[CI-test_torch] skip test_tf_from_pt_safetensors and test_assisted_decoding_sample (#27508)

* skip 4 tests

* nits

* style

* wow it's not my day

* skip new failing tests

* style

* skip for NLLB MoE as well
This commit is contained in:
Arthur 2023-11-15 08:39:29 +01:00 committed by GitHub
parent 2fc33ebead
commit 186c077513
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 16 additions and 0 deletions

View File

@ -348,6 +348,10 @@ class NllbMoeModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMi
self.assertIsNotNone(model(**input_dict)["encoder_router_logits"][1])
self.assertIsNotNone(model(**input_dict)["decoder_router_logits"][0])
@unittest.skip("Test does not fail individually but fails on the CI @ArthurZucker looking into it")
def test_assisted_decoding_sample(self):
pass
@require_torch
@require_sentencepiece

View File

@ -759,6 +759,10 @@ class Speech2TextModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTest
# Allow missing keys since TF doesn't cache the sinusoidal embeddings in an attribute
super().test_pt_tf_model_equivalence(allow_missing_keys=allow_missing_keys)
@unittest.skip("Test failing, @RocketNight is looking into it")
def test_tf_from_pt_safetensors(self):
pass
@require_torch
@require_torchaudio

View File

@ -726,6 +726,10 @@ class SwitchTransformersModelTest(ModelTesterMixin, GenerationTesterMixin, Pipel
def test_disk_offload(self):
pass
@unittest.skip("Test does not fail individually but fails on the CI @ArthurZucker looking into it")
def test_assisted_decoding_sample(self):
pass
class SwitchTransformersEncoderOnlyModelTester:
def __init__(

View File

@ -1036,6 +1036,10 @@ class T5EncoderOnlyModelTest(ModelTesterMixin, unittest.TestCase):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)
@unittest.skip("Test does not fail individually but fails on the CI @ArthurZucker looking into it")
def test_assisted_decoding_sample(self):
pass
def use_task_specific_params(model, task):
model.config.update(model.config.task_specific_params[task])