mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-03 03:31:05 +06:00
grouped_batch_sampler
This commit is contained in:
parent
594202a934
commit
19e4ebbe3f
105
examples/distillation/grouped_batch_sampler.py
Normal file
105
examples/distillation/grouped_batch_sampler.py
Normal file
@ -0,0 +1,105 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Adapted from PyTorch Vision (https://github.com/pytorch/vision/blob/master/references/detection/group_by_aspect_ratio.py)
|
||||
"""
|
||||
import bisect
|
||||
import copy
|
||||
from collections import defaultdict
|
||||
import numpy as np
|
||||
|
||||
from torch.utils.data.sampler import BatchSampler, Sampler
|
||||
|
||||
from utils import logger
|
||||
|
||||
def _quantize(x, bins):
|
||||
bins = copy.deepcopy(bins)
|
||||
bins = sorted(bins)
|
||||
quantized = list(map(lambda y: bisect.bisect_right(bins, y), x))
|
||||
return quantized
|
||||
|
||||
def create_lengths_groups(lengths, k=0):
|
||||
bins = np.arange(start=3, stop=k, step=4).tolist() if k > 0 else [10]
|
||||
groups = _quantize(lengths, bins)
|
||||
# count number of elements per group
|
||||
counts = np.unique(groups, return_counts=True)[1]
|
||||
fbins = [0] + bins + [np.inf]
|
||||
logger.info("Using {} as bins for aspect lengths quantization".format(fbins))
|
||||
logger.info("Count of instances per bin: {}".format(counts))
|
||||
return groups
|
||||
|
||||
class GroupedBatchSampler(BatchSampler):
|
||||
"""
|
||||
Wraps another sampler to yield a mini-batch of indices.
|
||||
It enforces that the batch only contain elements from the same group.
|
||||
It also tries to provide mini-batches which follows an ordering which is
|
||||
as close as possible to the ordering from the original sampler.
|
||||
Arguments:
|
||||
sampler (Sampler): Base sampler.
|
||||
group_ids (list[int]): If the sampler produces indices in range [0, N),
|
||||
`group_ids` must be a list of `N` ints which contains the group id of each sample.
|
||||
The group ids must be a continuous set of integers starting from
|
||||
0, i.e. they must be in the range [0, num_groups).
|
||||
batch_size (int): Size of mini-batch.
|
||||
"""
|
||||
def __init__(self, sampler, group_ids, batch_size):
|
||||
if not isinstance(sampler, Sampler):
|
||||
raise ValueError(
|
||||
"sampler should be an instance of "
|
||||
"torch.utils.data.Sampler, but got sampler={}".format(sampler)
|
||||
)
|
||||
self.sampler = sampler
|
||||
self.group_ids = group_ids
|
||||
self.batch_size = batch_size
|
||||
|
||||
def __iter__(self):
|
||||
buffer_per_group = defaultdict(list)
|
||||
samples_per_group = defaultdict(list)
|
||||
|
||||
num_batches = 0
|
||||
for idx in self.sampler:
|
||||
group_id = self.group_ids[idx]
|
||||
buffer_per_group[group_id].append(idx)
|
||||
samples_per_group[group_id].append(idx)
|
||||
if len(buffer_per_group[group_id]) == self.batch_size:
|
||||
yield buffer_per_group[group_id] #TODO
|
||||
num_batches += 1
|
||||
del buffer_per_group[group_id]
|
||||
assert len(buffer_per_group[group_id]) < self.batch_size
|
||||
|
||||
# now we have run out of elements that satisfy
|
||||
# the group criteria, let's return the remaining
|
||||
# elements so that the size of the sampler is
|
||||
# deterministic
|
||||
expected_num_batches = len(self)
|
||||
num_remaining = expected_num_batches - num_batches
|
||||
if num_remaining > 0:
|
||||
# for the remaining batches, group the batches by similar lengths
|
||||
batch_idx = []
|
||||
for group_id, idxs in sorted(buffer_per_group.items(), key=lambda x: x[0]):
|
||||
batch_idx.extend(idxs)
|
||||
if len(batch_idx) >= self.batch_size:
|
||||
yield batch_idx[:self.batch_size]
|
||||
batch_idx = batch_idx[self.batch_size:]
|
||||
num_remaining -= 1
|
||||
if len(batch_idx) > 0:
|
||||
yield batch_idx
|
||||
num_remaining -= 1
|
||||
assert num_remaining == 0
|
||||
|
||||
def __len__(self):
|
||||
"""
|
||||
Return the number of mini-batches rather than the number of samples.
|
||||
"""
|
||||
return (len(self.sampler) + self.batch_size - 1) // self.batch_size
|
Loading…
Reference in New Issue
Block a user