||
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
||||
self.assertEqual(len(formatted_prompt), 1)
|
||||
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True)
|
||||
expected_output = processor.tokenizer(formatted_prompt, return_tensors=None).input_ids
|
||||
self.assertListEqual(expected_output, formatted_prompt_tokenized)
|
||||
|
||||
out_dict = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True)
|
||||
self.assertListEqual(list(out_dict.keys()), ["input_ids", "attention_mask"])
|
||||
|
||||
# Now test the ability to return dict
|
||||
messages[0][0]["content"].append(
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
||||
)
|
||||
out_dict = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True)
|
||||
self.assertTrue(self.images_input_name in out_dict)
|
||||
|
||||
# should always have input_ids and attention_mask
|
||||
self.assertEqual(len(out_dict["input_ids"]), 1)
|
||||
self.assertEqual(len(out_dict["attention_mask"]), 1)
|
||||
self.assertEqual(len(out_dict[self.images_input_name]), 71280)
|
||||
|
||||
def test_image_chat_template_batched(self):
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
batched_messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What do you see?"},
|
||||
],
|
||||
},
|
||||
],
|
||||
]
|
||||
|
||||
formatted_prompt = processor.apply_chat_template(batched_messages, add_generation_prompt=True, tokenize=False)
|
||||
self.assertEqual(len(formatted_prompt), 2)
|
||||
# Test that jinja can be applied
|
||||
formatted_prompt = processor.apply_chat_template(batch_messages, add_generation_prompt=True, tokenize=False)
|
||||
self.assertEqual(len(formatted_prompt), batch_size)
|
||||
|
||||
# Test that tokenizing with template and directly with `self.tokenizer` gives same output
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(
|
||||
batched_messages, add_generation_prompt=True, tokenize=True, padding=True
|
||||
batch_messages, add_generation_prompt=True, tokenize=True, return_tensors=return_tensors
|
||||
)
|
||||
expected_output = processor.tokenizer(formatted_prompt, return_tensors=None, padding=True).input_ids
|
||||
self.assertListEqual(expected_output, formatted_prompt_tokenized)
|
||||
add_special_tokens = True
|
||||
if processor.tokenizer.bos_token is not None and formatted_prompt[0].startswith(processor.tokenizer.bos_token):
|
||||
add_special_tokens = False
|
||||
tok_output = processor.tokenizer(
|
||||
formatted_prompt, return_tensors=return_tensors, add_special_tokens=add_special_tokens
|
||||
)
|
||||
expected_output = tok_output.input_ids
|
||||
self.assertListEqual(expected_output.tolist(), formatted_prompt_tokenized.tolist())
|
||||
|
||||
# Test that kwargs passed to processor's `__call__` are actually used
|
||||
tokenized_prompt_100 = processor.apply_chat_template(
|
||||
batch_messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
return_tensors=return_tensors,
|
||||
max_length=100,
|
||||
)
|
||||
self.assertEqual(len(tokenized_prompt_100[0]), 100)
|
||||
|
||||
# Test that `return_dict=True` returns text related inputs in the dict
|
||||
out_dict_text = processor.apply_chat_template(
|
||||
batch_messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors=return_tensors,
|
||||
)
|
||||
self.assertTrue(all(key in out_dict_text for key in ["input_ids", "attention_mask"]))
|
||||
self.assertEqual(len(out_dict_text["input_ids"]), batch_size)
|
||||
self.assertEqual(len(out_dict_text["attention_mask"]), batch_size)
|
||||
|
||||
# Test that with modality URLs and `return_dict=True`, we get modality inputs in the dict
|
||||
for idx, url in enumerate(input_data[:batch_size]):
|
||||
batch_messages[idx][0]["content"] = [batch_messages[idx][0]["content"][0], {"type": modality, "url": url}]
|
||||
|
||||
out_dict = processor.apply_chat_template(
|
||||
batched_messages, add_generation_prompt=True, tokenize=True, return_dict=True, padding=True
|
||||
batch_messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors=return_tensors,
|
||||
num_frames=4, # by default no more than 4 frames, otherwise too slow
|
||||
)
|
||||
self.assertListEqual(list(out_dict.keys()), ["input_ids", "attention_mask"])
|
||||
input_name = getattr(self, input_name)
|
||||
self.assertTrue(input_name in out_dict)
|
||||
self.assertEqual(len(out_dict["input_ids"]), batch_size)
|
||||
self.assertEqual(len(out_dict["attention_mask"]), batch_size)
|
||||
self.assertEqual(len(out_dict[input_name]), batch_size * 19200)
|
||||
|
||||
# Now test the ability to return dict
|
||||
batched_messages[0][0]["content"].append(
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
||||
)
|
||||
batched_messages[1][0]["content"].append(
|
||||
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"}
|
||||
)
|
||||
out_dict = processor.apply_chat_template(
|
||||
batched_messages, add_generation_prompt=True, tokenize=True, return_dict=True, padding=True
|
||||
)
|
||||
self.assertTrue(self.images_input_name in out_dict)
|
||||
|
||||
# should always have input_ids and attention_mask
|
||||
self.assertEqual(len(out_dict["input_ids"]), 2)
|
||||
self.assertEqual(len(out_dict["attention_mask"]), 2)
|
||||
self.assertEqual(len(out_dict[self.images_input_name]), 90480)
|
||||
return_tensor_to_type = {"pt": torch.Tensor, "np": np.ndarray, None: list}
|
||||
for k in out_dict:
|
||||
self.assertIsInstance(out_dict[k], return_tensor_to_type[return_tensors])
|
||||
|
||||
@require_av
|
||||
def test_chat_template_video(self):
|
||||
def test_apply_chat_template_video_frame_sampling(self):
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
@ -331,52 +331,7 @@ class Qwen2_5_VLProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
self.assertEqual(inputs[self.images_input_name].shape[0], 800)
|
||||
|
||||
@require_av
|
||||
def test_chat_template_video_custom_sampling(self):
|
||||
"""
|
||||
Tests that models can pass their custom callables to sample video indices.
|
||||
"""
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
signature = inspect.signature(processor.__call__)
|
||||
if "videos" not in {*signature.parameters.keys()} or (
|
||||
signature.parameters.get("videos") is not None
|
||||
and signature.parameters["videos"].annotation == inspect._empty
|
||||
):
|
||||
self.skipTest("Processor doesn't accept videos at input")
|
||||
|
||||
video_file_path = hf_hub_download(
|
||||
repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset"
|
||||
)
|
||||
messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "video", "path": video_file_path},
|
||||
{"type": "text", "text": "What is shown in this video?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
]
|
||||
|
||||
def dummy_sample_indices_fn(metadata, **fn_kwargs):
|
||||
# sample only the first two frame always
|
||||
return [0, 1]
|
||||
|
||||
out_dict_with_video = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
sample_indices_fn=dummy_sample_indices_fn,
|
||||
)
|
||||
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
||||
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 14400)
|
||||
|
||||
@require_av
|
||||
def test_chat_template_video_special_processing(self):
|
||||
def test_apply_chat_template_video_special_processing(self):
|
||||
"""
|
||||
Tests that models can use their own preprocessing to preprocess conversations.
|
||||
"""
|
||||
@ -433,6 +388,7 @@ class Qwen2_5_VLProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="np",
|
||||
)
|
||||
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
||||
|
||||
|
@ -54,7 +54,7 @@ class Qwen2AudioProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
@staticmethod
|
||||
def prepare_processor_dict():
|
||||
return {
|
||||
"chat_template": "{% set audio_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if 'audio' in content or 'audio_url' in content or message['type'] == 'audio' %}{% set audio_count.value = audio_count.value + 1 %}Audio {{ audio_count.value }}: <|audio_bos|><|AUDIO|><|audio_eos|>\n{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
||||
"chat_template": "{% set audio_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if 'audio' in content or 'audio_url' in content or content['type'] == 'audio' %}{% set audio_count.value = audio_count.value + 1 %}Audio {{ audio_count.value }}: <|audio_bos|><|AUDIO|><|audio_eos|>\n{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
||||
}
|
||||
|
||||
# Override as Qwen2AudioProcessor needs audio tokens in prompts
|
||||
@ -159,29 +159,3 @@ class Qwen2AudioProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
|
||||
formatted_prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
||||
self.assertEqual(expected_prompt, formatted_prompt)
|
||||
|
||||
def test_chat_template_with_continue_final_message(self):
|
||||
processor = AutoProcessor.from_pretrained(self.checkpoint)
|
||||
expected_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nAudio 1: <|audio_bos|><|AUDIO|><|audio_eos|>\nWhat's that sound?<|im_end|>\n<|im_start|>assistant\nIt is the sound of " # fmt: skip
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": [{"type": "text", "text": "You are a helpful assistant."}],
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3",
|
||||
},
|
||||
{"type": "text", "text": "What's that sound?"},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"type": "text", "text": "It is the sound of "}],
|
||||
},
|
||||
]
|
||||
prompt = processor.apply_chat_template(messages, continue_final_message=True)
|
||||
self.assertEqual(expected_prompt, prompt)
|
||||
|
@ -17,12 +17,13 @@ import shutil
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
from transformers import AutoProcessor, Qwen2Tokenizer
|
||||
from transformers.testing_utils import require_av, require_torch, require_vision
|
||||
from transformers.utils import is_vision_available
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_processing_common import ProcessorTesterMixin
|
||||
|
||||
@ -30,6 +31,9 @@ from ...test_processing_common import ProcessorTesterMixin
|
||||
if is_vision_available():
|
||||
from transformers import Qwen2VLImageProcessor, Qwen2VLProcessor
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
|
||||
@require_vision
|
||||
@require_torch
|
||||
@ -116,101 +120,97 @@ class Qwen2VLProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
|
||||
self.assertListEqual(list(inputs.keys()), processor.model_input_names)
|
||||
|
||||
def test_image_chat_template_single(self):
|
||||
@require_torch
|
||||
def _test_apply_chat_template(
|
||||
self,
|
||||
modality: str,
|
||||
batch_size: int,
|
||||
return_tensors: str,
|
||||
input_name: str,
|
||||
processor_name: str,
|
||||
input_data: list[str],
|
||||
):
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
messages = [
|
||||
if processor_name not in self.processor_class.attributes:
|
||||
self.skipTest(f"{processor_name} attribute not present in {self.processor_class}")
|
||||
|
||||
batch_messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
"content": [{"type": "text", "text": "Describe this."}],
|
||||
},
|
||||
]
|
||||
]
|
||||
] * batch_size
|
||||
|
||||
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
||||
self.assertEqual(len(formatted_prompt), 1)
|
||||
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True)
|
||||
expected_output = processor.tokenizer(formatted_prompt, return_tensors=None).input_ids
|
||||
self.assertListEqual(expected_output, formatted_prompt_tokenized)
|
||||
|
||||
out_dict = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True)
|
||||
self.assertListEqual(list(out_dict.keys()), ["input_ids", "attention_mask"])
|
||||
|
||||
# Now test the ability to return dict
|
||||
messages[0][0]["content"].append(
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
||||
)
|
||||
out_dict = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True)
|
||||
self.assertTrue(self.images_input_name in out_dict)
|
||||
|
||||
# should always have input_ids and attention_mask
|
||||
self.assertEqual(len(out_dict["input_ids"]), 1)
|
||||
self.assertEqual(len(out_dict["attention_mask"]), 1)
|
||||
self.assertEqual(len(out_dict[self.images_input_name]), 71280)
|
||||
|
||||
def test_image_chat_template_batched(self):
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
batched_messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What do you see?"},
|
||||
],
|
||||
},
|
||||
],
|
||||
]
|
||||
|
||||
formatted_prompt = processor.apply_chat_template(batched_messages, add_generation_prompt=True, tokenize=False)
|
||||
self.assertEqual(len(formatted_prompt), 2)
|
||||
# Test that jinja can be applied
|
||||
formatted_prompt = processor.apply_chat_template(batch_messages, add_generation_prompt=True, tokenize=False)
|
||||
self.assertEqual(len(formatted_prompt), batch_size)
|
||||
|
||||
# Test that tokenizing with template and directly with `self.tokenizer` gives same output
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(
|
||||
batched_messages, add_generation_prompt=True, tokenize=True, padding=True
|
||||
batch_messages, add_generation_prompt=True, tokenize=True, return_tensors=return_tensors
|
||||
)
|
||||
expected_output = processor.tokenizer(formatted_prompt, return_tensors=None, padding=True).input_ids
|
||||
self.assertListEqual(expected_output, formatted_prompt_tokenized)
|
||||
add_special_tokens = True
|
||||
if processor.tokenizer.bos_token is not None and formatted_prompt[0].startswith(processor.tokenizer.bos_token):
|
||||
add_special_tokens = False
|
||||
tok_output = processor.tokenizer(
|
||||
formatted_prompt, return_tensors=return_tensors, add_special_tokens=add_special_tokens
|
||||
)
|
||||
expected_output = tok_output.input_ids
|
||||
self.assertListEqual(expected_output.tolist(), formatted_prompt_tokenized.tolist())
|
||||
|
||||
# Test that kwargs passed to processor's `__call__` are actually used
|
||||
tokenized_prompt_100 = processor.apply_chat_template(
|
||||
batch_messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
return_tensors=return_tensors,
|
||||
max_length=100,
|
||||
)
|
||||
self.assertEqual(len(tokenized_prompt_100[0]), 100)
|
||||
|
||||
# Test that `return_dict=True` returns text related inputs in the dict
|
||||
out_dict_text = processor.apply_chat_template(
|
||||
batch_messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors=return_tensors,
|
||||
)
|
||||
self.assertTrue(all(key in out_dict_text for key in ["input_ids", "attention_mask"]))
|
||||
self.assertEqual(len(out_dict_text["input_ids"]), batch_size)
|
||||
self.assertEqual(len(out_dict_text["attention_mask"]), batch_size)
|
||||
|
||||
# Test that with modality URLs and `return_dict=True`, we get modality inputs in the dict
|
||||
for idx, url in enumerate(input_data[:batch_size]):
|
||||
batch_messages[idx][0]["content"] = [batch_messages[idx][0]["content"][0], {"type": modality, "url": url}]
|
||||
|
||||
out_dict = processor.apply_chat_template(
|
||||
batched_messages, add_generation_prompt=True, tokenize=True, return_dict=True, padding=True
|
||||
batch_messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors=return_tensors,
|
||||
num_frames=4, # by default no more than 4 frames, otherwise too slow
|
||||
)
|
||||
self.assertListEqual(list(out_dict.keys()), ["input_ids", "attention_mask"])
|
||||
input_name = getattr(self, input_name)
|
||||
self.assertTrue(input_name in out_dict)
|
||||
self.assertEqual(len(out_dict["input_ids"]), batch_size)
|
||||
self.assertEqual(len(out_dict["attention_mask"]), batch_size)
|
||||
self.assertEqual(len(out_dict[input_name]), batch_size * 19200)
|
||||
|
||||
# Now test the ability to return dict
|
||||
batched_messages[0][0]["content"].append(
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
||||
)
|
||||
batched_messages[1][0]["content"].append(
|
||||
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"}
|
||||
)
|
||||
out_dict = processor.apply_chat_template(
|
||||
batched_messages, add_generation_prompt=True, tokenize=True, return_dict=True, padding=True
|
||||
)
|
||||
self.assertTrue(self.images_input_name in out_dict)
|
||||
|
||||
# should always have input_ids and attention_mask
|
||||
self.assertEqual(len(out_dict["input_ids"]), 2)
|
||||
self.assertEqual(len(out_dict["attention_mask"]), 2)
|
||||
self.assertEqual(len(out_dict[self.images_input_name]), 90480)
|
||||
return_tensor_to_type = {"pt": torch.Tensor, "np": np.ndarray, None: list}
|
||||
for k in out_dict:
|
||||
self.assertIsInstance(out_dict[k], return_tensor_to_type[return_tensors])
|
||||
|
||||
@require_av
|
||||
def test_chat_template_video(self):
|
||||
def test_apply_chat_template_video_frame_sampling(self):
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
@ -312,52 +312,7 @@ class Qwen2VLProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 71280)
|
||||
|
||||
@require_av
|
||||
def test_chat_template_video_custom_sampling(self):
|
||||
"""
|
||||
Tests that models can pass their custom callables to sample video indices.
|
||||
"""
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
signature = inspect.signature(processor.__call__)
|
||||
if "videos" not in {*signature.parameters.keys()} or (
|
||||
signature.parameters.get("videos") is not None
|
||||
and signature.parameters["videos"].annotation == inspect._empty
|
||||
):
|
||||
self.skipTest("Processor doesn't accept videos at input")
|
||||
|
||||
video_file_path = hf_hub_download(
|
||||
repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset"
|
||||
)
|
||||
messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "video", "path": video_file_path},
|
||||
{"type": "text", "text": "What is shown in this video?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
]
|
||||
|
||||
def dummy_sample_indices_fn(metadata, **fn_kwargs):
|
||||
# sample only the first two frame always
|
||||
return [0, 1]
|
||||
|
||||
out_dict_with_video = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
sample_indices_fn=dummy_sample_indices_fn,
|
||||
)
|
||||
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
||||
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 14400)
|
||||
|
||||
@require_av
|
||||
def test_chat_template_video_special_processing(self):
|
||||
def test_apply_chat_template_video_special_processing(self):
|
||||
"""
|
||||
Tests that models can use their own preprocessing to preprocess conversations.
|
||||
"""
|
||||
@ -414,6 +369,7 @@ class Qwen2VLProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="np",
|
||||
)
|
||||
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
||||
|
||||
|
@ -162,29 +162,14 @@ class ShieldGemma2ProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
images = self.prepare_image_inputs(batch_size=2)
|
||||
print(images)
|
||||
processed_inputs = processor(images=images)
|
||||
self.assertEqual(len(processed_inputs[self.text_input_name]), 6)
|
||||
self.assertEqual(len(processed_inputs[self.images_input_name]), 6)
|
||||
|
||||
# TODO(ryanmullins): Adapt this test for ShieldGemma 2
|
||||
@parameterized.expand([(1, "np"), (1, "pt"), (2, "np"), (2, "pt")])
|
||||
@unittest.skip("ShieldGemma 2 chat template requires different message structure from parent.")
|
||||
def test_image_chat_template_accepts_processing_kwargs(self):
|
||||
pass
|
||||
|
||||
# TODO(ryanmullins): Adapt this test for ShieldGemma 2
|
||||
@unittest.skip("ShieldGemma 2 chat template requires different message structure from parent.")
|
||||
def test_image_chat_template_batched(self):
|
||||
pass
|
||||
|
||||
# TODO(ryanmullins): Adapt this test for ShieldGemma 2
|
||||
@unittest.skip("ShieldGemma 2 chat template requires different message structure from parent.")
|
||||
def test_image_chat_template_dict_torch(self):
|
||||
pass
|
||||
|
||||
# TODO(ryanmullins): Adapt this test for ShieldGemma 2
|
||||
@unittest.skip("ShieldGemma 2 chat template requires different message structure from parent.")
|
||||
def test_image_chat_template_single(self):
|
||||
def test_apply_chat_template_image(self, batch_size: int, return_tensors: str):
|
||||
pass
|
||||
|
||||
# TODO(ryanmullins): Adapt this test for ShieldGemma 2
|
||||
|
@ -368,12 +368,12 @@ class SmolVLMProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
)
|
||||
self.assertEqual(rendered, expected_rendered)
|
||||
|
||||
@unittest.skip(reason="Broken from common. Fixing TODO @zucchini-nlp @molbap")
|
||||
def test_chat_template_video_special_processing(self):
|
||||
@unittest.skip(reason="SmolVLM replaced `type=video` with `type=image` in chat templates")
|
||||
def test_apply_chat_template_video_special_processing(self):
|
||||
pass
|
||||
|
||||
@require_av
|
||||
def test_chat_template_video(self):
|
||||
def test_apply_chat_template_video_frame_sampling(self):
|
||||
# overriden because SmolVLM has special preprocessing for videos
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
@ -401,11 +401,12 @@ class SmolVLMProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
num_frames=num_frames,
|
||||
return_tensors="np",
|
||||
)
|
||||
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
||||
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 1)
|
||||
# SmolVLM doesn't sample `num_frames` exactly, by uses other sampling method
|
||||
self.assertEqual(len(out_dict_with_video[self.videos_input_name][0]), 10)
|
||||
self.assertEqual(len(out_dict_with_video[self.videos_input_name][0]), 3)
|
||||
|
||||
# Load with `video_fps` arg
|
||||
video_fps = 1
|
||||
@ -415,6 +416,7 @@ class SmolVLMProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
video_fps=video_fps,
|
||||
return_tensors="np",
|
||||
)
|
||||
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
||||
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 1)
|
||||
|
@ -1,41 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import unittest
|
||||
|
||||
from transformers.testing_utils import require_vision
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
|
||||
if is_vision_available():
|
||||
from transformers import AutoProcessor
|
||||
|
||||
|
||||
@require_vision
|
||||
class LlavaProcessorTest(unittest.TestCase):
|
||||
def test_chat_template(self):
|
||||
processor = AutoProcessor.from_pretrained("llava-hf/vip-llava-7b-hf")
|
||||
expected_prompt = "###Human: <image>\nWhat is shown in this image?###Assistant:"
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
||||
self.assertEqual(expected_prompt, formatted_prompt)
|
@ -22,6 +22,7 @@ from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
from huggingface_hub import hf_hub_download
|
||||
from parameterized import parameterized
|
||||
|
||||
from transformers.models.auto.processing_auto import processor_class_from_name
|
||||
from transformers.processing_utils import Unpack
|
||||
@ -44,6 +45,22 @@ if is_torch_available():
|
||||
import torch
|
||||
|
||||
|
||||
MODALITY_INPUT_DATA = {
|
||||
"images": [
|
||||
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
||||
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
||||
],
|
||||
"videos": [
|
||||
"https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4",
|
||||
["https://www.ilankelman.org/stopsigns/australia.jpg", "https://www.ilankelman.org/stopsigns/australia.jpg"],
|
||||
],
|
||||
"audio": [
|
||||
"https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3",
|
||||
"https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/f2641_0_throatclearing.wav",
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
def prepare_image_inputs():
|
||||
"""This function prepares a list of PIL images"""
|
||||
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
|
||||
@ -729,7 +746,7 @@ class ProcessorTesterMixin:
|
||||
)
|
||||
|
||||
def test_chat_template_save_loading(self):
|
||||
processor = self.get_processor()
|
||||
processor = self.processor_class.from_pretrained(self.tmpdirname)
|
||||
signature = inspect.signature(processor.__init__)
|
||||
if "chat_template" not in {*signature.parameters.keys()}:
|
||||
self.skipTest("Processor doesn't accept chat templates at input")
|
||||
@ -756,210 +773,133 @@ class ProcessorTesterMixin:
|
||||
# the reloaded tokenizer should get the chat template as well
|
||||
self.assertEqual(reloaded_processor.chat_template, reloaded_processor.tokenizer.chat_template)
|
||||
|
||||
def test_image_chat_template_single(self):
|
||||
@require_torch
|
||||
def _test_apply_chat_template(
|
||||
self,
|
||||
modality: str,
|
||||
batch_size: int,
|
||||
return_tensors: str,
|
||||
input_name: str,
|
||||
processor_name: str,
|
||||
input_data: list[str],
|
||||
):
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
if "image_processor" not in self.processor_class.attributes:
|
||||
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
||||
if processor_name not in self.processor_class.attributes:
|
||||
self.skipTest(f"{processor_name} attribute not present in {self.processor_class}")
|
||||
|
||||
messages = [
|
||||
# some models have only Fast image processor
|
||||
if getattr(processor, processor_name).__class__.__name__.endswith("Fast"):
|
||||
return_tensors = "pt"
|
||||
|
||||
batch_messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
"content": [{"type": "text", "text": "Describe this."}],
|
||||
},
|
||||
]
|
||||
]
|
||||
] * batch_size
|
||||
|
||||
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
||||
self.assertEqual(len(formatted_prompt), 1)
|
||||
# Test that jinja can be applied
|
||||
formatted_prompt = processor.apply_chat_template(batch_messages, add_generation_prompt=True, tokenize=False)
|
||||
self.assertEqual(len(formatted_prompt), batch_size)
|
||||
|
||||
# Test that tokenizing with template and directly with `self.tokenizer` gives same output
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(
|
||||
messages, add_generation_prompt=True, tokenize=True, return_tensors=None
|
||||
batch_messages, add_generation_prompt=True, tokenize=True, return_tensors=return_tensors
|
||||
)
|
||||
add_special_tokens = True
|
||||
if processor.tokenizer.bos_token is not None and formatted_prompt[0].startswith(processor.tokenizer.bos_token):
|
||||
add_special_tokens = False
|
||||
expected_output = processor.tokenizer(
|
||||
formatted_prompt, return_tensors=None, add_special_tokens=add_special_tokens
|
||||
).input_ids
|
||||
self.assertListEqual(expected_output, formatted_prompt_tokenized)
|
||||
|
||||
out_dict = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True)
|
||||
self.assertTrue(all(key in out_dict for key in ["input_ids", "attention_mask"]))
|
||||
|
||||
# Now test the ability to return dict
|
||||
messages[0][0]["content"].append(
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
||||
tok_output = processor.tokenizer(
|
||||
formatted_prompt, return_tensors=return_tensors, add_special_tokens=add_special_tokens
|
||||
)
|
||||
out_dict = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True)
|
||||
self.assertTrue(self.images_input_name in out_dict)
|
||||
expected_output = tok_output.input_ids
|
||||
self.assertListEqual(expected_output.tolist(), formatted_prompt_tokenized.tolist())
|
||||
|
||||
# should always have input_ids and attention_mask
|
||||
self.assertEqual(len(out_dict["input_ids"]), 1)
|
||||
self.assertEqual(len(out_dict["attention_mask"]), 1)
|
||||
self.assertEqual(len(out_dict[self.images_input_name]), 1)
|
||||
|
||||
def test_image_chat_template_batched(self):
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
if "image_processor" not in self.processor_class.attributes:
|
||||
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
||||
|
||||
batched_messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What do you see?"},
|
||||
],
|
||||
},
|
||||
],
|
||||
]
|
||||
|
||||
formatted_prompt = processor.apply_chat_template(batched_messages, add_generation_prompt=True, tokenize=False)
|
||||
self.assertEqual(len(formatted_prompt), 2)
|
||||
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(
|
||||
batched_messages, add_generation_prompt=True, tokenize=True, padding=True, return_tensors=None
|
||||
)
|
||||
add_special_tokens = True
|
||||
if processor.tokenizer.bos_token is not None and formatted_prompt[0].startswith(processor.tokenizer.bos_token):
|
||||
add_special_tokens = False
|
||||
expected_output = processor.tokenizer(
|
||||
formatted_prompt,
|
||||
return_tensors=None,
|
||||
padding=True,
|
||||
add_special_tokens=add_special_tokens,
|
||||
).input_ids
|
||||
self.assertListEqual(expected_output, formatted_prompt_tokenized)
|
||||
|
||||
out_dict = processor.apply_chat_template(
|
||||
batched_messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
padding=True,
|
||||
)
|
||||
self.assertTrue(all(key in out_dict for key in ["input_ids", "attention_mask"]))
|
||||
|
||||
# Now test the ability to return dict
|
||||
batched_messages[0][0]["content"].append(
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
||||
)
|
||||
batched_messages[1][0]["content"].append(
|
||||
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"}
|
||||
)
|
||||
out_dict = processor.apply_chat_template(
|
||||
batched_messages, add_generation_prompt=True, tokenize=True, return_dict=True, padding=True
|
||||
)
|
||||
self.assertTrue(self.images_input_name in out_dict)
|
||||
|
||||
# should always have input_ids and attention_mask
|
||||
self.assertEqual(len(out_dict["input_ids"]), 2)
|
||||
self.assertEqual(len(out_dict["attention_mask"]), 2)
|
||||
self.assertEqual(len(out_dict[self.images_input_name]), 2)
|
||||
|
||||
def test_image_chat_template_accepts_processing_kwargs(self):
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
if "image_processor" not in self.processor_class.attributes:
|
||||
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
||||
|
||||
messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
]
|
||||
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(
|
||||
messages,
|
||||
# Test that kwargs passed to processor's `__call__` are actually used
|
||||
tokenized_prompt_100 = processor.apply_chat_template(
|
||||
batch_messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=50,
|
||||
return_tensors=return_tensors,
|
||||
max_length=100,
|
||||
)
|
||||
self.assertEqual(len(formatted_prompt_tokenized[0]), 50)
|
||||
self.assertEqual(len(tokenized_prompt_100[0]), 100)
|
||||
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(
|
||||
messages,
|
||||
# Test that `return_dict=True` returns text related inputs in the dict
|
||||
out_dict_text = processor.apply_chat_template(
|
||||
batch_messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
truncation=True,
|
||||
max_length=5,
|
||||
return_dict=True,
|
||||
return_tensors=return_tensors,
|
||||
)
|
||||
self.assertEqual(len(formatted_prompt_tokenized[0]), 5)
|
||||
self.assertTrue(all(key in out_dict_text for key in ["input_ids", "attention_mask"]))
|
||||
self.assertEqual(len(out_dict_text["input_ids"]), batch_size)
|
||||
self.assertEqual(len(out_dict_text["attention_mask"]), batch_size)
|
||||
|
||||
# Test that with modality URLs and `return_dict=True`, we get modality inputs in the dict
|
||||
for idx, url in enumerate(input_data[:batch_size]):
|
||||
batch_messages[idx][0]["content"] = [batch_messages[idx][0]["content"][0], {"type": modality, "url": url}]
|
||||
|
||||
# Now test the ability to return dict
|
||||
messages[0][0]["content"].append(
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
||||
)
|
||||
out_dict = processor.apply_chat_template(
|
||||
messages,
|
||||
batch_messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
do_rescale=True,
|
||||
rescale_factor=-1,
|
||||
return_tensors="np",
|
||||
return_tensors=return_tensors,
|
||||
num_frames=4, # by default no more than 4 frames, otherwise too slow
|
||||
)
|
||||
self.assertLessEqual(out_dict[self.images_input_name][0][0].mean(), 0)
|
||||
input_name = getattr(self, input_name)
|
||||
self.assertTrue(input_name in out_dict)
|
||||
self.assertEqual(len(out_dict["input_ids"]), batch_size)
|
||||
self.assertEqual(len(out_dict["attention_mask"]), batch_size)
|
||||
self.assertEqual(len(out_dict[input_name]), batch_size)
|
||||
|
||||
@require_torch
|
||||
def test_image_chat_template_dict_torch(self):
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
return_tensor_to_type = {"pt": torch.Tensor, "np": np.ndarray, None: list}
|
||||
for k in out_dict:
|
||||
self.assertIsInstance(out_dict[k], return_tensor_to_type[return_tensors])
|
||||
|
||||
if "image_processor" not in self.processor_class.attributes:
|
||||
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
out_dict_tensors = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
self.assertTrue(self.images_input_name in out_dict_tensors)
|
||||
for k in out_dict_tensors:
|
||||
self.assertIsInstance(out_dict_tensors[k], torch.Tensor)
|
||||
# Test continue from final message
|
||||
assistant_message = {
|
||||
"role": "assistant",
|
||||
"content": [{"type": "text", "text": "It is the sound of"}],
|
||||
}
|
||||
for idx, url in enumerate(input_data[:batch_size]):
|
||||
batch_messages[idx] = batch_messages[idx] + [assistant_message]
|
||||
continue_prompt = processor.apply_chat_template(batch_messages, continue_final_message=True, tokenize=False)
|
||||
for prompt in continue_prompt:
|
||||
self.assertTrue(prompt.endswith("It is the sound of")) # no `eos` token at the end
|
||||
|
||||
@require_av
|
||||
def test_chat_template_video(self):
|
||||
@parameterized.expand([(1, "np"), (1, "pt"), (2, "np"), (2, "pt")])
|
||||
def test_apply_chat_template_audio(self, batch_size: int, return_tensors: str):
|
||||
self._test_apply_chat_template(
|
||||
"audio", batch_size, return_tensors, "audio_input_name", "feature_extracttor", MODALITY_INPUT_DATA["audio"]
|
||||
)
|
||||
|
||||
@require_librosa
|
||||
@parameterized.expand([(1, "np"), (1, "pt"), (2, "np"), (2, "pt")])
|
||||
def test_apply_chat_template_video(self, batch_size: int, return_tensors: str):
|
||||
self._test_apply_chat_template(
|
||||
"video", batch_size, return_tensors, "videos_input_name", "video_processor", MODALITY_INPUT_DATA["videos"]
|
||||
)
|
||||
|
||||
@parameterized.expand([(1, "np"), (1, "pt"), (2, "np"), (2, "pt")])
|
||||
def test_apply_chat_template_image(self, batch_size: int, return_tensors: str):
|
||||
self._test_apply_chat_template(
|
||||
"image", batch_size, return_tensors, "images_input_name", "image_processor", MODALITY_INPUT_DATA["images"]
|
||||
)
|
||||
|
||||
def test_apply_chat_template_video_frame_sampling(self):
|
||||
processor = self.get_processor()
|
||||
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
@ -975,37 +915,16 @@ class ProcessorTesterMixin:
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "video"},
|
||||
{
|
||||
"type": "video",
|
||||
"url": "https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4",
|
||||
},
|
||||
{"type": "text", "text": "What is shown in this video?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
]
|
||||
|
||||
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
||||
self.assertEqual(len(formatted_prompt), 1)
|
||||
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(
|
||||
messages, add_generation_prompt=True, tokenize=True, return_tensors=None
|
||||
)
|
||||
add_special_tokens = True
|
||||
if processor.tokenizer.bos_token is not None and formatted_prompt[0].startswith(processor.tokenizer.bos_token):
|
||||
add_special_tokens = False
|
||||
expected_output = processor.tokenizer(
|
||||
formatted_prompt,
|
||||
return_tensors=None,
|
||||
add_special_tokens=add_special_tokens,
|
||||
).input_ids
|
||||
self.assertListEqual(expected_output, formatted_prompt_tokenized)
|
||||
|
||||
out_dict = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True)
|
||||
self.assertTrue(all(key in out_dict for key in ["input_ids", "attention_mask"]))
|
||||
|
||||
# Add video URL for return dict and load with `num_frames` arg
|
||||
messages[0][0]["content"][0] = {
|
||||
"type": "video",
|
||||
"url": "https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4",
|
||||
}
|
||||
num_frames = 3
|
||||
out_dict_with_video = processor.apply_chat_template(
|
||||
messages,
|
||||
@ -1013,6 +932,7 @@ class ProcessorTesterMixin:
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
num_frames=num_frames,
|
||||
return_tensors="np",
|
||||
)
|
||||
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
||||
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 1)
|
||||
@ -1026,6 +946,7 @@ class ProcessorTesterMixin:
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
video_fps=video_fps,
|
||||
return_tensors="np",
|
||||
)
|
||||
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
||||
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 1)
|
||||
@ -1073,53 +994,7 @@ class ProcessorTesterMixin:
|
||||
self.assertEqual(len(out_dict_with_video[self.videos_input_name][0]), 2)
|
||||
|
||||
@require_av
|
||||
def test_chat_template_video_custom_sampling(self):
|
||||
"""
|
||||
Tests that models can pass their custom callables to sample video indices.
|
||||
"""
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
signature = inspect.signature(processor.__call__)
|
||||
if "videos" not in {*signature.parameters.keys()} or (
|
||||
signature.parameters.get("videos") is not None
|
||||
and signature.parameters["videos"].annotation == inspect._empty
|
||||
):
|
||||
self.skipTest("Processor doesn't accept videos at input")
|
||||
|
||||
video_file_path = hf_hub_download(
|
||||
repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset"
|
||||
)
|
||||
messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "video", "path": video_file_path},
|
||||
{"type": "text", "text": "What is shown in this video?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
]
|
||||
|
||||
def dummy_sample_indices_fn(metadata, **fn_kwargs):
|
||||
# sample only the first two frame always
|
||||
return [0, 1]
|
||||
|
||||
out_dict_with_video = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
sample_indices_fn=dummy_sample_indices_fn,
|
||||
)
|
||||
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
||||
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 1)
|
||||
self.assertEqual(len(out_dict_with_video[self.videos_input_name][0]), 2)
|
||||
|
||||
@require_av
|
||||
def test_chat_template_video_special_processing(self):
|
||||
def test_apply_chat_template_video_special_processing(self):
|
||||
"""
|
||||
Tests that models can use their own preprocessing to preprocess conversations.
|
||||
"""
|
||||
@ -1176,6 +1051,7 @@ class ProcessorTesterMixin:
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="np",
|
||||
)
|
||||
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
||||
|
||||
@ -1187,7 +1063,7 @@ class ProcessorTesterMixin:
|
||||
|
||||
@require_librosa
|
||||
@require_av
|
||||
def test_audio_chat_template_from_video(self):
|
||||
def test_chat_template_audio_from_video(self):
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
@ -1241,124 +1117,10 @@ class ProcessorTesterMixin:
|
||||
load_audio_from_video=True,
|
||||
)
|
||||
self.assertTrue(self.audio_input_name in out_dict)
|
||||
self.assertTrue(self.video_input_name in out_dict)
|
||||
self.assertTrue(self.videos_input_name in out_dict)
|
||||
|
||||
# should always have input_ids and attention_mask
|
||||
self.assertEqual(len(out_dict["input_ids"]), 1) # batch-size=1
|
||||
self.assertEqual(len(out_dict["attention_mask"]), 1) # batch-size=1
|
||||
self.assertEqual(len(out_dict[self.audio_input_name]), 2) # 2 audios in the conversation
|
||||
self.assertEqual(len(out_dict[self.video_input_name]), 1) # 1 video in the conversation
|
||||
|
||||
@require_librosa
|
||||
def test_audio_chat_template_single(self):
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
if "feature_extractor" not in self.processor_class.attributes:
|
||||
self.skipTest(f"feature_extractor attribute not present in {self.processor_class}")
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": [{"type": "text", "text": "You are a helpful assistant."}],
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
},
|
||||
{"type": "text", "text": "What's that sound?"},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"type": "text", "text": "It is the sound of glass shattering."}],
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
},
|
||||
{"type": "text", "text": "How about this one?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
formatted_prompt = processor.apply_chat_template([messages], add_generation_prompt=True, tokenize=False)
|
||||
self.assertEqual(len(formatted_prompt), 1) # batch size=1
|
||||
|
||||
formatted_prompt_tokenized = processor.apply_chat_template(
|
||||
messages, add_generation_prompt=True, tokenize=True, return_tensors=None
|
||||
)
|
||||
expected_output = processor.tokenizer(formatted_prompt, return_tensors=None).input_ids
|
||||
self.assertListEqual(expected_output, formatted_prompt_tokenized)
|
||||
|
||||
messages[1]["content"][0]["audio"] = (
|
||||
"https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3"
|
||||
)
|
||||
messages[3]["content"][0]["audio"] = (
|
||||
"https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3"
|
||||
)
|
||||
out_dict = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True)
|
||||
self.assertTrue(self.audio_input_name in out_dict)
|
||||
|
||||
# should always have input_ids and attention_mask
|
||||
self.assertEqual(len(out_dict["input_ids"]), 1) # batch-size=1
|
||||
self.assertEqual(len(out_dict["attention_mask"]), 1) # batch-size=1
|
||||
self.assertEqual(len(out_dict[self.audio_input_name]), 2) # 2 audios in the conversation
|
||||
|
||||
@require_torch
|
||||
@require_librosa
|
||||
def test_audio_chat_template_dict_torch(self):
|
||||
processor = self.get_processor()
|
||||
if processor.chat_template is None:
|
||||
self.skipTest("Processor has no chat template")
|
||||
|
||||
if "feature_extractor" not in self.processor_class.attributes:
|
||||
self.skipTest(f"feature_extractor attribute not present in {self.processor_class}")
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": [{"type": "text", "text": "You are a helpful assistant."}],
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3",
|
||||
},
|
||||
{"type": "text", "text": "What's that sound?"},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"type": "text", "text": "It is the sound of glass shattering."}],
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/f2641_0_throatclearing.wav",
|
||||
},
|
||||
{"type": "text", "text": "How about this one?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
out_dict_tensors = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
self.assertTrue(self.audio_input_name in out_dict_tensors)
|
||||
for k in out_dict_tensors:
|
||||
self.assertIsInstance(out_dict_tensors[k], torch.Tensor)
|
||||
self.assertEqual(len(out_dict[self.videos_input_name]), 1) # 1 video in the conversation
|
||||
|
Loading…
Reference in New Issue
Block a user