chore: fix typos in tests directory (#36785)

* chore: fix typos in tests directory

* chore: fix typos in tests directory

* chore: fix typos in tests directory

* chore: fix typos in tests directory

* chore: fix typos in tests directory

* chore: fix typos in tests directory

* chore: fix typos in tests directory
This commit is contained in:
Afanti 2025-03-18 17:31:13 +08:00 committed by GitHub
parent 7f5077e536
commit 19b9d8ae13
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 25 additions and 25 deletions

View File

@ -43,7 +43,7 @@ class ConstraintTest(unittest.TestCase):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])])
def test_check_illegal_input(self):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# We can't have constraints that are complete subsets of another. This leads to a perverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm

View File

@ -495,7 +495,7 @@ class AlignModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
def test_model_get_set_embeddings(self):
pass
# override as the `temperature` parameter initilization is different for ALIGN
# override as the `temperature` parameter initialization is different for ALIGN
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
@ -504,7 +504,7 @@ class AlignModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `temperature` is initilized as per the original implementation
# check if `temperature` is initialized as per the original implementation
if name == "temperature":
self.assertAlmostEqual(
param.data.item(),

View File

@ -482,7 +482,7 @@ class AltCLIPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase)
def test_model_get_set_embeddings(self):
pass
# override as the `logit_scale` parameter initilization is different for AltCLIP
# override as the `logit_scale` parameter initialization is different for AltCLIP
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
@ -490,7 +490,7 @@ class AltCLIPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase)
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
# check if `logit_scale` is initialized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),

View File

@ -186,7 +186,7 @@ class AutoFeatureExtractorTest(unittest.TestCase):
model_config.save_pretrained(tmpdirname)
# copy relevant files
copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json"))
# create emtpy sample processor
# create empty sample processor
with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f:
f.write("{}")

View File

@ -613,7 +613,7 @@ class PipelineUtilsTest(unittest.TestCase):
set_seed_fn = lambda: torch.manual_seed(0) # noqa: E731
for task in SUPPORTED_TASKS.keys():
if task == "table-question-answering":
# test table in seperate test due to more dependencies
# test table in separate test due to more dependencies
continue
self.check_default_pipeline(task, "pt", set_seed_fn, self.check_models_equal_pt)
@ -631,7 +631,7 @@ class PipelineUtilsTest(unittest.TestCase):
set_seed_fn = lambda: keras.utils.set_random_seed(0) # noqa: E731
for task in SUPPORTED_TASKS.keys():
if task == "table-question-answering":
# test table in seperate test due to more dependencies
# test table in separate test due to more dependencies
continue
self.check_default_pipeline(task, "tf", set_seed_fn, self.check_models_equal_tf)

View File

@ -778,7 +778,7 @@ class TokenClassificationPipelineTests(unittest.TestCase):
@require_tf
def test_tf_only(self):
model_name = "hf-internal-testing/tiny-random-bert-tf-only" # This model only has a TensorFlow version
# We test that if we don't specificy framework='tf', it gets detected automatically
# We test that if we don't specify framework='tf', it gets detected automatically
token_classifier = pipeline(task="ner", model=model_name)
self.assertEqual(token_classifier.framework, "tf")

View File

@ -13,7 +13,7 @@ The following is the recipe on how to effectively debug `bitsandbytes` integrati
The following instructions are tested with 2 NVIDIA-Tesla T4 GPUs. To run successfully `bitsandbytes` you would need a 8-bit core tensor supported GPU. Note that Turing, Ampere or newer architectures - e.g. T4, RTX20s RTX30s, A40-A100, A6000 should be supported.
## Virutal envs
## Virtual envs
```bash
conda create --name int8-testing python==3.8
@ -61,7 +61,7 @@ This happens when some Linear weights are set to the CPU when using `accelerate`
Use the latest version of `accelerate` with a command such as: `pip install -U accelerate` and the problem should be solved.
### `Parameter has no attribue .CB`
### `Parameter has no attribute .CB`
Same solution as above.
@ -71,7 +71,7 @@ Run your script by pre-pending `CUDA_LAUNCH_BLOCKING=1` and you should observe a
### `CUDA illegal memory error: an illegal memory access at line...`:
Check the CUDA verisons with:
Check the CUDA versions with:
```bash
nvcc --version
```

View File

@ -179,7 +179,7 @@ class Bnb4BitTest(Base4bitTest):
def test_original_dtype(self):
r"""
A simple test to check if the model succesfully stores the original dtype
A simple test to check if the model successfully stores the original dtype
"""
self.assertTrue(hasattr(self.model_4bit.config, "_pre_quantization_dtype"))
self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype"))
@ -496,8 +496,8 @@ class Pipeline4BitTest(Base4bitTest):
def test_pipeline(self):
r"""
The aim of this test is to verify that the mixed 4bit is compatible with `pipeline` from transformers. Since
we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything
on pipline.
we used pipeline for inference speed benchmarking we want to make sure that this feature does not break anything
on pipeline.
"""
# self._clear_cuda_cache()
self.pipe = pipeline(

View File

@ -213,7 +213,7 @@ class MixedInt8Test(BaseMixedInt8Test):
def test_original_dtype(self):
r"""
A simple test to check if the model succesfully stores the original dtype
A simple test to check if the model successfully stores the original dtype
"""
self.assertTrue(hasattr(self.model_8bit.config, "_pre_quantization_dtype"))
self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype"))
@ -655,8 +655,8 @@ class MixedInt8TestPipeline(BaseMixedInt8Test):
def test_pipeline(self):
r"""
The aim of this test is to verify that the mixed int8 is compatible with `pipeline` from transformers. Since
we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything
on pipline.
we used pipeline for inference speed benchmarking we want to make sure that this feature does not break anything
on pipeline.
"""
# self._clear_cuda_cache()
self.pipe = pipeline(

View File

@ -167,7 +167,7 @@ class GPTQTest(unittest.TestCase):
def test_original_dtype(self):
r"""
A simple test to check if the model succesfully stores the original dtype
A simple test to check if the model successfully stores the original dtype
"""
self.assertTrue(hasattr(self.quantized_model.config, "_pre_quantization_dtype"))
self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype"))
@ -261,7 +261,7 @@ class GPTQTest(unittest.TestCase):
if self.device_map == "cpu":
quant_type = "ipex" if is_ipex_available() else "torch"
else:
# We expecte tritonv2 to be used here, because exllama backend doesn't support packing https://github.com/ModelCloud/GPTQModel/issues/1354
# We expect tritonv2 to be used here, because exllama backend doesn't support packing https://github.com/ModelCloud/GPTQModel/issues/1354
# TODO: Remove this once GPTQModel exllama kernels supports packing
quant_type = "tritonv2"
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(
@ -433,7 +433,7 @@ class GPTQTestExllamaV2(unittest.TestCase):
"exllamav2",
)
else:
# We expecte tritonv2 to be used here, because exllama backend doesn't support packing https://github.com/ModelCloud/GPTQModel/issues/1354
# We expect tritonv2 to be used here, because exllama backend doesn't support packing https://github.com/ModelCloud/GPTQModel/issues/1354
# TODO: Remove this once GPTQModel exllama kernels supports packing
self.assertEqual(
self.quantized_model.model.layers[0].self_attn.k_proj.QUANT_TYPE,
@ -458,7 +458,7 @@ class GPTQTestExllamaV2(unittest.TestCase):
def test_generate_quality(self):
"""
Simple test to check the quality of the model by comapring the the generated tokens with the expected tokens
Simple test to check the quality of the model by comparing the the generated tokens with the expected tokens
"""
self.check_inference_correctness(self.quantized_model)

View File

@ -184,7 +184,7 @@ class HiggsTest(unittest.TestCase):
output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
@unittest.skip("This will almost surely OOM. Enable when swithed to a smaller model")
@unittest.skip("This will almost surely OOM. Enable when switched to a smaller model")
def test_dequantize(self):
"""
Test the ability to dequantize a model

View File

@ -202,7 +202,7 @@ class TorchAoGPUTest(TorchAoTest):
def test_int4wo_offload(self):
"""
Simple test that checks if the quantized model int4 wieght only is working properly with cpu/disk offload
Simple test that checks if the quantized model int4 weight only is working properly with cpu/disk offload
"""
device_map_offload = {
@ -254,7 +254,7 @@ class TorchAoGPUTest(TorchAoTest):
@require_torch_multi_gpu
def test_int4wo_quant_multi_gpu(self):
"""
Simple test that checks if the quantized model int4 wieght only is working properly with multiple GPUs
Simple test that checks if the quantized model int4 weight only is working properly with multiple GPUs
set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 GPUS
"""