mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Update README.md
This commit is contained in:
parent
3327c2b0f6
commit
1a14687e6f
@ -1,21 +1,48 @@
|
||||
## RAG
|
||||
|
||||
This is a "base" version of the RAG-Token Model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf)
|
||||
This is a non-finetuned version of the RAG-Token model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf)
|
||||
by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al.
|
||||
|
||||
Rag consits of a *question encoder*, *retriever* and a *generator*. The retriever should be a `RagRetriever` instance. The *question encoder* can be any model that can be loaded with `AutoModel` and the *generator* can be any model that can be loaded with `AutoModelForSeq2SeqLM`.
|
||||
|
||||
This model is a non-finetuned RAG-Token model and was created as follows:
|
||||
|
||||
```python
|
||||
from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration, AutoTokenizer
|
||||
|
||||
model = RagTokenForGeneration.from_pretrained_question_encoder_generator("facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large")
|
||||
|
||||
question_encoder_tokenizer = AutoTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
|
||||
generator_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
|
||||
|
||||
tokenizer = RagTokenizer(question_encoder_tokenizer, generator_tokenizer)
|
||||
model.config.use_dummy_dataset = True
|
||||
model.config.index_name = "exact"
|
||||
retriever = RagRetriever(model.config, question_encoder_tokenizer, generator_tokenizer)
|
||||
|
||||
model.save_pretrained("./")
|
||||
tokenizer.save_pretrained("./")
|
||||
retriever.save_pretrained("./")
|
||||
```
|
||||
|
||||
Note that the model is *uncased* so that all capital input letters are converted to lower-case.
|
||||
|
||||
## Usage:
|
||||
|
||||
The model can be fine-tuned as follows:
|
||||
|
||||
```python
|
||||
from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration
|
||||
|
||||
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base")
|
||||
retriever = RagRetriever.from_pretrained("facebook/rag-token-base", index_name="exact", use_dummy_dataset=True)
|
||||
retriever = RagRetriever.from_pretrained("facebook/rag-token-base")
|
||||
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-base", retriever=retriever)
|
||||
|
||||
input_ids = tokenizer("What is the largest country in the world?", return_tensors="pt").input_ids
|
||||
input_dict = tokenizer.prepare_seq2seq_batch("who holds the record in 100m freestyle", "michael phelps", return_tensors="pt")
|
||||
|
||||
generated = model.generate(input_ids=input_ids)
|
||||
generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
|
||||
outputs = model(input_dict["input_ids"], labels=input_dict["labels"])
|
||||
|
||||
# => should give [' russia']. Pretty good answer for just having just a dummy dataset.
|
||||
loss = outputs.loss
|
||||
|
||||
# train on loss
|
||||
```
|
||||
|
Loading…
Reference in New Issue
Block a user