mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
commit
1741d740f2
@ -640,9 +640,9 @@ class SelfAttention(nn.Module):
|
||||
reshaped = key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool)
|
||||
attn_weights = attn_weights.masked_fill(reshaped, float("-inf"))
|
||||
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||||
attn_weights_float = F.softmax(attn_weights, dim=-1, dtype=torch.float32)
|
||||
attn_weights = attn_weights_float.type_as(attn_weights)
|
||||
attn_probs = F.dropout(attn_weights_float, p=self.dropout, training=self.training,)
|
||||
attn_weights = F.softmax(attn_weights, dim=-1)
|
||||
attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training,)
|
||||
|
||||
assert v is not None
|
||||
attn_output = torch.bmm(attn_probs, v)
|
||||
assert attn_output.size() == (bsz * self.num_heads, tgt_len, self.head_dim)
|
||||
@ -696,7 +696,7 @@ class SelfAttention(nn.Module):
|
||||
elif prev_key_padding_mask is not None:
|
||||
filler = torch.zeros(batch_size, src_len - prev_key_padding_mask.size(1))
|
||||
if prev_key_padding_mask.is_cuda:
|
||||
filler = filler.cuda()
|
||||
filler = filler.to(prev_key_padding_mask.device)
|
||||
new_key_padding_mask = torch.cat([prev_key_padding_mask.float(), filler.float()], dim=1)
|
||||
elif key_padding_mask is not None:
|
||||
filler = torch.zeros(batch_size, src_len - key_padding_mask.size(1))
|
||||
|
@ -294,6 +294,13 @@ class BartHeadTests(unittest.TestCase):
|
||||
bart_toks = tokenizer.encode(ex, return_tensors="pt")
|
||||
_assert_tensors_equal(desired_result.long(), bart_toks, prefix=ex)
|
||||
|
||||
@unittest.skipIf(torch_device == "cpu", "Cant do half precision")
|
||||
def test_generate_fp16(self):
|
||||
config, input_ids, batch_size = self._get_config_and_data(output_past=True)
|
||||
attention_mask = input_ids.ne(1)
|
||||
lm_model = BartForMaskedLM(config).eval().to(torch_device).half()
|
||||
lm_model.generate(input_ids, attention_mask)
|
||||
|
||||
|
||||
def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
|
||||
"""If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
|
||||
|
Loading…
Reference in New Issue
Block a user