adding files after add-new-model-like

This commit is contained in:
ita.zaporozhets@huggingface.co 2025-05-16 09:17:51 +00:00 committed by ita.zaporozhets@huggingface.co
parent 3772dc7646
commit 1a50b29693
13 changed files with 2349 additions and 0 deletions

View File

@ -395,6 +395,8 @@
title: Blenderbot Small
- local: model_doc/bloom
title: BLOOM
- local: model_doc/blt
title: BLT
- local: model_doc/bort
title: BORT
- local: model_doc/byt5

View File

@ -0,0 +1,102 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# BLT
# BLT
## Overview
The BLT model was proposed in [<INSERT PAPER NAME HERE>](<INSERT PAPER LINK HERE>) by <INSERT AUTHORS HERE>.
<INSERT SHORT SUMMARY HERE>
The abstract from the paper is the following:
*<INSERT PAPER ABSTRACT HERE>*
Tips:
<INSERT TIPS ABOUT MODEL HERE>
This model was contributed by [INSERT YOUR HF USERNAME HERE](https://huggingface.co/<INSERT YOUR HF USERNAME HERE>).
The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>).
## BLTConfig
[[autodoc]] BLTConfig
## BLTTokenizer
[[autodoc]] BLTTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## BLTTokenizerFast
[[autodoc]] BLTTokenizerFast
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- update_post_processor
- save_vocabulary
## BLTModel
[[autodoc]] BLTModel
- forward
## BLTForCausalLM
[[autodoc]] BLTForCausalLM
- forward
## BLTForSequenceClassification
[[autodoc]] BLTForSequenceClassification
- forward
## BLTForQuestionAnswering
[[autodoc]] BLTForQuestionAnswering
- forward
## BLTForTokenClassification
[[autodoc]] BLTForTokenClassification
- forward
## FlaxBLTModel
[[autodoc]] FlaxBLTModel
- __call__
## FlaxBLTForCausalLM
[[autodoc]] FlaxBLTForCausalLM
- __call__

View File

@ -200,6 +200,7 @@ CONFIG_MAPPING_NAMES = OrderedDict[str, str](
("lightglue", "LightGlueConfig"),
("lilt", "LiltConfig"),
("llama", "LlamaConfig"),
("blt", "BLTConfig"),
("llama4", "Llama4Config"),
("llama4_text", "Llama4TextConfig"),
("llava", "LlavaConfig"),
@ -586,6 +587,7 @@ MODEL_NAMES_MAPPING = OrderedDict[str, str](
("lightglue", "LightGlue"),
("lilt", "LiLT"),
("llama", "LLaMA"),
("blt", "BLT"),
("llama2", "Llama2"),
("llama3", "Llama3"),
("llama4", "Llama4"),

View File

@ -189,6 +189,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("lightglue", "LightGlueForKeypointMatching"),
("lilt", "LiltModel"),
("llama", "LlamaModel"),
("blt", "BLTModel"),
("llama4", "Llama4ForConditionalGeneration"),
("llama4_text", "Llama4TextModel"),
("llava", "LlavaModel"),
@ -609,6 +610,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
("jamba", "JambaForCausalLM"),
("jetmoe", "JetMoeForCausalLM"),
("llama", "LlamaForCausalLM"),
("blt", "BLTForCausalLM"),
("llama4", "Llama4ForCausalLM"),
("llama4_text", "Llama4ForCausalLM"),
("mamba", "MambaForCausalLM"),

View File

View File

@ -0,0 +1,397 @@
import argparse
import json
import logging
import os
from typing import Any, Dict, Optional
import torch
from huggingface_hub import hf_hub_download, upload_folder
from safetensors.torch import load_file, save_file
from transformers.models.blt_wip.configuration_blt import BLTConfig
from transformers.models.blt_wip.modeling_blt import BLTModel
from transformers.models.blt_wip.modeling_blt_dev import BLTForCausalLM
from transformers.utils import logging as transformers_logging
logger = transformers_logging.get_logger(__name__)
transformers_logging.set_verbosity_info()
def merge_configurations(config_path: str, entropy_params_path: str) -> Dict[str, Any]:
logger.info("Merging configurations")
with open(config_path, "r") as f:
main_config = json.load(f)
with open(entropy_params_path, "r") as f:
entropy_data = json.load(f)
entropy_model_params = entropy_data.get("entropy_model", {})
patcher_args = entropy_data.get("data", {}).get("patcher_args", {})
unified_config = main_config.copy()["args"]
for key in ["vocab_size", "dim", "n_layers", "n_heads", "max_seqlen"]:
if key in unified_config and not isinstance(unified_config[key], int):
unified_config[key] = int(unified_config[key])
patch_size = patcher_args.get("patch_size", 8)
if isinstance(patch_size, float):
patch_size = int(patch_size)
# Create patcher config
patcher_hidden_size = int(entropy_model_params.get("dim", 512))
patcher_multiple_of = int(entropy_model_params.get("multiple_of", 256))
patcher_intermediate_size = patcher_multiple_of * ((int(8 * patcher_hidden_size / 3) + patcher_multiple_of - 1) // patcher_multiple_of)
patcher_config = {
"vocab_size": int(entropy_model_params.get("vocab_size", 256)),
"hidden_size": patcher_hidden_size,
"num_hidden_layers": int(entropy_model_params.get("n_layers", 8)),
"num_attention_heads": int(entropy_model_params.get("n_heads", 8)),
"num_key_value_heads": int(entropy_model_params.get("n_kv_heads"))
if entropy_model_params.get("n_kv_heads") is not None
else None,
"max_position_embeddings": int(entropy_model_params.get("max_seqlen", 1024)),
"norm_eps": entropy_model_params.get("norm_eps", 1e-5),
"dropout": entropy_model_params.get("dropout", 0.0),
"rope_theta": entropy_model_params.get("rope_theta", 10000.0),
"attn_impl": entropy_model_params.get("attn_impl", "sdpa"),
"attn_bias_type": entropy_model_params.get("attn_bias_type", "causal"),
"intermediate_size": patcher_intermediate_size,
}
# Create encoder config
encoder_hidden_size = unified_config.get("dim_local_encoder", 1024)
encoder_multiple_of = unified_config.get("multiple_of", 256)
encoder_intermediate_size = encoder_multiple_of * ((int(8 * encoder_hidden_size / 3) + encoder_multiple_of - 1) // encoder_multiple_of)
encoder_config = {
"vocab_size": unified_config.get("vocab_size", 256),
"cross_attn_all_layers": unified_config.get("cross_attn_all_layers_encoder", False),
"cross_attn_k": unified_config.get("cross_attn_k", 2),
"hidden_size_global": unified_config.get("hidden_size_global", 2048),
"pm_size": unified_config.get("pm_size", 0),
"hidden_size": encoder_hidden_size,
"num_attention_heads": unified_config.get("n_heads_local_encoder", 16),
"num_key_value_heads": unified_config.get("n_kv_heads"),
"num_hidden_layers": unified_config.get("n_layers_local_encoder", 1),
"norm_eps": unified_config.get("norm_eps", 1e-5),
"dropout": unified_config.get("dropout", 0.0),
"max_position_embeddings": unified_config.get("max_encoder_seq_length") or unified_config.get("max_seqlen", 1024),
"rope_theta": unified_config.get("rope_theta", 10000.0),
"rope_scaling": {"rope_type": "default"},
"hidden_act": unified_config.get("hidden_act", "silu"),
"_attn_implementation": unified_config.get("_attn_implementation", "sdpa"),
"intermediate_size": encoder_intermediate_size,
}
# Create decoder config
decoder_hidden_size = unified_config.get("dim_local_decoder", 1024)
decoder_multiple_of = unified_config.get("multiple_of", 256)
decoder_intermediate_size = decoder_multiple_of * ((int(8 * decoder_hidden_size / 3) + decoder_multiple_of - 1) // decoder_multiple_of)
decoder_config = {
"vocab_size": unified_config.get("vocab_size", 256),
"cross_attn_all_layers": unified_config.get("cross_attn_all_layers_decoder", False),
"cross_attn_k": unified_config.get("cross_attn_k", 2),
"hidden_size_global": unified_config.get("hidden_size_global", 2048),
"hidden_size": decoder_hidden_size,
"num_attention_heads": unified_config.get("n_heads_local_decoder", 16),
"num_key_value_heads": unified_config.get("n_kv_heads"),
"num_hidden_layers": unified_config.get("n_layers_local_decoder", 9),
"norm_eps": unified_config.get("norm_eps", 1e-5),
"dropout": unified_config.get("dropout", 0.0),
"max_position_embeddings": unified_config.get("max_encoder_seq_length") or unified_config.get("max_seqlen", 1024),
"rope_theta": unified_config.get("rope_theta", 10000.0),
"rope_scaling": {"rope_type": "default"},
"hidden_act": unified_config.get("hidden_act", "silu"),
"_attn_implementation": unified_config.get("_attn_implementation", "sdpa"),
"intermediate_size": decoder_intermediate_size,
}
# Create global transformer config
global_hidden_size = unified_config.get("dim_global", 2048)
global_multiple_of = unified_config.get("multiple_of", 256)
global_intermediate_size = global_multiple_of * ((int(8 * global_hidden_size / 3) + global_multiple_of - 1) // global_multiple_of)
global_config = {
"hidden_size": global_hidden_size,
"num_attention_heads": unified_config.get("n_heads_global", 16),
"num_key_value_heads": unified_config.get("n_kv_heads_global"),
"num_hidden_layers": unified_config.get("n_layers_global", 25),
"norm_eps": unified_config.get("norm_eps", 1e-5),
"dropout": unified_config.get("dropout", 0.0),
"max_position_embeddings": unified_config.get("max_seqlen", 1024),
"rope_theta": unified_config.get("rope_theta", 10000.0),
"rope_scaling": {"rope_type": "default"},
"hidden_act": unified_config.get("hidden_act", "silu"),
"_attn_implementation": unified_config.get("_attn_implementation", "sdpa"),
"intermediate_size": global_intermediate_size,
}
# Create main config with sub-configs
main_config_dict = {
"model_type": "blt",
"vocab_size": unified_config.get("vocab_size", 256),
"max_position_embeddings": unified_config.get("max_seqlen", 1024),
"patch_in_forward": True,
"realtime_patching": True,
"patching_mode": "entropy",
"patch_size": patch_size,
"patching_threshold": patcher_args.get("threshold", 0.5),
"patching_threshold_add": patcher_args.get("threshold_add", 0.0),
"max_patch_length": patcher_args.get("max_patch_length"),
"patching_batch_size": patcher_args.get("patching_batch_size", 1),
"patching_device": patcher_args.get("patching_device", "cuda"),
"monotonicity": patcher_args.get("monotonicity", False),
"cross_attn_k": unified_config.get("cross_attn_k", 2),
"encoder_hash_byte_group_size": unified_config.get("encoder_hash_byte_group_size"),
"encoder_hash_byte_group_vocab": unified_config.get("encoder_hash_byte_group_vocab", 30000),
"encoder_hash_byte_group_nb_functions": unified_config.get("encoder_hash_byte_group_nb_functions", 3),
"pm_size": unified_config.get("pm_size", 0),
"patcher_config": patcher_config,
"encoder_config": encoder_config,
"decoder_config": decoder_config,
"global_config": global_config,
}
main_config_dict["tie_word_embeddings"] = False
logger.info(f"Merged configuration with {len(main_config_dict)} parameters")
return main_config_dict
def apply_weight_mapping(state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
component_mappings = {
".attention.": ".self_attn.",
".feed_forward.": ".mlp.",
".attention_norm.": ".input_layernorm.",
".ffn_norm.": ".post_attention_layernorm.",
".tok_embeddings.": ".embed_tokens.",
".cross_attn_norm_q.": ".q_norm.",
".cross_attn_norm_kv.": ".k_norm.",
".w1.": ".gate_proj.",
".w2.": ".down_proj.",
".w3.": ".up_proj.",
".wq.": ".q_proj.",
".wk.": ".k_proj.",
".wv.": ".v_proj.",
".wo.": ".o_proj.",
".output.": ".lm_head.",
}
new_state_dict = {}
for old_key, tensor in state_dict.items():
new_key = old_key
for old_pattern, new_pattern in component_mappings.items():
if old_pattern in new_key:
new_key = new_key.replace(old_pattern, new_pattern)
new_state_dict[new_key] = tensor
return new_state_dict
def merge_weights(weights_path: str, entropy_weights_path: str) -> Dict[str, torch.Tensor]:
main_weights = load_file(weights_path)
entropy_weights = torch.load(entropy_weights_path, map_location="cpu", weights_only=True)
if "model" in entropy_weights:
entropy_weights = entropy_weights["model"]
elif "state_dict" in entropy_weights:
entropy_weights = entropy_weights["state_dict"]
unified_weights = main_weights.copy()
for key, tensor in entropy_weights.items():
patcher_key = f"patcher.{key}"
unified_weights[patcher_key] = tensor
unified_weights = apply_weight_mapping(unified_weights)
decoder_lm_head_key = "local_decoder.lm_head.weight"
top_lm_head_key = "lm_head.weight"
unified_weights[top_lm_head_key] = unified_weights[decoder_lm_head_key]
del unified_weights[decoder_lm_head_key]
prefixed_weights = {}
for key, tensor in unified_weights.items():
if key == top_lm_head_key:
prefixed_weights[key] = tensor
elif not key.startswith("model."):
prefixed_weights[f"model.{key}"] = tensor
else:
prefixed_weights[key] = tensor
unified_weights = prefixed_weights
return unified_weights
def create_tokenizer_config(output_dir: str, config: Dict[str, Any]):
tokenizer_config = {
"tokenizer_class": "BltTokenizer",
"vocab_size": config.get("vocab_size", 256),
"model_max_length": config.get("max_seqlen", 1024),
"add_bos_token": True,
"add_eos_token": True,
"bos_token": "<s>",
"eos_token": "</s>",
"pad_token": "<pad>",
"unk_token": "<unk>",
}
tokenizer_path = os.path.join(output_dir, "tokenizer_config.json")
with open(tokenizer_path, "w") as f:
json.dump(tokenizer_config, f, indent=2)
def push_to_hub(
local_dir: str,
repo_id: str,
commit_message: str = "Upload converted BLT model",
private: bool = False,
token: Optional[str] = None,
) -> None:
try:
upload_folder(
folder_path=local_dir,
repo_id=repo_id,
commit_message=commit_message,
repo_type="model",
token=token,
)
logger.info(f"Successfully pushed model to {repo_id}")
except Exception as e:
logger.error(f"Failed to push model to Hub: {e}")
raise
def convert_hf_blt_to_unified(
model_id: str,
output_dir: str,
config_name: str = "config.json",
weights_name: str = "model.bin",
cache_dir: Optional[str] = None,
push_to_hub_repo: Optional[str] = None,
hub_private: bool = False,
hub_token: Optional[str] = None,
) -> None:
# Download model files
config_path = hf_hub_download(repo_id=model_id, filename="config.json", cache_dir=cache_dir)
weights_path = hf_hub_download(repo_id=model_id, filename="model.safetensors", cache_dir=cache_dir)
entropy_params_path = hf_hub_download(repo_id=model_id, filename="entropy_model/params.json", cache_dir=cache_dir)
entropy_weights_path = hf_hub_download(
repo_id=model_id, filename="entropy_model/consolidated.pth", cache_dir=cache_dir
)
unified_config = merge_configurations(config_path, entropy_params_path)
unified_weights = merge_weights(weights_path, entropy_weights_path)
os.makedirs(output_dir, exist_ok=True)
config_path = os.path.join(output_dir, config_name)
with open(config_path, "w") as f:
json.dump(unified_config, f, indent=2)
if weights_name.endswith(".bin"):
weights_name = weights_name.replace(".bin", ".safetensors")
weights_path = os.path.join(output_dir, weights_name)
save_file(unified_weights, weights_path)
create_tokenizer_config(output_dir, unified_config)
logger.info(f"Conversion completed, model saved to: {output_dir}")
if push_to_hub_repo:
push_to_hub(
local_dir=output_dir,
repo_id=push_to_hub_repo,
commit_message="Upload BLT model converted",
private=hub_private,
token=hub_token,
)
def main():
parser = argparse.ArgumentParser(
description="Convert BLT models from HuggingFace Hub format to unified format",
formatter_class=argparse.RawDescriptionHelpFormatter,
)
parser.add_argument(
"--model_id",
type=str,
default="facebook/blt-1b",
)
parser.add_argument(
"--output_dir",
type=str,
default="./blt_converted",
)
parser.add_argument(
"--config_name",
type=str,
default="config.json",
)
parser.add_argument(
"--weights_name",
type=str,
default="model.bin",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
)
parser.add_argument(
"--debug",
action="store_true",
default=True,
)
parser.add_argument(
"--push_to_hub",
type=str,
default=None,
)
parser.add_argument(
"--hub_private",
action="store_true",
default=False,
)
parser.add_argument(
"--hub_token",
type=str,
default="hf_token",
)
args = parser.parse_args()
transformers_logging.set_verbosity_debug()
logging.basicConfig(level=logging.DEBUG)
try:
convert_hf_blt_to_unified(
model_id=args.model_id,
output_dir=args.output_dir,
config_name=args.config_name,
weights_name=args.weights_name,
cache_dir=args.cache_dir,
push_to_hub_repo=args.push_to_hub,
hub_private=args.hub_private,
hub_token=args.hub_token,
)
except Exception as e:
logger.error(f"Conversion failed: {e}")
raise
if __name__ == "__main__":
main()

View File

View File

@ -0,0 +1,930 @@
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch BLT model."""
import unittest
from packaging import version
from parameterized import parameterized
from transformers import AutoTokenizer, BLTConfig, StaticCache, is_torch_available, set_seed
from transformers.generation.configuration_utils import GenerationConfig
from transformers.testing_utils import (
Expectations,
cleanup,
require_read_token,
require_torch,
require_torch_accelerator,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BLTForCausalLM,
BLTForQuestionAnswering,
BLTForSequenceClassification,
BLTForTokenClassification,
BLTModel,
BLTTokenizer,
)
from transformers.models.blt.modeling_blt import BLTRotaryEmbedding
class BLTModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return BLTConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = BLTModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class BLTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
BLTModel,
BLTForCausalLM,
BLTForSequenceClassification,
BLTForQuestionAnswering,
BLTForTokenClassification,
)
if is_torch_available()
else ()
)
test_headmasking = False
test_pruning = False
fx_compatible = False # Broken by attention refactor cc @Cyrilvallez
# Need to use `0.8` instead of `0.9` for `test_cpu_offload`
# This is because we are hitting edge cases with the causal_mask buffer
model_split_percents = [0.5, 0.7, 0.8]
# used in `test_torch_compile_for_training`
_torch_compile_train_cls = BLTForCausalLM if is_torch_available() else None
def setUp(self):
self.model_tester = BLTModelTester(self)
self.config_tester = ConfigTester(self, config_class=BLTConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_blt_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = BLTForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_blt_sequence_classification_model_for_single_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "single_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = BLTForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_blt_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = BLTForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_blt_token_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels)
model = BLTForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=token_labels)
self.assertEqual(
result.logits.shape,
(self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels),
)
@parameterized.expand([("linear",), ("dynamic",), ("yarn",)])
def test_model_rope_scaling_from_config(self, scaling_type):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
short_input = ids_tensor([1, 10], config.vocab_size)
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
original_model = BLTModel(config)
original_model.to(torch_device)
original_model.eval()
original_short_output = original_model(short_input).last_hidden_state
original_long_output = original_model(long_input).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
scaled_model = BLTModel(config)
scaled_model.to(torch_device)
scaled_model.eval()
scaled_short_output = scaled_model(short_input).last_hidden_state
scaled_long_output = scaled_model(long_input).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5)
else:
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
def test_model_rope_scaling(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
scaling_factor = 10
short_input_length = 10
long_input_length = int(config.max_position_embeddings * 1.5)
# Inputs
x = torch.randn(
1, dtype=torch.float32, device=torch_device
) # used exclusively to get the dtype and the device
position_ids_short = torch.arange(short_input_length, dtype=torch.long, device=torch_device)
position_ids_short = position_ids_short.unsqueeze(0)
position_ids_long = torch.arange(long_input_length, dtype=torch.long, device=torch_device)
position_ids_long = position_ids_long.unsqueeze(0)
# Sanity check original RoPE
original_rope = BLTRotaryEmbedding(config=config).to(torch_device)
original_cos_short, original_sin_short = original_rope(x, position_ids_short)
original_cos_long, original_sin_long = original_rope(x, position_ids_long)
torch.testing.assert_close(original_cos_short, original_cos_long[:, :short_input_length, :])
torch.testing.assert_close(original_sin_short, original_sin_long[:, :short_input_length, :])
# Sanity check linear RoPE scaling
# New position "x" should match original position with index "x/scaling_factor"
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
linear_scaling_rope = BLTRotaryEmbedding(config=config).to(torch_device)
linear_cos_short, linear_sin_short = linear_scaling_rope(x, position_ids_short)
linear_cos_long, linear_sin_long = linear_scaling_rope(x, position_ids_long)
torch.testing.assert_close(linear_cos_short, linear_cos_long[:, :short_input_length, :])
torch.testing.assert_close(linear_sin_short, linear_sin_long[:, :short_input_length, :])
for new_position in range(0, long_input_length, scaling_factor):
original_position = int(new_position // scaling_factor)
torch.testing.assert_close(linear_cos_long[:, new_position, :], original_cos_long[:, original_position, :])
torch.testing.assert_close(linear_sin_long[:, new_position, :], original_sin_long[:, original_position, :])
# Sanity check Dynamic NTK RoPE scaling
# Scaling should only be observed after a long input is fed. We can observe that the frequencies increase
# with scaling_factor (or that `inv_freq` decreases)
config.rope_scaling = {"type": "dynamic", "factor": scaling_factor}
ntk_scaling_rope = BLTRotaryEmbedding(config=config).to(torch_device)
ntk_cos_short, ntk_sin_short = ntk_scaling_rope(x, position_ids_short)
ntk_cos_long, ntk_sin_long = ntk_scaling_rope(x, position_ids_long)
torch.testing.assert_close(ntk_cos_short, original_cos_short)
torch.testing.assert_close(ntk_sin_short, original_sin_short)
with self.assertRaises(AssertionError):
torch.testing.assert_close(ntk_cos_long, original_cos_long)
with self.assertRaises(AssertionError):
torch.testing.assert_close(ntk_sin_long, original_sin_long)
self.assertTrue((ntk_scaling_rope.inv_freq <= original_rope.inv_freq).all())
# Sanity check Yarn RoPE scaling
# Scaling should be over the entire input
config.rope_scaling = {"type": "yarn", "factor": scaling_factor}
yarn_scaling_rope = BLTRotaryEmbedding(config=config).to(torch_device)
yarn_cos_short, yarn_sin_short = yarn_scaling_rope(x, position_ids_short)
yarn_cos_long, yarn_sin_long = yarn_scaling_rope(x, position_ids_long)
torch.testing.assert_close(yarn_cos_short, yarn_cos_long[:, :short_input_length, :])
torch.testing.assert_close(yarn_sin_short, yarn_sin_long[:, :short_input_length, :])
with self.assertRaises(AssertionError):
torch.testing.assert_close(yarn_cos_short, original_cos_short)
with self.assertRaises(AssertionError):
torch.testing.assert_close(yarn_sin_short, original_sin_short)
with self.assertRaises(AssertionError):
torch.testing.assert_close(yarn_cos_long, original_cos_long)
with self.assertRaises(AssertionError):
torch.testing.assert_close(yarn_sin_long, original_sin_long)
def test_model_loading_old_rope_configs(self):
def _reinitialize_config(base_config, new_kwargs):
# Reinitialize the config with the new kwargs, forcing the config to go through its __init__ validation
# steps.
base_config_dict = base_config.to_dict()
new_config = BLTConfig.from_dict(config_dict={**base_config_dict, **new_kwargs})
return new_config
# from untouched config -> ✅
base_config, model_inputs = self.model_tester.prepare_config_and_inputs_for_common()
original_model = BLTForCausalLM(base_config).to(torch_device)
original_model(**model_inputs)
# from a config with the expected rope configuration -> ✅
config = _reinitialize_config(base_config, {"rope_scaling": {"rope_type": "linear", "factor": 10.0}})
original_model = BLTForCausalLM(config).to(torch_device)
original_model(**model_inputs)
# from a config with the old rope configuration ('type' instead of 'rope_type') -> ✅ we gracefully handle BC
config = _reinitialize_config(base_config, {"rope_scaling": {"type": "linear", "factor": 10.0}})
original_model = BLTForCausalLM(config).to(torch_device)
original_model(**model_inputs)
# from a config with both 'type' and 'rope_type' -> ✅ they can coexist (and both are present in the config)
config = _reinitialize_config(
base_config, {"rope_scaling": {"type": "linear", "rope_type": "linear", "factor": 10.0}}
)
self.assertTrue(config.rope_scaling["type"] == "linear")
self.assertTrue(config.rope_scaling["rope_type"] == "linear")
original_model = BLTForCausalLM(config).to(torch_device)
original_model(**model_inputs)
# from a config with parameters in a bad range ('factor' should be >= 1.0) -> ⚠️ throws a warning
with self.assertLogs("transformers.modeling_rope_utils", level="WARNING") as logs:
config = _reinitialize_config(base_config, {"rope_scaling": {"rope_type": "linear", "factor": -999.0}})
original_model = BLTForCausalLM(config).to(torch_device)
original_model(**model_inputs)
self.assertEqual(len(logs.output), 1)
self.assertIn("factor field", logs.output[0])
# from a config with unknown parameters ('foo' isn't a rope option) -> ⚠️ throws a warning
with self.assertLogs("transformers.modeling_rope_utils", level="WARNING") as logs:
config = _reinitialize_config(
base_config, {"rope_scaling": {"rope_type": "linear", "factor": 10.0, "foo": "bar"}}
)
original_model = BLTForCausalLM(config).to(torch_device)
original_model(**model_inputs)
self.assertEqual(len(logs.output), 1)
self.assertIn("Unrecognized keys", logs.output[0])
# from a config with specific rope type but missing one of its mandatory parameters -> ❌ throws exception
with self.assertRaises(KeyError):
config = _reinitialize_config(base_config, {"rope_scaling": {"rope_type": "linear"}}) # missing "factor"
@require_torch_accelerator
class BLTIntegrationTest(unittest.TestCase):
def tearDown(self):
# TODO (joao): automatic compilation, i.e. compilation when `cache_implementation="static"` is used, leaves
# some memory allocated in the cache, which means some object is not being released properly. This causes some
# unoptimal memory usage, e.g. after certain tests a 7B model in FP16 no longer fits in a 24GB GPU.
# Investigate the root cause.
cleanup(torch_device, gc_collect=False)
@slow
@require_read_token
def test_blt_3_1_hard(self):
"""
An integration test for blt 3.1. It tests against a long output to ensure the subtle numerical differences
from blt 3.1.'s RoPE can be detected
"""
# diff on `EXPECTED_TEXT`:
# 2024-08-26: updating from torch 2.3.1 to 2.4.0 slightly changes the results.
EXPECTED_TEXT = (
"Tell me about the french revolution. The french revolution was a period of radical political and social "
"upheaval in France that lasted from 1789 until 1799. It was a time of great change and upheaval, marked "
"by the overthrow of the monarchy, the rise of the middle class, and the eventual establishment of the "
"First French Republic.\nThe revolution began in 1789 with the Estates-General, a representative "
"assembly that had not met since 1614. The Third Estate, which represented the common people, "
"demanded greater representation and eventually broke away to form the National Assembly. This marked "
"the beginning of the end of the absolute monarchy and the rise of the middle class.\n"
)
tokenizer = AutoTokenizer.from_pretrained("meta-blt/Meta-BLT-3.1-8B-Instruct")
model = BLTForCausalLM.from_pretrained(
"meta-blt/Meta-BLT-3.1-8B-Instruct", device_map="auto", torch_dtype=torch.bfloat16
)
input_text = ["Tell me about the french revolution."]
model_inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
generated_ids = model.generate(**model_inputs, max_new_tokens=128, do_sample=False)
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
self.assertEqual(generated_text, EXPECTED_TEXT)
@slow
@require_read_token
def test_model_7b_logits_bf16(self):
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
model = BLTForCausalLM.from_pretrained(
"meta-blt/BLT-2-7b-hf", device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
)
with torch.no_grad():
out = model(torch.tensor([input_ids]).to(torch_device))
# Expected mean on dim = -1
# fmt: off
expected_means = Expectations(
{
("xpu", 3): torch.tensor([[-6.5208, -4.1218, -4.9377, -3.2536, 0.8127, -2.9811, 1.2918, -3.3848]]),
("cuda", 7): torch.tensor([[-6.5061, -4.1147, -4.9669, -3.2038, 0.8069, -2.9694, 1.2864, -3.3786]]),
("cuda", 8): torch.tensor([[-6.5208, -4.1218, -4.9377, -3.2536, 0.8127, -2.9811, 1.2918, -3.3848]])
})
expected_mean = expected_means.get_expectation()
self.assertTrue(
torch.allclose(
expected_mean.to(torch_device),
out.logits.float().mean(-1),
atol=1e-2,
rtol=1e-2
)
)
# slicing logits[0, 0, 0:15]
expected_slices = Expectations(
{
("xpu", 3): torch.tensor([[-12.5625, -7.1250, -0.6289, -7.8750, -6.9688, -7.8125, -6.5000, -7.4375, -7.6562, -6.9688, -6.0312, -7.0312, -1.8203, 1.8750, -8.5000]]),
("cuda", 7): torch.tensor([[-12.5000, -7.0625, -0.6289, -7.8750, -6.9688, -7.8125, -6.4688, -7.4375, -7.6875, -6.9375, -6.0312, -7.0000, -1.8594, 1.8438, -8.5000]]),
("cuda", 8): torch.tensor([[-12.5625, -7.1250, -0.6289, -7.8750, -6.9688, -7.8125, -6.5000, -7.4375, -7.6562, -6.9688, -6.0312, -7.0312, -1.8203, 1.8750, -8.5000]])
})
# fmt: on
expected_slice = expected_slices.get_expectation()
self.assertTrue(
torch.allclose(
expected_slice.to(torch_device),
out.logits[0, 0, :15].float(),
atol=1e-2,
rtol=1e-2,
)
)
@slow
@require_read_token
def test_model_7b_logits(self):
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
model = BLTForCausalLM.from_pretrained(
"meta-blt/BLT-2-7b-hf", device_map="auto", torch_dtype=torch.float16
)
with torch.no_grad():
out = model(torch.tensor([input_ids]).to(torch_device))
# fmt: off
# Expected mean on dim = -1
expected_means = Expectations(
{
("xpu", 3): torch.tensor([[-6.6544, -4.1259, -4.9840, -3.2456, 0.8261, -3.0124, 1.2971, -3.3641]]),
("cuda", 7): torch.tensor([[-6.6420, -4.1227, -4.9809, -3.2041, 0.8261, -3.0052, 1.2957, -3.3648]]),
("cuda", 8): torch.tensor([[-6.6544, -4.1259, -4.9840, -3.2456, 0.8261, -3.0124, 1.2971, -3.3641]]),
})
expected_mean = expected_means.get_expectation()
self.assertTrue(
torch.allclose(
expected_mean.to(torch_device),
out.logits.float().mean(-1),
atol=1e-2,
rtol=1e-2
)
)
# slicing logits[0, 0, 0:15]
expected_slices = Expectations(
{
("xpu", 3): torch.tensor([-12.8281, -7.4609, -0.4668, -8.0703, -7.2539, -8.0078, -6.4961, -7.7734, -7.8516, -7.0352, -6.2188, -7.1367, -1.8564, 1.9922, -8.6328]),
("cuda", 7): torch.tensor([-12.8125, -7.3359, -0.4846, -8.0234, -7.2383, -7.9922, -6.4805, -7.7344, -7.8125, -7.0078, -6.1797, -7.1094, -1.8633, 1.9736, -8.6016]),
("cuda", 8): torch.tensor([-12.8281, -7.4609, -0.4668, -8.0703, -7.2539, -8.0078, -6.4961, -7.7734, -7.8516, -7.0352, -6.2188, -7.1367, -1.8564, 1.9922, -8.6328])
})
# fmt: on
expected_slice = expected_slices.get_expectation()
self.assertTrue(
torch.allclose(
expected_slice.to(torch_device),
out.logits[0, 0, :15].float(),
atol=1e-2,
rtol=1e-2,
)
)
@slow
def test_model_7b_dola_generation(self):
# ground truth text generated with dola_layers="low", repetition_penalty=1.2
EXPECTED_TEXT_COMPLETION = (
"Simply put, the theory of relativity states that 1) time and space are relative, and 2) the laws of "
"physics are the same for all observers in uniform motion relative to one another.\n\nThe theory of "
"relativity was developed by Albert Einstein in the early 20th century, and it revolutionized our "
"understanding of space and time."
)
prompt = "Simply put, the theory of relativity states that "
tokenizer = BLTTokenizer.from_pretrained("meta-blt/BLT-2-7b-chat-hf")
model = BLTForCausalLM.from_pretrained(
"meta-blt/BLT-2-7b-chat-hf", device_map="sequential", torch_dtype=torch.float16
)
model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# greedy generation outputs
generated_ids = model.generate(
**model_inputs, max_new_tokens=64, top_p=None, temperature=1, do_sample=False, dola_layers="low"
)
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
@slow
@require_torch_accelerator
@require_read_token
def test_compile_static_cache(self):
# `torch==2.2` will throw an error on this test (as in other compilation tests), but torch==2.1.2 and torch>2.2
# work as intended. See https://github.com/pytorch/pytorch/issues/121943
if version.parse(torch.__version__) < version.parse("2.3.0"):
self.skipTest(reason="This test requires torch >= 2.3 to run.")
NUM_TOKENS_TO_GENERATE = 40
# Note on `EXPECTED_TEXT_COMPLETION`'s diff: the current value matches the original test if the original test
# was changed to have a cache of 53 tokens (as opposed to 4096), on Ampere GPUs.
EXPECTED_TEXT_COMPLETION = [
"Simply put, the theory of relativity states that 1) the speed of light is constant in all inertial "
"reference frames, and 2) the laws of physics are the same for all inertial reference frames.\nThe "
"theory of relativ",
"My favorite all time favorite condiment is ketchup. I love it on everything. I love it on my eggs, "
"my fries, my chicken, my burgers, my hot dogs, my sandwiches, my salads, my p",
]
prompts = [
"Simply put, the theory of relativity states that ",
"My favorite all time favorite condiment is ketchup.",
]
tokenizer = BLTTokenizer.from_pretrained("meta-blt/BLT-2-7b-hf", pad_token="</s>", padding_side="right")
model = BLTForCausalLM.from_pretrained(
"meta-blt/BLT-2-7b-hf", device_map=torch_device, torch_dtype=torch.float16
)
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
# Dynamic Cache
generated_ids = model.generate(**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False)
dynamic_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, dynamic_text)
# Static Cache + compile (`generate()` internally compiles each decoding step when static cache is used)
generated_ids = model.generate(
**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
)
static_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, static_text)
@slow
@require_read_token
def test_export_static_cache(self):
if version.parse(torch.__version__) < version.parse("2.4.0"):
self.skipTest(reason="This test requires torch >= 2.4 to run.")
from transformers.integrations.executorch import (
TorchExportableModuleWithStaticCache,
convert_and_export_with_cache,
)
blt_models = {
"meta-blt/BLT-3.2-1B": [
"Simply put, the theory of relativity states that 1) the speed of light is the same for all "
"observers, regardless of their location, and 2) the laws of physics are the same for all observers"
],
}
for blt_model_ckp, EXPECTED_TEXT_COMPLETION in blt_models.items():
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(blt_model_ckp, pad_token="</s>", padding_side="right")
max_generation_length = tokenizer(EXPECTED_TEXT_COMPLETION, return_tensors="pt", padding=True)[
"input_ids"
].shape[-1]
# Load model
device = "cpu"
dtype = torch.bfloat16
cache_implementation = "static"
attn_implementation = "sdpa"
batch_size = 1
model = BLTForCausalLM.from_pretrained(
blt_model_ckp,
device_map=device,
torch_dtype=dtype,
attn_implementation=attn_implementation,
generation_config=GenerationConfig(
use_cache=True,
cache_implementation=cache_implementation,
max_length=max_generation_length,
cache_config={
"batch_size": batch_size,
"max_cache_len": max_generation_length,
"device": device,
},
),
)
prompts = ["Simply put, the theory of relativity states that "]
prompt_tokens = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
prompt_token_ids = prompt_tokens["input_ids"]
max_new_tokens = max_generation_length - prompt_token_ids.shape[-1]
# Static Cache + export
exported_program = convert_and_export_with_cache(model)
ep_generated_ids = TorchExportableModuleWithStaticCache.generate(
exported_program=exported_program, prompt_token_ids=prompt_token_ids, max_new_tokens=max_new_tokens
)
ep_generated_text = tokenizer.batch_decode(ep_generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, ep_generated_text)
@slow
@require_torch_accelerator
class Mask4DTestHard(unittest.TestCase):
def tearDown(self):
cleanup(torch_device, gc_collect=True)
def setUp(self):
cleanup(torch_device, gc_collect=True)
model_name = "TinyBLT/TinyBLT-1.1B-Chat-v1.0"
self.model_dtype = torch.float32
self.tokenizer = BLTTokenizer.from_pretrained(model_name)
self.model = BLTForCausalLM.from_pretrained(model_name, torch_dtype=self.model_dtype).to(torch_device)
def get_test_data(self):
template = "my favorite {}"
items = ("pet is a", "artist plays a", "name is L") # same number of tokens in each item
batch_separate = [template.format(x) for x in items] # 3 separate lines
batch_shared_prefix = template.format(" ".join(items)) # 1 line with options concatenated
input_ids = self.tokenizer(batch_separate, return_tensors="pt").input_ids.to(torch_device)
input_ids_shared_prefix = self.tokenizer(batch_shared_prefix, return_tensors="pt").input_ids.to(torch_device)
mask_shared_prefix = torch.tensor(
[
[
[
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1],
]
]
],
device=torch_device,
)
position_ids = torch.arange(input_ids.shape[1]).tile(input_ids.shape[0], 1).to(torch_device)
# building custom positions ids based on custom mask
position_ids_shared_prefix = (mask_shared_prefix.sum(dim=-1) - 1).reshape(1, -1)
# effectively: position_ids_shared_prefix = torch.tensor([[0, 1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5]]).to(device)
# inverting the mask
min_dtype = torch.finfo(self.model_dtype).min
mask_shared_prefix = (mask_shared_prefix.eq(0.0)).to(dtype=self.model_dtype) * min_dtype
return input_ids, position_ids, input_ids_shared_prefix, mask_shared_prefix, position_ids_shared_prefix
def test_stacked_causal_mask(self):
(
input_ids,
position_ids,
input_ids_shared_prefix,
mask_shared_prefix,
position_ids_shared_prefix,
) = self.get_test_data()
# regular batch
logits = self.model.forward(input_ids, position_ids=position_ids).logits
logits_last = logits[:, -1, :] # last tokens in each batch line
decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]
# single forward run with 4D custom mask
logits_shared_prefix = self.model.forward(
input_ids_shared_prefix, attention_mask=mask_shared_prefix, position_ids=position_ids_shared_prefix
).logits
logits_shared_prefix_last = logits_shared_prefix[
0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1], :
] # last three tokens
decoded_shared_prefix = [self.tokenizer.decode(t) for t in logits_shared_prefix_last.argmax(dim=-1)]
self.assertEqual(decoded, decoded_shared_prefix)
def test_partial_stacked_causal_mask(self):
# Same as the test above, but the input is passed in two groups. It tests that we can pass partial 4D attention masks
(
input_ids,
position_ids,
input_ids_shared_prefix,
mask_shared_prefix,
position_ids_shared_prefix,
) = self.get_test_data()
# regular batch
logits = self.model.forward(input_ids, position_ids=position_ids).logits
logits_last = logits[:, -1, :] # last tokens in each batch line
decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]
# 2 forward runs with custom 4D masks
part_a = 3 # split point
input_1a = input_ids_shared_prefix[:, :part_a]
position_ids_1a = position_ids_shared_prefix[:, :part_a]
mask_1a = mask_shared_prefix[:, :, :part_a, :part_a]
outs_1a = self.model.forward(input_1a, attention_mask=mask_1a, position_ids=position_ids_1a)
past_key_values_a = outs_1a["past_key_values"]
# Case 1: we pass a 4D attention mask regarding the current sequence length (i.e. [..., seq_len, full_len])
input_1b = input_ids_shared_prefix[:, part_a:]
position_ids_1b = position_ids_shared_prefix[:, part_a:]
mask_1b = mask_shared_prefix[:, :, part_a:, :]
outs_1b = self.model.forward(
input_1b,
attention_mask=mask_1b,
position_ids=position_ids_1b,
past_key_values=past_key_values_a,
)
decoded_1b = [
self.tokenizer.decode(t)
for t in outs_1b.logits.argmax(-1)[
0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1] - part_a
]
]
self.assertEqual(decoded, decoded_1b)
def test_stacked_causal_mask_static_cache(self):
"""same as above but with StaticCache"""
(
input_ids,
position_ids,
input_ids_shared_prefix,
mask_shared_prefix,
position_ids_shared_prefix,
) = self.get_test_data()
# regular batch
logits = self.model.forward(input_ids, position_ids=position_ids).logits
logits_last = logits[:, -1, :] # last tokens in each batch line
decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]
# upgrade the model with StaticCache
max_cache_len = 16 # note that max_cache_len is greater than the attention_mask.shape[-1]
past_key_values = StaticCache(
config=self.model.config,
max_batch_size=1,
max_cache_len=max_cache_len,
device=torch_device,
dtype=self.model.dtype,
)
padded_attention_mask = torch.nn.functional.pad(
input=mask_shared_prefix,
pad=(0, max_cache_len - mask_shared_prefix.shape[-1]),
mode="constant",
value=torch.finfo(self.model_dtype).min,
)
# single forward run with 4D custom mask
logits_shared_prefix = self.model.forward(
input_ids_shared_prefix,
attention_mask=padded_attention_mask,
position_ids=position_ids_shared_prefix,
cache_position=torch.arange(input_ids_shared_prefix.shape[-1], device=torch_device),
past_key_values=past_key_values,
).logits
logits_shared_prefix_last = logits_shared_prefix[
0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1], :
] # last three tokens
decoded_shared_prefix = [self.tokenizer.decode(t) for t in logits_shared_prefix_last.argmax(dim=-1)]
self.assertEqual(decoded, decoded_shared_prefix)
def test_partial_stacked_causal_mask_static_cache(self):
# Same as the test above, but the input is passed in two groups. It tests that we can pass partial 4D attention masks
# we pass a 4D attention mask shaped [..., seq_len, full_static_cache_len])
(
input_ids,
position_ids,
input_ids_shared_prefix,
mask_shared_prefix,
position_ids_shared_prefix,
) = self.get_test_data()
# regular batch
logits = self.model.forward(input_ids, position_ids=position_ids).logits
logits_last = logits[:, -1, :] # last tokens in each batch line
decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]
# upgrade the model with StaticCache
max_cache_len = 16 # note that max_cache_len is greater than the attention_mask.shape[-1]
past_key_values = StaticCache(
config=self.model.config,
max_batch_size=1,
max_cache_len=max_cache_len,
device=torch_device,
dtype=self.model.dtype,
)
# forward run for the first part of input
part_a = 3 # split point
input_1a = input_ids_shared_prefix[:, :part_a]
position_ids_1a = position_ids_shared_prefix[:, :part_a]
mask_1a = mask_shared_prefix[:, :, :part_a, :part_a]
padded_mask_1a = torch.nn.functional.pad(
input=mask_1a,
pad=(0, max_cache_len - mask_1a.shape[-1]),
mode="constant",
value=torch.finfo(self.model_dtype).min,
)
_ = self.model.forward(
input_1a,
attention_mask=padded_mask_1a,
position_ids=position_ids_1a,
cache_position=torch.arange(part_a, device=torch_device),
past_key_values=past_key_values,
)
# forward run for the second part of input
input_1b = input_ids_shared_prefix[:, part_a:]
position_ids_1b = position_ids_shared_prefix[:, part_a:]
mask_1b = mask_shared_prefix[:, :, part_a:, :]
padded_mask_1b = torch.nn.functional.pad(
input=mask_1b, pad=(0, max_cache_len - mask_1b.shape[-1]), mode="constant", value=0
)
outs_1b = self.model.forward(
input_1b,
attention_mask=padded_mask_1b,
position_ids=position_ids_1b,
cache_position=torch.arange(
part_a,
input_ids_shared_prefix.shape[-1],
device=torch_device,
),
past_key_values=past_key_values,
)
decoded_1b = [
self.tokenizer.decode(t)
for t in outs_1b.logits.argmax(-1)[
0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1] - part_a
]
]
self.assertEqual(decoded, decoded_1b)

View File

@ -0,0 +1,914 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pickle
import shutil
import tempfile
import unittest
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
AutoTokenizer,
BLTTokenizer,
BLTTokenizerFast,
PreTrainedTokenizerFast,
)
from transformers.convert_slow_tokenizer import convert_slow_tokenizer
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_jinja,
require_read_token,
require_sentencepiece,
require_tiktoken,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class BLTTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = ["hf-internal-testing/blt-tokenizer", "meta-blt/BLT-2-7b-hf"]
tokenizer_class = BLTTokenizer
rust_tokenizer_class = BLTTokenizerFast
test_rust_tokenizer = False
test_sentencepiece = True
from_pretrained_kwargs = {}
@classmethod
def setUpClass(cls):
super().setUpClass()
# We have a SentencePiece fixture for testing
tokenizer = BLTTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.save_pretrained(cls.tmpdirname)
def get_tokenizers(self, **kwargs):
kwargs.update({"pad_token": "<PAD>"})
return super().get_tokenizers(**kwargs)
def test_full_tokenizer(self):
tokenizer = BLTTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[285, 46, 10, 170, 382],
)
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
],
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(
ids,
[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4],
)
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
],
)
@unittest.skip(reason="Let's wait for the fast tokenizer!")
def test_save_pretrained(self):
self.tokenizers_list += (self.rust_tokenizer_class, "hf-internal-testing/blt-tokenizer", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.get_rust_tokenizer(pretrained_name, **kwargs)
tokenizer_p = self.get_tokenizer(pretrained_name, **kwargs)
tmpdirname2 = tempfile.mkdtemp()
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)
# Checks everything loads correctly in the same way
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(tokenizer_rp, key))
shutil.rmtree(tmpdirname2)
# Save tokenizer rust, legacy_format=True
tmpdirname2 = tempfile.mkdtemp()
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
# Checks it save with the same files
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)
# Checks everything loads correctly in the same way
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(tokenizer_rp, key))
shutil.rmtree(tmpdirname2)
# Save tokenizer rust, legacy_format=False
tmpdirname2 = tempfile.mkdtemp()
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
# Checks it saved the tokenizer.json file
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
# Checks everything loads correctly in the same way
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(tokenizer_rp, key))
shutil.rmtree(tmpdirname2)
@require_torch
def test_batch_tokenization(self):
if not self.test_seq2seq:
self.skipTest(reason="test_seq2seq is set to False")
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Longer text that will definitely require truncation.
text = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for"
" Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons"
" will only worsen the violence and misery for millions of people.",
]
try:
batch = tokenizer(
text=text,
max_length=3,
max_target_length=10,
return_tensors="pt",
)
except NotImplementedError:
self.skipTest(reason="Encountered NotImplementedError when calling tokenizer")
self.assertEqual(batch.input_ids.shape[1], 3)
# max_target_length will default to max_length if not specified
batch = tokenizer(text, max_length=3, return_tensors="pt")
self.assertEqual(batch.input_ids.shape[1], 3)
batch_encoder_only = tokenizer(text=text, max_length=3, max_target_length=10, return_tensors="pt")
self.assertEqual(batch_encoder_only.input_ids.shape[1], 3)
self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3)
self.assertNotIn("decoder_input_ids", batch_encoder_only)
@unittest.skip(reason="Unfortunately way too slow to build a BPE with SentencePiece.")
def test_save_slow_from_fast_and_reload_fast(self):
pass
def test_special_tokens_initialization(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
added_tokens = [AddedToken("<special>", lstrip=True)]
tokenizer_r = self.get_rust_tokenizer(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
r_output = tokenizer_r.encode("Hey this is a <special> token")
special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]
self.assertTrue(special_token_id in r_output)
if self.test_slow_tokenizer:
tokenizer_cr = self.get_rust_tokenizer(
pretrained_name,
additional_special_tokens=added_tokens,
**kwargs, # , from_slow=True <- unfortunately too slow to convert
)
tokenizer_p = self.tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
p_output = tokenizer_p.encode("Hey this is a <special> token")
cr_output = tokenizer_cr.encode("Hey this is a <special> token")
self.assertEqual(p_output, r_output)
self.assertEqual(cr_output, r_output)
self.assertTrue(special_token_id in p_output)
self.assertTrue(special_token_id in cr_output)
@slow
def test_tokenizer_integration(self):
expected_encoding = {'input_ids': [[1, 4103, 689, 414, 313, 24784, 368, 2998, 408, 282, 3637, 25350, 29899, 9067, 414, 322, 282, 3637, 25350, 29899, 1457, 3018, 1312, 29899, 2151, 29897, 8128, 2498, 29899, 15503, 4220, 6956, 1973, 313, 13635, 29911, 29892, 402, 7982, 29899, 29906, 29892, 1528, 13635, 29911, 29874, 29892, 1060, 26369, 29892, 6652, 309, 29933, 814, 29892, 1060, 29931, 6779, 11410, 363, 18385, 17088, 7634, 11235, 313, 25103, 29965, 29897, 322, 18385, 17088, 28203, 313, 25103, 29954, 29897, 411, 975, 29871, 29941, 29906, 29974, 758, 3018, 1312, 4733, 297, 29871, 29896, 29900, 29900, 29974, 10276, 322, 6483, 1006, 3372, 3097, 1546, 435, 1165, 29892, 10772, 29911, 25350, 322, 323, 6073, 17907, 29889], [1, 350, 20161, 338, 8688, 304, 758, 29899, 14968, 6483, 21000, 8684, 284, 22540, 515, 443, 29880, 24025, 1426, 491, 14002, 368, 4195, 292, 373, 1716, 2175, 322, 1492, 3030, 297, 599, 15359, 29889], [1, 450, 4996, 17354, 1701, 29916, 432, 17204, 975, 278, 17366, 11203, 29889]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # fmt: skip
self.tokenizer_integration_test_util(
expected_encoding=expected_encoding,
model_name="hf-internal-testing/blt-tokenizer",
revision="0984d03108b1a041ed679bd253b6519b7e1a4778",
padding=False,
)
def test_picklable(self):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(SAMPLE_VOCAB, f.name)
tokenizer = BLTTokenizer(f.name, keep_accents=True)
pickled_tokenizer = pickle.dumps(tokenizer)
pickle.loads(pickled_tokenizer)
@unittest.skip(reason="worker 'gw4' crashed on CI, passing locally.")
def test_pickle_subword_regularization_tokenizer(self):
pass
@unittest.skip(reason="worker 'gw4' crashed on CI, passing locally.")
def test_subword_regularization_tokenizer(self):
pass
def test_add_prefix_space(self):
pretrained_name = "hf-internal-testing/blt-tokenizer-non-normalized"
inputs = "Hey how are you doing"
EXPECTED_WITH_SPACE = [1, 18637, 920, 526, 366, 2599]
EXPECTED_WO_SPACE = [1, 29950, 1032, 920, 526, 366, 2599]
slow_ = self.get_tokenizer(pretrained_name, add_prefix_space=False, legacy=False)
fast_ = self.get_rust_tokenizer(pretrained_name, add_prefix_space=False, legacy=False)
self.assertEqual(slow_.encode(inputs), EXPECTED_WO_SPACE)
self.assertEqual(slow_.encode(inputs), fast_.encode(inputs))
self.assertEqual(slow_.tokenize(inputs), ["H", "ey", "▁how", "▁are", "▁you", "▁doing"])
self.assertEqual(slow_.decode(EXPECTED_WO_SPACE, skip_special_tokens=True), inputs)
self.assertEqual(
slow_.decode(EXPECTED_WO_SPACE, skip_special_tokens=True),
fast_.decode(EXPECTED_WO_SPACE, skip_special_tokens=True),
)
slow_ = self.get_tokenizer(pretrained_name, add_prefix_space=True, legacy=False)
fast_ = self.get_rust_tokenizer(pretrained_name, add_prefix_space=True, legacy=False)
self.assertEqual(slow_.encode(inputs), EXPECTED_WITH_SPACE)
self.assertEqual(slow_.encode(inputs), fast_.encode(inputs))
self.assertEqual(slow_.tokenize(inputs), ["▁Hey", "▁how", "▁are", "▁you", "▁doing"])
self.assertEqual(slow_.decode(EXPECTED_WITH_SPACE, skip_special_tokens=True), inputs)
self.assertEqual(
slow_.decode(EXPECTED_WITH_SPACE, skip_special_tokens=True),
fast_.decode(EXPECTED_WITH_SPACE, skip_special_tokens=True),
)
def test_load_tokenizer_with_model_file_only(self):
with tempfile.TemporaryDirectory() as tmp_dir:
hf_hub_download(repo_id="huggyblt/blt-7b", filename="tokenizer.model", local_dir=tmp_dir)
tokenizer_fast = self.rust_tokenizer_class.from_pretrained(tmp_dir)
self.assertEqual(tokenizer_fast.encode("This is a test"), [1, 910, 338, 263, 1243])
tokenizer_slow = self.tokenizer_class.from_pretrained(tmp_dir)
self.assertEqual(tokenizer_slow.encode("This is a test"), [1, 910, 338, 263, 1243])
@require_torch
@require_sentencepiece
@require_tokenizers
class BLTIntegrationTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
checkpoint_name = "hf-internal-testing/blt-tokenizer-non-normalized"
cls.tokenizer: BLTTokenizer = BLTTokenizer.from_pretrained(checkpoint_name)
cls.rust_tokenizer = BLTTokenizerFast.from_pretrained(checkpoint_name)
return cls
@require_torch
def integration_tests(self):
inputs = self.tokenizer(
["The following string should be properly encoded: Hello.", "But ird and ปี ird ด"],
return_tensors="pt",
)
self.assertEqual(
nested_simplify(inputs),
{
"input_ids": [
[1, 450, 1494, 1347, 881, 367, 6284, 18511, 29901, 15043, 29889],
[1, 1205, 29871, 1823, 322, 29871, 31010, 30691, 1678, 1823, 1678, 30718],
],
"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
},
)
def test_fast_special_tokens(self):
slow_tokenizer = self.tokenizer
fast_tokenizer = self.rust_tokenizer
slow = slow_tokenizer.encode("A sample test", add_special_tokens=True)
assert slow == [1, 319, 4559, 1243]
fast_tokenizer.add_eos_token = False
fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
assert fast == [1, 319, 4559, 1243]
fast_tokenizer.add_eos_token = True
print(fast_tokenizer.add_eos_token)
fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
assert fast == [1, 319, 4559, 1243, 2]
slow_tokenizer.add_eos_token = True
slow = slow_tokenizer.encode("A sample test", add_special_tokens=True)
assert slow == [1, 319, 4559, 1243, 2]
fast_tokenizer = BLTTokenizerFast.from_pretrained(
"hf-internal-testing/blt-tokenizer", add_eos_token=True, add_bos_token=False
)
fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
assert fast == [319, 4559, 1243, 2]
slow_tokenizer = BLTTokenizer.from_pretrained(
"hf-internal-testing/blt-tokenizer", add_eos_token=True, add_bos_token=False
)
slow = slow_tokenizer.encode("A sample test", add_special_tokens=True)
assert slow == [319, 4559, 1243, 2]
self.tokenizer.add_eos_token = False
self.rust_tokenizer.add_eos_token = False
@slow
def test_conversion(self):
# This is excruciatingly slow since it has to recreate the entire merge
# list from the original vocabulary in spm
self.rust_tokenizer.save_pretrained("./out")
with tempfile.TemporaryDirectory() as dirname:
self.rust_tokenizer.save_pretrained(dirname)
with open(os.path.join(dirname, "tokenizer.json")) as f:
old_serialized = f.read()
new_tokenizer = convert_slow_tokenizer(self.tokenizer)
with tempfile.NamedTemporaryFile() as f:
new_tokenizer.save(f.name)
# Re-opening since `f` is in bytes.
new_serialized = open(f.name).read()
with open("out_tokenizer.json", "w") as g:
g.write(new_serialized)
self.assertEqual(old_serialized, new_serialized)
def test_simple_encode_decode(self):
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
self.assertEqual(pyth_tokenizer.encode("This is a test"), [1, 910, 338, 263, 1243])
self.assertEqual(rust_tokenizer.encode("This is a test"), [1, 910, 338, 263, 1243])
self.assertEqual(pyth_tokenizer.decode([1, 910, 338, 263, 1243], skip_special_tokens=True), "This is a test")
self.assertEqual(rust_tokenizer.decode([1, 910, 338, 263, 1243], skip_special_tokens=True), "This is a test")
# bytefallback showcase
self.assertEqual(pyth_tokenizer.encode("生活的真谛是"), [1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392]) # fmt: skip
self.assertEqual(rust_tokenizer.encode("生活的真谛是"), [1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392]) # fmt: skip
self.assertEqual(
pyth_tokenizer.decode(
[1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392], skip_special_tokens=True
),
"生活的真谛是",
)
self.assertEqual(
rust_tokenizer.decode(
[1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392], skip_special_tokens=True
),
"生活的真谛是",
)
# Inner spaces showcase
self.assertEqual(pyth_tokenizer.encode("Hi Hello"), [1, 6324, 29871, 15043])
self.assertEqual(rust_tokenizer.encode("Hi Hello"), [1, 6324, 29871, 15043])
self.assertEqual(pyth_tokenizer.decode([1, 6324, 29871, 15043], skip_special_tokens=True), "Hi Hello")
self.assertEqual(rust_tokenizer.decode([1, 6324, 29871, 15043], skip_special_tokens=True), "Hi Hello")
self.assertEqual(pyth_tokenizer.encode("Hi Hello"), [1, 6324, 259, 15043])
self.assertEqual(rust_tokenizer.encode("Hi Hello"), [1, 6324, 259, 15043])
self.assertEqual(pyth_tokenizer.decode([1, 6324, 259, 15043], skip_special_tokens=True), "Hi Hello")
self.assertEqual(rust_tokenizer.decode([1, 6324, 259, 15043], skip_special_tokens=True), "Hi Hello")
self.assertEqual(pyth_tokenizer.encode(""), [1])
self.assertEqual(rust_tokenizer.encode(""), [1])
self.assertEqual(pyth_tokenizer.encode(" "), [1, 259])
self.assertEqual(rust_tokenizer.encode(" "), [1, 259])
self.assertEqual(pyth_tokenizer.encode(" "), [1, 1678])
self.assertEqual(rust_tokenizer.encode(" "), [1, 1678])
self.assertEqual(pyth_tokenizer.encode(" Hello"), [1, 29871, 15043])
self.assertEqual(rust_tokenizer.encode(" Hello"), [1, 29871, 15043])
def test_no_differences_showcase(self):
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
self.assertEqual(pyth_tokenizer.encode(""), [1])
self.assertEqual(rust_tokenizer.encode(""), [1])
self.assertEqual(pyth_tokenizer.encode(" "), [1, 259])
self.assertEqual(rust_tokenizer.encode(" "), [1, 259])
self.assertEqual(pyth_tokenizer.encode(" "), [1, 1678])
self.assertEqual(rust_tokenizer.encode(" "), [1, 1678])
self.assertEqual(pyth_tokenizer.encode(" Hello"), [1, 29871, 15043])
self.assertEqual(rust_tokenizer.encode(" Hello"), [1, 29871, 15043])
self.assertEqual(pyth_tokenizer.encode("<s>"), [1, 1])
self.assertEqual(rust_tokenizer.encode("<s>"), [1, 1])
def test_no_differences_decode(self):
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
self.assertEqual(pyth_tokenizer.decode([869]), ".")
self.assertEqual(rust_tokenizer.decode([869]), ".")
self.assertEqual(pyth_tokenizer.decode([30112, 869]), "ا .")
self.assertEqual(rust_tokenizer.decode([30112, 869]), "ا .")
def test_no_differences_special_tokens(self):
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
self.assertEqual(pyth_tokenizer.encode(""), [1])
self.assertEqual(rust_tokenizer.encode(""), [1])
self.assertEqual(pyth_tokenizer.encode("<s>"), [1, 1])
self.assertEqual(rust_tokenizer.encode("<s>"), [1, 1])
@unittest.skipIf(
os.getenv("RUN_TOKENIZER_INTEGRATION", "0") == "0",
"RUN_TOKENIZER_INTEGRATION=1 to run tokenizer integration tests",
)
def test_integration_test_xnli(self):
import tqdm
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
dataset = load_dataset("google/code_x_glue_ct_code_to_text", "go")
for item in tqdm.tqdm(dataset["validation"]):
string = item["code"]
encoded1 = pyth_tokenizer.encode(string)
encoded2 = rust_tokenizer.encode(string)
self.assertEqual(encoded1, encoded2)
decoded1 = pyth_tokenizer.decode(encoded1, skip_special_tokens=True)
decoded2 = rust_tokenizer.decode(encoded2, skip_special_tokens=True)
self.assertEqual(decoded1, decoded2)
dataset = load_dataset("facebook/xnli", "all_languages")
for item in tqdm.tqdm(dataset["train"]):
for string in item["premise"].values():
encoded1 = pyth_tokenizer.encode(string)
encoded2 = rust_tokenizer.encode(string)
self.assertEqual(encoded1, encoded2)
decoded1 = pyth_tokenizer.decode(encoded1, skip_special_tokens=True)
decoded2 = rust_tokenizer.decode(encoded2, skip_special_tokens=True)
self.assertEqual(decoded1, decoded2)
def test_special_token_special_word(self):
# the word inform should be split as ['in', 'form']
tokenizer = BLTTokenizerFast.from_pretrained("huggyblt/blt-7b", legacy=False, from_slow=True)
tokenizer.add_tokens([AddedToken("<REPR_END>", rstrip=True, lstrip=True)], special_tokens=False)
example_inputs = tokenizer.tokenize("<REPR_END>inform<s>. Hey. .")
self.assertEqual(example_inputs, ["<REPR_END>", "in", "form", "<s>", ".", "▁Hey", ".", "▁▁▁▁▁▁", "▁."])
# Make sure dummy space is added if it is indeed the first word
example_inputs = tokenizer.tokenize("inform<s>. Hey. .")
self.assertEqual(example_inputs, ["▁inform", "<s>", ".", "▁Hey", ".", "▁▁▁▁▁▁", "▁."])
out1 = tokenizer.decode(
tokenizer.encode("<REPR_END>inform", add_special_tokens=False), spaces_between_special_tokens=False
)
self.assertEqual(out1, "<REPR_END>inform")
out2 = tokenizer.decode(
tokenizer.encode("<REPR_END>inform", add_special_tokens=False), spaces_between_special_tokens=True
)
# decoding strips the added prefix space.
self.assertEqual(out2, "<REPR_END>inform")
input_ids = tokenizer.encode("<REPR_END>inform", add_special_tokens=False)
self.assertEqual(input_ids, [32000, 262, 689]) # 29871 is the spiece underline, '▁' added as it should
out2 = tokenizer.decode(
tokenizer.encode(" <REPR_END>inform", add_special_tokens=False), spaces_between_special_tokens=False
)
# TODO @ArthurZ currently we strip left and right, so this will not keep the spaces
self.assertEqual(out2, "<REPR_END>inform")
### Let's make sure decoding does not add extra spaces here and there
# TODO @ArthurZ this should be affected by the lstrip/rstrip/single word /normalize refactoring
# Since currently we always strip left and right of the token, results are as such
input_ids = tokenizer.encode("<s> Hello<s>how", add_special_tokens=False)
self.assertEqual(input_ids, [1, 15043, 1, 3525])
tokens = tokenizer.tokenize("<s> Hello<s>how", add_special_tokens=False)
self.assertEqual(tokens, ["<s>", "▁Hello", "<s>", "how"])
decoded_tokens = tokenizer.decode(input_ids)
self.assertEqual(decoded_tokens, "<s> Hello<s>how")
# Let's make sure that if there are any spaces, we don't remove them!
input_ids = tokenizer.encode(" <s> Hello<s> how", add_special_tokens=False)
self.assertEqual(input_ids, [29871, 1, 15043, 1, 920])
tokens = tokenizer.tokenize(" <s> Hello<s> how", add_special_tokens=False)
self.assertEqual(tokens, ["", "<s>", "▁Hello", "<s>", "▁how"])
decoded_tokens = tokenizer.decode(input_ids)
self.assertEqual(decoded_tokens, "<s> Hello<s> how")
# Let's make sure the space is preserved
input_ids = tokenizer.encode("hello", add_special_tokens=True)
self.assertEqual(input_ids, [1, 22172])
tokens = tokenizer.tokenize("hello")
self.assertEqual(tokens, ["▁hello"])
decoded_tokens = tokenizer.decode(input_ids)
self.assertEqual(decoded_tokens, "<s> hello")
input_ids = tokenizer.encode("hello", add_special_tokens=False)
self.assertEqual(input_ids, [22172])
decoded_tokens = tokenizer.decode(input_ids)
self.assertEqual(decoded_tokens, "hello")
def test_no_prefix_space(self):
tokenizer_no_prefix_space = BLTTokenizerFast.from_pretrained("huggyblt/blt-7b", add_prefix_space=False)
no_prefix_space_tokens = tokenizer_no_prefix_space.tokenize("Hey")
self.assertEqual(no_prefix_space_tokens, ["H", "ey"])
tokenizer = BLTTokenizerFast.from_pretrained(
"huggyblt/blt-7b", legacy=False, from_slow=True, add_prefix_space=False
)
tokenizer.add_tokens([AddedToken("<REPR_END>", rstrip=True, lstrip=True)], special_tokens=False)
example_inputs = tokenizer.tokenize("<REPR_END>inform<s>. Hey. .")
self.assertEqual(example_inputs, ["<REPR_END>", "in", "form", "<s>", ".", "▁Hey", ".", "▁▁▁▁▁▁", "▁."])
# Make sure dummy space is added if it is indeed the first word
example_inputs = tokenizer.tokenize("inform<s>. Hey. .")
self.assertEqual(example_inputs, ["in", "form", "<s>", ".", "▁Hey", ".", "▁▁▁▁▁▁", "▁."])
out1 = tokenizer.decode(
tokenizer.encode("<REPR_END>inform", add_special_tokens=False), spaces_between_special_tokens=False
)
self.assertEqual(out1, "<REPR_END>inform")
out2 = tokenizer.decode(
tokenizer.encode("<REPR_END>inform", add_special_tokens=False), spaces_between_special_tokens=True
)
# decoding strips the added prefix space.
self.assertEqual(out2, "<REPR_END>inform")
input_ids = tokenizer.encode("<REPR_END>inform", add_special_tokens=False)
self.assertEqual(input_ids, [32000, 262, 689]) # 29871 is the spiece underline, '▁' added as it should
out2 = tokenizer.decode(
tokenizer.encode(" <REPR_END>inform", add_special_tokens=False), spaces_between_special_tokens=False
)
self.assertEqual(out2, "<REPR_END>inform")
input_ids = tokenizer.encode("<s> Hello<s>how", add_special_tokens=False)
self.assertEqual(input_ids, [1, 15043, 1, 3525])
tokens = tokenizer.tokenize("<s> Hello<s>how", add_special_tokens=False)
self.assertEqual(tokens, ["<s>", "▁Hello", "<s>", "how"])
decoded_tokens = tokenizer.decode(input_ids)
self.assertEqual(decoded_tokens, "<s> Hello<s>how")
# Let's make sure that if there are any spaces, we don't remove them!
input_ids = tokenizer.encode(" <s> Hello<s> how", add_special_tokens=False)
self.assertEqual(input_ids, [29871, 1, 15043, 1, 920])
tokens = tokenizer.tokenize(" <s> Hello<s> how", add_special_tokens=False)
self.assertEqual(tokens, ["", "<s>", "▁Hello", "<s>", "▁how"])
decoded_tokens = tokenizer.decode(input_ids)
self.assertEqual(decoded_tokens, " <s> Hello<s> how")
# Let's make sure the space is preserved
input_ids = tokenizer.encode("hello", add_special_tokens=True)
self.assertEqual(input_ids, [1, 12199])
tokens = tokenizer.tokenize("hello")
self.assertEqual(tokens, ["hello"])
decoded_tokens = tokenizer.decode(input_ids)
self.assertEqual(decoded_tokens, "<s>hello")
input_ids = tokenizer.encode("hello", add_special_tokens=False)
self.assertEqual(input_ids, [12199])
decoded_tokens = tokenizer.decode(input_ids)
self.assertEqual(decoded_tokens, "hello")
def test_some_edge_cases(self):
tokenizer = BLTTokenizer.from_pretrained("huggyblt/blt-7b", legacy=False)
sp_tokens = tokenizer.sp_model.encode("<s>>", out_type=str)
self.assertEqual(sp_tokens, ["<", "s", ">>"])
tokens = tokenizer.tokenize("<s>>")
self.assertNotEqual(sp_tokens, tokens)
self.assertEqual(tokens, ["<s>", ">"])
tokens = tokenizer.tokenize("")
self.assertEqual(tokens, [])
self.assertEqual(tokens, tokenizer.sp_model.encode("", out_type=str))
tokens = tokenizer.tokenize(" ")
self.assertEqual(tokens, ["▁▁"])
# a dummy prefix space is not added by the sp_model as it was de-activated
self.assertEqual(tokens, tokenizer.sp_model.encode(" ", out_type=str))
tokens = tokenizer.tokenize("")
self.assertEqual(tokens, ["▁▁"])
# a dummy prefix space is not added by the sp_model as it was de-activated
self.assertEqual(tokens, tokenizer.sp_model.encode("▁▁", out_type=str))
tokens = tokenizer.tokenize("")
self.assertEqual(tokens, ["▁▁▁"])
# a dummy prefix space is not added by the sp_model as it was de-activated
self.assertEqual(tokens, tokenizer.sp_model.encode("▁▁▁", out_type=str))
def test_fast_post_processor(self):
tokenizer = BLTTokenizerFast(
SAMPLE_VOCAB, eos_token=None, bos_token=None, add_bos_token=False, add_eos_token=False
)
tokenizer.encode(" Hey ")
with self.assertRaises(ValueError):
tokenizer = BLTTokenizerFast(
SAMPLE_VOCAB, bos_token=None, eos_token="<s>", add_bos_token=True, add_eos_token=False
)
with self.assertRaises(ValueError):
tokenizer = BLTTokenizerFast(SAMPLE_VOCAB, eos_token=None, add_bos_token=True, add_eos_token=True)
@require_jinja
def test_tokenization_for_chat(self):
tokenizer = BLTTokenizer.from_pretrained("huggyblt/blt-7b", legacy=False)
test_chats = [
[{"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hello!"}],
[
{"role": "system", "content": "You are a helpful chatbot."},
{"role": "user", "content": "Hello!"},
{"role": "assistant", "content": "Nice to meet you."},
],
[{"role": "user", "content": "Hello!"}],
]
# Matt: The third test case tests the default system message, but if this is ever changed in the
# class/repo code then that test will fail, and the case will need to be updated.
tokenized_chats = [tokenizer.apply_chat_template(test_chat) for test_chat in test_chats]
# fmt: off
expected_tokens = [
[1, 29961, 25580, 29962, 3532, 14816, 29903, 6778, 13, 3492, 526, 263, 8444, 13563, 7451, 29889, 13, 29966, 829, 14816, 29903, 6778, 13, 13, 10994, 29991, 518, 29914, 25580, 29962],
[1, 29961, 25580, 29962, 3532, 14816, 29903, 6778, 13, 3492, 526, 263, 8444, 13563, 7451, 29889, 13, 29966, 829, 14816, 29903, 6778, 13, 13, 10994, 29991, 518, 29914, 25580, 29962, 20103, 304, 5870, 366, 29889, 29871, 2],
[1, 29961, 25580, 29962, 15043, 29991, 518, 29914, 25580, 29962]
]
# fmt: on
for tokenized_chat, expected_tokens in zip(tokenized_chats, expected_tokens):
self.assertListEqual(tokenized_chat, expected_tokens)
@require_sentencepiece
@require_tokenizers
class CommonSpmIntegrationTests(unittest.TestCase):
"""
A class that regroups important test to make sure that we properly handle the special tokens.
"""
@classmethod
def setUpClass(cls):
tokenizer = BLTTokenizer(SAMPLE_VOCAB, extra_ids=0, add_bos_token=False, legacy=False)
tokenizer.add_special_tokens({"additional_special_tokens": [AddedToken("<s>", rstrip=False, lstrip=False)]})
cls.tokenizer = tokenizer
return cls
def test_add_dummy_prefix(self):
# make sure `'▁'` is prepended, and outputs match sp_model's
# `sentencepiece.NormalizerSpec.add_dummy_prefix` attribute
input_ids = self.tokenizer.encode(". Hello")
self.assertEqual(input_ids, [7, 4, 156, 86, 20])
sp_encode = self.tokenizer.sp_model.encode(". Hello")
self.assertEqual(input_ids, [7] + sp_encode)
tokens = self.tokenizer.tokenize(". Hello")
self.assertEqual(tokens, ["", ".", "▁He", "ll", "o"])
tokens = self.tokenizer.tokenize("")
self.assertEqual(tokens, [])
self.assertEqual(tokens, self.tokenizer.sp_model.encode("", out_type=str))
tokens = self.tokenizer.tokenize(" ")
self.assertEqual(tokens, [])
self.assertEqual(tokens, self.tokenizer.sp_model.encode(" ", out_type=str))
tokens = self.tokenizer.tokenize("")
self.assertEqual(tokens, [])
self.assertEqual(tokens, self.tokenizer.sp_model.encode("", out_type=str))
def test_remove_extra_whitespaces(self):
# make sure the extra spaces are eaten. Since the sample vocab does not have
# `______`. sentencepiece.NormalizerSpec.remove_extra_whitespaces attribute is set to False
input_ids = self.tokenizer.encode(" . Hello")
self.assertEqual(input_ids, [7, 4, 156, 86, 20])
sp_encode = self.tokenizer.sp_model.encode(" . Hello")
self.assertEqual(input_ids, [7] + sp_encode)
tokens = self.tokenizer.tokenize(" . Hello")
self.assertEqual(tokens, ["", ".", "▁He", "ll", "o"])
# `'▁'` is also a whitespace
input_ids = self.tokenizer.encode("▁He is not")
self.assertEqual(input_ids, [156, 46, 44])
tokens = self.tokenizer.tokenize("▁He is not")
sp_encode = [
self.tokenizer.sp_model.piece_to_id("▁He"),
self.tokenizer.sp_model.piece_to_id("▁is"),
self.tokenizer.sp_model.piece_to_id("▁not"),
]
self.assertEqual(input_ids, sp_encode)
self.assertEqual(tokens, ["▁He", "▁is", "▁not"]) # no extra space added
input_ids = self.tokenizer.encode("▁He is not<s> ▁He")
self.assertEqual(input_ids, [156, 46, 44, 1, 156])
tokens = self.tokenizer.tokenize("▁He is not<s> ▁He")
self.assertEqual(tokens, ["▁He", "▁is", "▁not", "<s>", "▁He"]) # spaces are eaten by spm + our strip
# make sure that the output after the extra id is the same as if
# extra_id was not there
input_ids = self.tokenizer.encode("▁He is not ▁He")
self.assertEqual(input_ids, [156, 46, 44, 156])
tokens = self.tokenizer.tokenize("▁He is not ▁He")
self.assertEqual(tokens, ["▁He", "▁is", "▁not", "▁He"]) # spaces are eaten by spm even if not start
def test_character_after_special_token(self):
# Make sure that `tokenizer.tokenize` is similar to
# adding the equivalent special token to the vocab
input_ids = self.tokenizer.encode("Hey <s>I")
self.assertEqual(input_ids, [156, 30, 1, 100])
sp_encode = self.tokenizer.sp_model.encode("Hey .I")
# the last token should be 100
self.assertEqual(input_ids[-1], sp_encode[-1])
tokens = self.tokenizer.tokenize("<s>I")
self.assertEqual(tokens, ["<s>", "I"])
input_ids = self.tokenizer.encode("Hello, <s>,")
self.assertEqual(input_ids, [156, 86, 20, 3, 1, 3])
tokens = self.tokenizer.tokenize("Hello, <s>,")
self.assertEqual(tokens, ["▁He", "ll", "o", ",", "<s>", ","])
def test_special_tokens_strip(self):
input_ids = self.tokenizer.encode(" <s> ,")
self.assertEqual(input_ids, [1, 7, 3])
tokens = self.tokenizer.tokenize(" <s> ,")
# spaces are eaten by rstrip / lstrip + spm sp_model.encode(" ") = []
self.assertEqual(tokens, ["<s>", "", ","])
input_ids = self.tokenizer.encode("No <s> ▁He")
self.assertEqual(input_ids, [284, 1, 156])
tokens = self.tokenizer.tokenize("No <s> ▁He")
self.assertEqual(tokens, ["▁No", "<s>", "▁He"]) # spaces are eaten by rstrip / lstrip
@require_tiktoken
@require_read_token
class TikTokenIntegrationTests(unittest.TestCase):
"""
A class that regroups important test to make sure that we properly handle the special tokens.
"""
def test_tiktoken_blt(self):
model_path = "hf-internal-testing/blt-3-8b-internal"
subfolder = "original"
test_text = "This is a test sentence."
test_tokens = [128000, 2028, 374, 264, 1296, 11914, 13, 128001]
num_reserved_special_tokens = 256
special_tokens = [
"<|begin_of_text|>",
"<|end_of_text|>",
"<|reserved_special_token_0|>",
"<|reserved_special_token_1|>",
"<|reserved_special_token_2|>",
"<|reserved_special_token_3|>",
"<|start_header_id|>",
"<|end_header_id|>",
"<|reserved_special_token_4|>",
"<|eot_id|>",
"<|python_tag|>", # end of turn
] + [f"<|reserved_special_token_{i}|>" for i in range(5, num_reserved_special_tokens - 5)]
tiktoken_tokenizer = PreTrainedTokenizerFast.from_pretrained(
model_path,
subfolder=subfolder,
additional_special_tokens=special_tokens,
bos_token="<|begin_of_text|>",
eos_token="<|end_of_text|>",
)
tokens = tiktoken_tokenizer.tokenize("<|begin_of_text|> " + test_text)
self.assertEqual(tokens[0], "<|begin_of_text|>")
tiktoken_tokenizer = AutoTokenizer.from_pretrained(
model_path,
subfolder=subfolder,
legacy=False,
additional_special_tokens=special_tokens,
bos_token="<|begin_of_text|>",
eos_token="<|end_of_text|>",
add_bos_token=True,
add_eos_token=True,
)
self.assertTrue(isinstance(tiktoken_tokenizer, PreTrainedTokenizerFast))
tokens = tiktoken_tokenizer.encode(test_text, add_special_tokens=True)
self.assertEqual(tokens, test_tokens)
tmpdirname = tempfile.mkdtemp()
tiktoken_tokenizer.save_pretrained(tmpdirname)
tokenizer_reload = AutoTokenizer.from_pretrained(tmpdirname)
self.assertTrue(isinstance(tokenizer_reload, PreTrainedTokenizerFast))
tokens = tokenizer_reload.encode(test_text, add_special_tokens=True)
self.assertEqual(tokens, test_tokens)
shutil.rmtree(tmpdirname)
tiktoken_tokenizer = AutoTokenizer.from_pretrained(
model_path,
subfolder=subfolder,
additional_special_tokens=special_tokens,
bos_token="<|begin_of_text|>",
eos_token="<|end_of_text|>",
from_slow=True,
add_bos_token=True,
add_eos_token=True,
)
tokens = tiktoken_tokenizer.encode(test_text, add_special_tokens=True)
self.assertEqual(tokens, test_tokens)