Update README.md

This commit is contained in:
Patrick von Platen 2020-09-25 19:43:48 +02:00 committed by GitHub
parent 3327c2b0f6
commit 1a14687e6f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,21 +1,48 @@
## RAG
This is a "base" version of the RAG-Token Model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf)
This is a non-finetuned version of the RAG-Token model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf)
by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al.
Rag consits of a *question encoder*, *retriever* and a *generator*. The retriever should be a `RagRetriever` instance. The *question encoder* can be any model that can be loaded with `AutoModel` and the *generator* can be any model that can be loaded with `AutoModelForSeq2SeqLM`.
This model is a non-finetuned RAG-Token model and was created as follows:
```python
from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration, AutoTokenizer
model = RagTokenForGeneration.from_pretrained_question_encoder_generator("facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large")
question_encoder_tokenizer = AutoTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
generator_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
tokenizer = RagTokenizer(question_encoder_tokenizer, generator_tokenizer)
model.config.use_dummy_dataset = True
model.config.index_name = "exact"
retriever = RagRetriever(model.config, question_encoder_tokenizer, generator_tokenizer)
model.save_pretrained("./")
tokenizer.save_pretrained("./")
retriever.save_pretrained("./")
```
Note that the model is *uncased* so that all capital input letters are converted to lower-case.
## Usage:
The model can be fine-tuned as follows:
```python
from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base")
retriever = RagRetriever.from_pretrained("facebook/rag-token-base", index_name="exact", use_dummy_dataset=True)
retriever = RagRetriever.from_pretrained("facebook/rag-token-base")
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-base", retriever=retriever)
input_ids = tokenizer("What is the largest country in the world?", return_tensors="pt").input_ids
input_dict = tokenizer.prepare_seq2seq_batch("who holds the record in 100m freestyle", "michael phelps", return_tensors="pt")
generated = model.generate(input_ids=input_ids)
generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
outputs = model(input_dict["input_ids"], labels=input_dict["labels"])
# => should give [' russia']. Pretty good answer for just having just a dummy dataset.
loss = outputs.loss
# train on loss
```