mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
cache in run_classifier + various fixes to the examples
This commit is contained in:
parent
e6e5f19257
commit
15ebd67d4e
56
README.md
56
README.md
@ -541,6 +541,7 @@ where
|
||||
- `bert-base-german-cased`: Trained on German data only, 12-layer, 768-hidden, 12-heads, 110M parameters [Performance Evaluation](https://deepset.ai/german-bert)
|
||||
- `bert-large-uncased-whole-word-masking`: 24-layer, 1024-hidden, 16-heads, 340M parameters - Trained with Whole Word Masking (mask all of the the tokens corresponding to a word at once)
|
||||
- `bert-large-cased-whole-word-masking`: 24-layer, 1024-hidden, 16-heads, 340M parameters - Trained with Whole Word Masking (mask all of the the tokens corresponding to a word at once)
|
||||
- `bert-large-uncased-whole-word-masking-finetuned-squad`: The `bert-large-uncased-whole-word-masking` model finetuned on SQuAD (using the `run_squad.py` examples). Results: *exact_match: 86.91579943235573, f1: 93.1532499015869*
|
||||
- `openai-gpt`: OpenAI GPT English model, 12-layer, 768-hidden, 12-heads, 110M parameters
|
||||
- `gpt2`: OpenAI GPT-2 English model, 12-layer, 768-hidden, 12-heads, 117M parameters
|
||||
- `gpt2-medium`: OpenAI GPT-2 English model, 24-layer, 1024-hidden, 16-heads, 345M parameters
|
||||
@ -608,13 +609,15 @@ There are three types of files you need to save to be able to reload a fine-tune
|
||||
- the configuration file of the model which is saved as a JSON file, and
|
||||
- the vocabulary (and the merges for the BPE-based models GPT and GPT-2).
|
||||
|
||||
The defaults files names of these files are as follow:
|
||||
The *default filenames* of these files are as follow:
|
||||
|
||||
- the model weights file: `pytorch_model.bin`,
|
||||
- the configuration file: `config.json`,
|
||||
- the vocabulary file: `vocab.txt` for BERT and Transformer-XL, `vocab.json` for GPT/GPT-2 (BPE vocabulary),
|
||||
- for GPT/GPT-2 (BPE vocabulary) the additional merges file: `merges.txt`.
|
||||
|
||||
**If you save a model using these *default filenames*, you can then re-load the model and tokenizer using the `from_pretrained()` method.**
|
||||
|
||||
Here is the recommended way of saving the model, configuration and vocabulary to an `output_dir` directory and reloading the model and tokenizer afterwards:
|
||||
|
||||
```python
|
||||
@ -1268,6 +1271,30 @@ python run_classifier.py \
|
||||
--fp16
|
||||
```
|
||||
|
||||
**Distributed training**
|
||||
Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking model to reach a F1 > 93 on SQuAD:
|
||||
|
||||
```bash
|
||||
python -m torch.distributed.launch --nproc_per_node=8 \
|
||||
run_classifier.py \
|
||||
--bert_model bert-large-cased-whole-word-masking \
|
||||
--task_name MRPC \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--do_lower_case \
|
||||
--data_dir $GLUE_DIR/MRPC/ \
|
||||
--max_seq_length 128 \
|
||||
--train_batch_size 64 \
|
||||
--learning_rate 2e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--output_dir /tmp/mrpc_output/
|
||||
```
|
||||
|
||||
Training with these hyper-parameters gave us the following results:
|
||||
```bash
|
||||
{"exact_match": 86.91579943235573, "f1": 93.1532499015869}
|
||||
```
|
||||
|
||||
#### SQuAD
|
||||
|
||||
This example code fine-tunes BERT on the SQuAD dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large) on a single tesla V100 16GB.
|
||||
@ -1298,9 +1325,36 @@ python run_squad.py \
|
||||
|
||||
Training with the previous hyper-parameters gave us the following results:
|
||||
```bash
|
||||
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json /tmp/debug_squad/predictions.json
|
||||
{"f1": 88.52381567990474, "exact_match": 81.22043519394512}
|
||||
```
|
||||
|
||||
Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking model to reach a F1 > 93 on SQuAD:
|
||||
|
||||
```bash
|
||||
python -m torch.distributed.launch --nproc_per_node=8 \
|
||||
run_squad.py \
|
||||
--bert_model bert-large-cased-whole-word-masking \
|
||||
--do_train \
|
||||
--do_predict \
|
||||
--do_lower_case \
|
||||
--train_file $SQUAD_DIR/train-v1.1.json \
|
||||
--predict_file $SQUAD_DIR/dev-v1.1.json \
|
||||
--learning_rate 3e-5 \
|
||||
--num_train_epochs 2 \
|
||||
--max_seq_length 384 \
|
||||
--doc_stride 128 \
|
||||
--output_dir ../models/train_squad_large_cased_wwm/ \
|
||||
--train_batch_size 24 \
|
||||
--gradient_accumulation_steps 12
|
||||
```
|
||||
|
||||
Training with these hyper-parameters gave us the following results:
|
||||
```bash
|
||||
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ../models/train_squad_large_cased_wwm/predictions.json
|
||||
{"exact_match": 86.91579943235573, "f1": 93.1532499015869}
|
||||
```
|
||||
|
||||
#### SWAG
|
||||
|
||||
The data for SWAG can be downloaded by cloning the following [repository](https://github.com/rowanz/swagaf)
|
||||
|
@ -20,8 +20,6 @@ def run_model():
|
||||
parser.add_argument('--model_name_or_path', type=str, default='bert-base-uncased',
|
||||
help='pretrained model name or path to local checkpoint')
|
||||
parser.add_argument("--seed", type=int, default=42)
|
||||
parser.add_argument("--batch_size", type=int, default=-1)
|
||||
parser.add_argument('--unconditional', action='store_true', help='If true, unconditional generation.')
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
|
||||
@ -34,57 +32,12 @@ def run_model():
|
||||
torch.cuda.manual_seed(args.seed)
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
enc = GPT2Tokenizer.from_pretrained(args.model_name_or_path)
|
||||
model = GPT2LMHeadModel.from_pretrained(args.model_name_or_path)
|
||||
tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path)
|
||||
model = BertModel.from_pretrained(args.model_name_or_path)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
if args.length == -1:
|
||||
args.length = model.config.n_ctx // 2
|
||||
elif args.length > model.config.n_ctx:
|
||||
raise ValueError("Can't get samples longer than window size: %s" % model.config.n_ctx)
|
||||
|
||||
while True:
|
||||
context_tokens = []
|
||||
if not args.unconditional:
|
||||
raw_text = input("Model prompt >>> ")
|
||||
while not raw_text:
|
||||
print('Prompt should not be empty!')
|
||||
raw_text = input("Model prompt >>> ")
|
||||
context_tokens = enc.encode(raw_text)
|
||||
generated = 0
|
||||
for _ in range(args.nsamples // args.batch_size):
|
||||
out = sample_sequence(
|
||||
model=model, length=args.length,
|
||||
context=context_tokens,
|
||||
start_token=None,
|
||||
batch_size=args.batch_size,
|
||||
temperature=args.temperature, top_k=args.top_k, device=device
|
||||
)
|
||||
out = out[:, len(context_tokens):].tolist()
|
||||
for i in range(args.batch_size):
|
||||
generated += 1
|
||||
text = enc.decode(out[i])
|
||||
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
|
||||
print(text)
|
||||
print("=" * 80)
|
||||
else:
|
||||
generated = 0
|
||||
for _ in range(args.nsamples // args.batch_size):
|
||||
out = sample_sequence(
|
||||
model=model, length=args.length,
|
||||
context=None,
|
||||
start_token=enc.encoder['<|endoftext|>'],
|
||||
batch_size=args.batch_size,
|
||||
temperature=args.temperature, top_k=args.top_k, device=device
|
||||
)
|
||||
out = out[:,1:].tolist()
|
||||
for i in range(args.batch_size):
|
||||
generated += 1
|
||||
text = enc.decode(out[i])
|
||||
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
|
||||
print(text)
|
||||
print("=" * 80)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
run_model()
|
||||
|
@ -18,550 +18,31 @@
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
import argparse
|
||||
import csv
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
from tqdm import tqdm, trange
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
|
||||
TensorDataset)
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from tqdm import tqdm, trange
|
||||
|
||||
from torch.nn import CrossEntropyLoss, MSELoss
|
||||
from scipy.stats import pearsonr, spearmanr
|
||||
from sklearn.metrics import matthews_corrcoef, f1_score
|
||||
|
||||
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME
|
||||
from pytorch_pretrained_bert.modeling import BertForSequenceClassification, BertConfig
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
from pytorch_pretrained_bert.file_utils import WEIGHTS_NAME, CONFIG_NAME
|
||||
from pytorch_pretrained_bert.modeling import BertForSequenceClassification
|
||||
from pytorch_pretrained_bert.tokenization import BertTokenizer
|
||||
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
|
||||
|
||||
from run_classifier_dataset_utils import processors, output_modes, convert_examples_to_features, compute_metrics
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class InputExample(object):
|
||||
"""A single training/test example for simple sequence classification."""
|
||||
|
||||
def __init__(self, guid, text_a, text_b=None, label=None):
|
||||
"""Constructs a InputExample.
|
||||
|
||||
Args:
|
||||
guid: Unique id for the example.
|
||||
text_a: string. The untokenized text of the first sequence. For single
|
||||
sequence tasks, only this sequence must be specified.
|
||||
text_b: (Optional) string. The untokenized text of the second sequence.
|
||||
Only must be specified for sequence pair tasks.
|
||||
label: (Optional) string. The label of the example. This should be
|
||||
specified for train and dev examples, but not for test examples.
|
||||
"""
|
||||
self.guid = guid
|
||||
self.text_a = text_a
|
||||
self.text_b = text_b
|
||||
self.label = label
|
||||
|
||||
|
||||
class InputFeatures(object):
|
||||
"""A single set of features of data."""
|
||||
|
||||
def __init__(self, input_ids, input_mask, segment_ids, label_id):
|
||||
self.input_ids = input_ids
|
||||
self.input_mask = input_mask
|
||||
self.segment_ids = segment_ids
|
||||
self.label_id = label_id
|
||||
|
||||
|
||||
class DataProcessor(object):
|
||||
"""Base class for data converters for sequence classification data sets."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""Gets a collection of `InputExample`s for the train set."""
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""Gets a collection of `InputExample`s for the dev set."""
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_labels(self):
|
||||
"""Gets the list of labels for this data set."""
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def _read_tsv(cls, input_file, quotechar=None):
|
||||
"""Reads a tab separated value file."""
|
||||
with open(input_file, "r", encoding="utf-8") as f:
|
||||
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
|
||||
lines = []
|
||||
for line in reader:
|
||||
if sys.version_info[0] == 2:
|
||||
line = list(unicode(cell, 'utf-8') for cell in line)
|
||||
lines.append(line)
|
||||
return lines
|
||||
|
||||
|
||||
class MrpcProcessor(DataProcessor):
|
||||
"""Processor for the MRPC data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["0", "1"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, i)
|
||||
text_a = line[3]
|
||||
text_b = line[4]
|
||||
label = line[0]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class MnliProcessor(DataProcessor):
|
||||
"""Processor for the MultiNLI data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
|
||||
"dev_matched")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["contradiction", "entailment", "neutral"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, line[0])
|
||||
text_a = line[8]
|
||||
text_b = line[9]
|
||||
label = line[-1]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class MnliMismatchedProcessor(MnliProcessor):
|
||||
"""Processor for the MultiNLI Mismatched data set (GLUE version)."""
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")),
|
||||
"dev_matched")
|
||||
|
||||
|
||||
class ColaProcessor(DataProcessor):
|
||||
"""Processor for the CoLA data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["0", "1"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
guid = "%s-%s" % (set_type, i)
|
||||
text_a = line[3]
|
||||
label = line[1]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class Sst2Processor(DataProcessor):
|
||||
"""Processor for the SST-2 data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["0", "1"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, i)
|
||||
text_a = line[0]
|
||||
label = line[1]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class StsbProcessor(DataProcessor):
|
||||
"""Processor for the STS-B data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return [None]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, line[0])
|
||||
text_a = line[7]
|
||||
text_b = line[8]
|
||||
label = line[-1]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class QqpProcessor(DataProcessor):
|
||||
"""Processor for the QQP data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["0", "1"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, line[0])
|
||||
try:
|
||||
text_a = line[3]
|
||||
text_b = line[4]
|
||||
label = line[5]
|
||||
except IndexError:
|
||||
continue
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class QnliProcessor(DataProcessor):
|
||||
"""Processor for the QNLI data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")),
|
||||
"dev_matched")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["entailment", "not_entailment"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, line[0])
|
||||
text_a = line[1]
|
||||
text_b = line[2]
|
||||
label = line[-1]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class RteProcessor(DataProcessor):
|
||||
"""Processor for the RTE data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["entailment", "not_entailment"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, line[0])
|
||||
text_a = line[1]
|
||||
text_b = line[2]
|
||||
label = line[-1]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class WnliProcessor(DataProcessor):
|
||||
"""Processor for the WNLI data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["0", "1"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, line[0])
|
||||
text_a = line[1]
|
||||
text_b = line[2]
|
||||
label = line[-1]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
def convert_examples_to_features(examples, label_list, max_seq_length,
|
||||
tokenizer, output_mode):
|
||||
"""Loads a data file into a list of `InputBatch`s."""
|
||||
|
||||
label_map = {label : i for i, label in enumerate(label_list)}
|
||||
|
||||
features = []
|
||||
for (ex_index, example) in enumerate(examples):
|
||||
if ex_index % 10000 == 0:
|
||||
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
|
||||
|
||||
tokens_a = tokenizer.tokenize(example.text_a)
|
||||
|
||||
tokens_b = None
|
||||
if example.text_b:
|
||||
tokens_b = tokenizer.tokenize(example.text_b)
|
||||
# Modifies `tokens_a` and `tokens_b` in place so that the total
|
||||
# length is less than the specified length.
|
||||
# Account for [CLS], [SEP], [SEP] with "- 3"
|
||||
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
|
||||
else:
|
||||
# Account for [CLS] and [SEP] with "- 2"
|
||||
if len(tokens_a) > max_seq_length - 2:
|
||||
tokens_a = tokens_a[:(max_seq_length - 2)]
|
||||
|
||||
# The convention in BERT is:
|
||||
# (a) For sequence pairs:
|
||||
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
|
||||
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
|
||||
# (b) For single sequences:
|
||||
# tokens: [CLS] the dog is hairy . [SEP]
|
||||
# type_ids: 0 0 0 0 0 0 0
|
||||
#
|
||||
# Where "type_ids" are used to indicate whether this is the first
|
||||
# sequence or the second sequence. The embedding vectors for `type=0` and
|
||||
# `type=1` were learned during pre-training and are added to the wordpiece
|
||||
# embedding vector (and position vector). This is not *strictly* necessary
|
||||
# since the [SEP] token unambiguously separates the sequences, but it makes
|
||||
# it easier for the model to learn the concept of sequences.
|
||||
#
|
||||
# For classification tasks, the first vector (corresponding to [CLS]) is
|
||||
# used as as the "sentence vector". Note that this only makes sense because
|
||||
# the entire model is fine-tuned.
|
||||
tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
|
||||
segment_ids = [0] * len(tokens)
|
||||
|
||||
if tokens_b:
|
||||
tokens += tokens_b + ["[SEP]"]
|
||||
segment_ids += [1] * (len(tokens_b) + 1)
|
||||
|
||||
input_ids = tokenizer.convert_tokens_to_ids(tokens)
|
||||
|
||||
# The mask has 1 for real tokens and 0 for padding tokens. Only real
|
||||
# tokens are attended to.
|
||||
input_mask = [1] * len(input_ids)
|
||||
|
||||
# Zero-pad up to the sequence length.
|
||||
padding = [0] * (max_seq_length - len(input_ids))
|
||||
input_ids += padding
|
||||
input_mask += padding
|
||||
segment_ids += padding
|
||||
|
||||
assert len(input_ids) == max_seq_length
|
||||
assert len(input_mask) == max_seq_length
|
||||
assert len(segment_ids) == max_seq_length
|
||||
|
||||
if output_mode == "classification":
|
||||
label_id = label_map[example.label]
|
||||
elif output_mode == "regression":
|
||||
label_id = float(example.label)
|
||||
else:
|
||||
raise KeyError(output_mode)
|
||||
|
||||
if ex_index < 5:
|
||||
logger.info("*** Example ***")
|
||||
logger.info("guid: %s" % (example.guid))
|
||||
logger.info("tokens: %s" % " ".join(
|
||||
[str(x) for x in tokens]))
|
||||
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
|
||||
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
|
||||
logger.info(
|
||||
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
|
||||
logger.info("label: %s (id = %d)" % (example.label, label_id))
|
||||
|
||||
features.append(
|
||||
InputFeatures(input_ids=input_ids,
|
||||
input_mask=input_mask,
|
||||
segment_ids=segment_ids,
|
||||
label_id=label_id))
|
||||
return features
|
||||
|
||||
|
||||
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
|
||||
"""Truncates a sequence pair in place to the maximum length."""
|
||||
|
||||
# This is a simple heuristic which will always truncate the longer sequence
|
||||
# one token at a time. This makes more sense than truncating an equal percent
|
||||
# of tokens from each, since if one sequence is very short then each token
|
||||
# that's truncated likely contains more information than a longer sequence.
|
||||
while True:
|
||||
total_length = len(tokens_a) + len(tokens_b)
|
||||
if total_length <= max_length:
|
||||
break
|
||||
if len(tokens_a) > len(tokens_b):
|
||||
tokens_a.pop()
|
||||
else:
|
||||
tokens_b.pop()
|
||||
|
||||
|
||||
def simple_accuracy(preds, labels):
|
||||
return (preds == labels).mean()
|
||||
|
||||
|
||||
def acc_and_f1(preds, labels):
|
||||
acc = simple_accuracy(preds, labels)
|
||||
f1 = f1_score(y_true=labels, y_pred=preds)
|
||||
return {
|
||||
"acc": acc,
|
||||
"f1": f1,
|
||||
"acc_and_f1": (acc + f1) / 2,
|
||||
}
|
||||
|
||||
|
||||
def pearson_and_spearman(preds, labels):
|
||||
pearson_corr = pearsonr(preds, labels)[0]
|
||||
spearman_corr = spearmanr(preds, labels)[0]
|
||||
return {
|
||||
"pearson": pearson_corr,
|
||||
"spearmanr": spearman_corr,
|
||||
"corr": (pearson_corr + spearman_corr) / 2,
|
||||
}
|
||||
|
||||
|
||||
def compute_metrics(task_name, preds, labels):
|
||||
assert len(preds) == len(labels)
|
||||
if task_name == "cola":
|
||||
return {"mcc": matthews_corrcoef(labels, preds)}
|
||||
elif task_name == "sst-2":
|
||||
return {"acc": simple_accuracy(preds, labels)}
|
||||
elif task_name == "mrpc":
|
||||
return acc_and_f1(preds, labels)
|
||||
elif task_name == "sts-b":
|
||||
return pearson_and_spearman(preds, labels)
|
||||
elif task_name == "qqp":
|
||||
return acc_and_f1(preds, labels)
|
||||
elif task_name == "mnli":
|
||||
return {"acc": simple_accuracy(preds, labels)}
|
||||
elif task_name == "mnli-mm":
|
||||
return {"acc": simple_accuracy(preds, labels)}
|
||||
elif task_name == "qnli":
|
||||
return {"acc": simple_accuracy(preds, labels)}
|
||||
elif task_name == "rte":
|
||||
return {"acc": simple_accuracy(preds, labels)}
|
||||
elif task_name == "wnli":
|
||||
return {"acc": simple_accuracy(preds, labels)}
|
||||
else:
|
||||
raise KeyError(task_name)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
@ -661,31 +142,6 @@ def main():
|
||||
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
||||
ptvsd.wait_for_attach()
|
||||
|
||||
processors = {
|
||||
"cola": ColaProcessor,
|
||||
"mnli": MnliProcessor,
|
||||
"mnli-mm": MnliMismatchedProcessor,
|
||||
"mrpc": MrpcProcessor,
|
||||
"sst-2": Sst2Processor,
|
||||
"sts-b": StsbProcessor,
|
||||
"qqp": QqpProcessor,
|
||||
"qnli": QnliProcessor,
|
||||
"rte": RteProcessor,
|
||||
"wnli": WnliProcessor,
|
||||
}
|
||||
|
||||
output_modes = {
|
||||
"cola": "classification",
|
||||
"mnli": "classification",
|
||||
"mrpc": "classification",
|
||||
"sst-2": "classification",
|
||||
"sts-b": "regression",
|
||||
"qqp": "classification",
|
||||
"qnli": "classification",
|
||||
"rte": "classification",
|
||||
"wnli": "classification",
|
||||
}
|
||||
|
||||
if args.local_rank == -1 or args.no_cuda:
|
||||
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
||||
n_gpu = torch.cuda.device_count()
|
||||
@ -737,30 +193,39 @@ def main():
|
||||
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
|
||||
|
||||
# Prepare model
|
||||
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank))
|
||||
model = BertForSequenceClassification.from_pretrained(args.bert_model,
|
||||
cache_dir=cache_dir,
|
||||
num_labels=num_labels)
|
||||
model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
|
||||
if args.fp16:
|
||||
model.half()
|
||||
model.to(device)
|
||||
if args.local_rank != -1:
|
||||
try:
|
||||
from apex.parallel import DistributedDataParallel as DDP
|
||||
except ImportError:
|
||||
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
|
||||
|
||||
model = DDP(model)
|
||||
model = torch.nn.parallel.DistributedDataParallel(model,
|
||||
device_ids=[args.local_rank],
|
||||
output_device=args.local_rank,
|
||||
find_unused_parameters=True)
|
||||
elif n_gpu > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
if args.do_train:
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer = SummaryWriter()
|
||||
|
||||
# Prepare data loader
|
||||
|
||||
train_examples = processor.get_train_examples(args.data_dir)
|
||||
train_features = convert_examples_to_features(
|
||||
train_examples, label_list, args.max_seq_length, tokenizer, output_mode)
|
||||
cached_train_features_file = args.data_dir + '_{0}_{1}_{2}'.format(
|
||||
list(filter(None, args.bert_model.split('/'))).pop(),
|
||||
str(args.max_seq_length),
|
||||
str(task_name))
|
||||
try:
|
||||
with open(cached_train_features_file, "rb") as reader:
|
||||
train_features = pickle.load(reader)
|
||||
except:
|
||||
train_features = convert_examples_to_features(
|
||||
train_examples, label_list, args.max_seq_length, tokenizer, output_mode)
|
||||
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
|
||||
logger.info(" Saving train features into cached file %s", cached_train_features_file)
|
||||
with open(cached_train_features_file, "wb") as writer:
|
||||
pickle.dump(train_features, writer)
|
||||
|
||||
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
|
||||
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
|
||||
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
|
||||
@ -778,8 +243,6 @@ def main():
|
||||
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
|
||||
|
||||
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
||||
if args.local_rank != -1:
|
||||
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
|
||||
|
||||
# Prepare optimizer
|
||||
|
||||
@ -863,6 +326,9 @@ def main():
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
global_step += 1
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
|
||||
tb_writer.add_scalar('loss', loss.item(), global_step)
|
||||
|
||||
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
||||
# Save a trained model, configuration and tokenizer
|
||||
|
571
examples/run_classifier_dataset_utils.py
Normal file
571
examples/run_classifier_dataset_utils.py
Normal file
@ -0,0 +1,571 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" BERT classification fine-tuning: utilities to work with GLUE tasks """
|
||||
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
import csv
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
|
||||
from scipy.stats import pearsonr, spearmanr
|
||||
from sklearn.metrics import matthews_corrcoef, f1_score
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class InputExample(object):
|
||||
"""A single training/test example for simple sequence classification."""
|
||||
|
||||
def __init__(self, guid, text_a, text_b=None, label=None):
|
||||
"""Constructs a InputExample.
|
||||
|
||||
Args:
|
||||
guid: Unique id for the example.
|
||||
text_a: string. The untokenized text of the first sequence. For single
|
||||
sequence tasks, only this sequence must be specified.
|
||||
text_b: (Optional) string. The untokenized text of the second sequence.
|
||||
Only must be specified for sequence pair tasks.
|
||||
label: (Optional) string. The label of the example. This should be
|
||||
specified for train and dev examples, but not for test examples.
|
||||
"""
|
||||
self.guid = guid
|
||||
self.text_a = text_a
|
||||
self.text_b = text_b
|
||||
self.label = label
|
||||
|
||||
|
||||
class InputFeatures(object):
|
||||
"""A single set of features of data."""
|
||||
|
||||
def __init__(self, input_ids, input_mask, segment_ids, label_id):
|
||||
self.input_ids = input_ids
|
||||
self.input_mask = input_mask
|
||||
self.segment_ids = segment_ids
|
||||
self.label_id = label_id
|
||||
|
||||
|
||||
class DataProcessor(object):
|
||||
"""Base class for data converters for sequence classification data sets."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""Gets a collection of `InputExample`s for the train set."""
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""Gets a collection of `InputExample`s for the dev set."""
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_labels(self):
|
||||
"""Gets the list of labels for this data set."""
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def _read_tsv(cls, input_file, quotechar=None):
|
||||
"""Reads a tab separated value file."""
|
||||
with open(input_file, "r", encoding="utf-8") as f:
|
||||
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
|
||||
lines = []
|
||||
for line in reader:
|
||||
if sys.version_info[0] == 2:
|
||||
line = list(unicode(cell, 'utf-8') for cell in line)
|
||||
lines.append(line)
|
||||
return lines
|
||||
|
||||
|
||||
class MrpcProcessor(DataProcessor):
|
||||
"""Processor for the MRPC data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["0", "1"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, i)
|
||||
text_a = line[3]
|
||||
text_b = line[4]
|
||||
label = line[0]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class MnliProcessor(DataProcessor):
|
||||
"""Processor for the MultiNLI data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
|
||||
"dev_matched")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["contradiction", "entailment", "neutral"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, line[0])
|
||||
text_a = line[8]
|
||||
text_b = line[9]
|
||||
label = line[-1]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class MnliMismatchedProcessor(MnliProcessor):
|
||||
"""Processor for the MultiNLI Mismatched data set (GLUE version)."""
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")),
|
||||
"dev_matched")
|
||||
|
||||
|
||||
class ColaProcessor(DataProcessor):
|
||||
"""Processor for the CoLA data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["0", "1"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
guid = "%s-%s" % (set_type, i)
|
||||
text_a = line[3]
|
||||
label = line[1]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class Sst2Processor(DataProcessor):
|
||||
"""Processor for the SST-2 data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["0", "1"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, i)
|
||||
text_a = line[0]
|
||||
label = line[1]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class StsbProcessor(DataProcessor):
|
||||
"""Processor for the STS-B data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return [None]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, line[0])
|
||||
text_a = line[7]
|
||||
text_b = line[8]
|
||||
label = line[-1]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class QqpProcessor(DataProcessor):
|
||||
"""Processor for the QQP data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["0", "1"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, line[0])
|
||||
try:
|
||||
text_a = line[3]
|
||||
text_b = line[4]
|
||||
label = line[5]
|
||||
except IndexError:
|
||||
continue
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class QnliProcessor(DataProcessor):
|
||||
"""Processor for the QNLI data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")),
|
||||
"dev_matched")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["entailment", "not_entailment"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, line[0])
|
||||
text_a = line[1]
|
||||
text_b = line[2]
|
||||
label = line[-1]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class RteProcessor(DataProcessor):
|
||||
"""Processor for the RTE data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["entailment", "not_entailment"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, line[0])
|
||||
text_a = line[1]
|
||||
text_b = line[2]
|
||||
label = line[-1]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class WnliProcessor(DataProcessor):
|
||||
"""Processor for the WNLI data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["0", "1"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, line[0])
|
||||
text_a = line[1]
|
||||
text_b = line[2]
|
||||
label = line[-1]
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
def convert_examples_to_features(examples, label_list, max_seq_length,
|
||||
tokenizer, output_mode):
|
||||
"""Loads a data file into a list of `InputBatch`s."""
|
||||
|
||||
label_map = {label : i for i, label in enumerate(label_list)}
|
||||
|
||||
features = []
|
||||
for (ex_index, example) in enumerate(examples):
|
||||
if ex_index % 10000 == 0:
|
||||
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
|
||||
|
||||
tokens_a = tokenizer.tokenize(example.text_a)
|
||||
|
||||
tokens_b = None
|
||||
if example.text_b:
|
||||
tokens_b = tokenizer.tokenize(example.text_b)
|
||||
# Modifies `tokens_a` and `tokens_b` in place so that the total
|
||||
# length is less than the specified length.
|
||||
# Account for [CLS], [SEP], [SEP] with "- 3"
|
||||
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
|
||||
else:
|
||||
# Account for [CLS] and [SEP] with "- 2"
|
||||
if len(tokens_a) > max_seq_length - 2:
|
||||
tokens_a = tokens_a[:(max_seq_length - 2)]
|
||||
|
||||
# The convention in BERT is:
|
||||
# (a) For sequence pairs:
|
||||
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
|
||||
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
|
||||
# (b) For single sequences:
|
||||
# tokens: [CLS] the dog is hairy . [SEP]
|
||||
# type_ids: 0 0 0 0 0 0 0
|
||||
#
|
||||
# Where "type_ids" are used to indicate whether this is the first
|
||||
# sequence or the second sequence. The embedding vectors for `type=0` and
|
||||
# `type=1` were learned during pre-training and are added to the wordpiece
|
||||
# embedding vector (and position vector). This is not *strictly* necessary
|
||||
# since the [SEP] token unambiguously separates the sequences, but it makes
|
||||
# it easier for the model to learn the concept of sequences.
|
||||
#
|
||||
# For classification tasks, the first vector (corresponding to [CLS]) is
|
||||
# used as as the "sentence vector". Note that this only makes sense because
|
||||
# the entire model is fine-tuned.
|
||||
tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
|
||||
segment_ids = [0] * len(tokens)
|
||||
|
||||
if tokens_b:
|
||||
tokens += tokens_b + ["[SEP]"]
|
||||
segment_ids += [1] * (len(tokens_b) + 1)
|
||||
|
||||
input_ids = tokenizer.convert_tokens_to_ids(tokens)
|
||||
|
||||
# The mask has 1 for real tokens and 0 for padding tokens. Only real
|
||||
# tokens are attended to.
|
||||
input_mask = [1] * len(input_ids)
|
||||
|
||||
# Zero-pad up to the sequence length.
|
||||
padding = [0] * (max_seq_length - len(input_ids))
|
||||
input_ids += padding
|
||||
input_mask += padding
|
||||
segment_ids += padding
|
||||
|
||||
assert len(input_ids) == max_seq_length
|
||||
assert len(input_mask) == max_seq_length
|
||||
assert len(segment_ids) == max_seq_length
|
||||
|
||||
if output_mode == "classification":
|
||||
label_id = label_map[example.label]
|
||||
elif output_mode == "regression":
|
||||
label_id = float(example.label)
|
||||
else:
|
||||
raise KeyError(output_mode)
|
||||
|
||||
if ex_index < 5:
|
||||
logger.info("*** Example ***")
|
||||
logger.info("guid: %s" % (example.guid))
|
||||
logger.info("tokens: %s" % " ".join(
|
||||
[str(x) for x in tokens]))
|
||||
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
|
||||
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
|
||||
logger.info(
|
||||
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
|
||||
logger.info("label: %s (id = %d)" % (example.label, label_id))
|
||||
|
||||
features.append(
|
||||
InputFeatures(input_ids=input_ids,
|
||||
input_mask=input_mask,
|
||||
segment_ids=segment_ids,
|
||||
label_id=label_id))
|
||||
return features
|
||||
|
||||
|
||||
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
|
||||
"""Truncates a sequence pair in place to the maximum length."""
|
||||
|
||||
# This is a simple heuristic which will always truncate the longer sequence
|
||||
# one token at a time. This makes more sense than truncating an equal percent
|
||||
# of tokens from each, since if one sequence is very short then each token
|
||||
# that's truncated likely contains more information than a longer sequence.
|
||||
while True:
|
||||
total_length = len(tokens_a) + len(tokens_b)
|
||||
if total_length <= max_length:
|
||||
break
|
||||
if len(tokens_a) > len(tokens_b):
|
||||
tokens_a.pop()
|
||||
else:
|
||||
tokens_b.pop()
|
||||
|
||||
|
||||
def simple_accuracy(preds, labels):
|
||||
return (preds == labels).mean()
|
||||
|
||||
|
||||
def acc_and_f1(preds, labels):
|
||||
acc = simple_accuracy(preds, labels)
|
||||
f1 = f1_score(y_true=labels, y_pred=preds)
|
||||
return {
|
||||
"acc": acc,
|
||||
"f1": f1,
|
||||
"acc_and_f1": (acc + f1) / 2,
|
||||
}
|
||||
|
||||
|
||||
def pearson_and_spearman(preds, labels):
|
||||
pearson_corr = pearsonr(preds, labels)[0]
|
||||
spearman_corr = spearmanr(preds, labels)[0]
|
||||
return {
|
||||
"pearson": pearson_corr,
|
||||
"spearmanr": spearman_corr,
|
||||
"corr": (pearson_corr + spearman_corr) / 2,
|
||||
}
|
||||
|
||||
|
||||
def compute_metrics(task_name, preds, labels):
|
||||
assert len(preds) == len(labels)
|
||||
if task_name == "cola":
|
||||
return {"mcc": matthews_corrcoef(labels, preds)}
|
||||
elif task_name == "sst-2":
|
||||
return {"acc": simple_accuracy(preds, labels)}
|
||||
elif task_name == "mrpc":
|
||||
return acc_and_f1(preds, labels)
|
||||
elif task_name == "sts-b":
|
||||
return pearson_and_spearman(preds, labels)
|
||||
elif task_name == "qqp":
|
||||
return acc_and_f1(preds, labels)
|
||||
elif task_name == "mnli":
|
||||
return {"acc": simple_accuracy(preds, labels)}
|
||||
elif task_name == "mnli-mm":
|
||||
return {"acc": simple_accuracy(preds, labels)}
|
||||
elif task_name == "qnli":
|
||||
return {"acc": simple_accuracy(preds, labels)}
|
||||
elif task_name == "rte":
|
||||
return {"acc": simple_accuracy(preds, labels)}
|
||||
elif task_name == "wnli":
|
||||
return {"acc": simple_accuracy(preds, labels)}
|
||||
else:
|
||||
raise KeyError(task_name)
|
||||
|
||||
processors = {
|
||||
"cola": ColaProcessor,
|
||||
"mnli": MnliProcessor,
|
||||
"mnli-mm": MnliMismatchedProcessor,
|
||||
"mrpc": MrpcProcessor,
|
||||
"sst-2": Sst2Processor,
|
||||
"sts-b": StsbProcessor,
|
||||
"qqp": QqpProcessor,
|
||||
"qnli": QnliProcessor,
|
||||
"rte": RteProcessor,
|
||||
"wnli": WnliProcessor,
|
||||
}
|
||||
|
||||
output_modes = {
|
||||
"cola": "classification",
|
||||
"mnli": "classification",
|
||||
"mrpc": "classification",
|
||||
"sst-2": "classification",
|
||||
"sts-b": "regression",
|
||||
"qqp": "classification",
|
||||
"qnli": "classification",
|
||||
"rte": "classification",
|
||||
"wnli": "classification",
|
||||
}
|
@ -18,10 +18,7 @@
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
import argparse
|
||||
import collections
|
||||
import json
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
@ -301,9 +298,6 @@ def main():
|
||||
else:
|
||||
loss.backward()
|
||||
if (step + 1) % args.gradient_accumulation_steps == 0:
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
|
||||
tb_writer.add_scalar('loss', loss.item(), global_step)
|
||||
if args.fp16:
|
||||
# modify learning rate with special warm up BERT uses
|
||||
# if args.fp16 is False, BertAdam is used and handles this automatically
|
||||
@ -313,6 +307,9 @@ def main():
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
global_step += 1
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
|
||||
tb_writer.add_scalar('loss', loss.item(), global_step)
|
||||
|
||||
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
||||
# Save a trained model, configuration and tokenizer
|
||||
|
Loading…
Reference in New Issue
Block a user