mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Move common image processing methods to BaseImageProcessor (#25089)
Move out common methods
This commit is contained in:
parent
d30cf3d02f
commit
1486d2aec2
@ -23,6 +23,8 @@ import numpy as np
|
||||
|
||||
from .dynamic_module_utils import custom_object_save
|
||||
from .feature_extraction_utils import BatchFeature as BaseBatchFeature
|
||||
from .image_transforms import normalize, rescale
|
||||
from .image_utils import ChannelDimension
|
||||
from .utils import (
|
||||
IMAGE_PROCESSOR_NAME,
|
||||
PushToHubMixin,
|
||||
@ -518,6 +520,57 @@ class BaseImageProcessor(ImageProcessingMixin):
|
||||
def preprocess(self, images, **kwargs) -> BatchFeature:
|
||||
raise NotImplementedError("Each image processor must implement its own preprocess method")
|
||||
|
||||
def rescale(
|
||||
self, image: np.ndarray, scale: float, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`float`):
|
||||
The scaling factor to rescale pixel values by.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The rescaled image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, Iterable[float]],
|
||||
std: Union[float, Iterable[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `Iterable[float]`):
|
||||
Image mean to use for normalization.
|
||||
std (`float` or `Iterable[float]`):
|
||||
Image standard deviation to use for normalization.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The normalized image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
|
||||
VALID_SIZE_DICT_KEYS = ({"height", "width"}, {"shortest_edge"}, {"shortest_edge", "longest_edge"}, {"longest_edge"})
|
||||
|
||||
|
@ -20,7 +20,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
|
||||
from ...image_transforms import center_crop, resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
IMAGENET_STANDARD_MEAN,
|
||||
IMAGENET_STANDARD_STD,
|
||||
@ -189,49 +189,6 @@ class BeitImageProcessor(BaseImageProcessor):
|
||||
size = get_size_dict(size, default_to_square=True, param_name="size")
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def reduce_label(self, label: ImageInput) -> np.ndarray:
|
||||
label = to_numpy_array(label)
|
||||
# Avoid using underflow conversion
|
||||
|
@ -23,8 +23,6 @@ from ...image_transforms import (
|
||||
center_crop,
|
||||
convert_to_rgb,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
@ -173,49 +171,6 @@ class BitImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}")
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
|
||||
from ...image_transforms import convert_to_rgb, resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
OPENAI_CLIP_MEAN,
|
||||
OPENAI_CLIP_STD,
|
||||
@ -137,49 +137,6 @@ class BlipImageProcessor(BaseImageProcessor):
|
||||
output_size = (size["height"], size["width"])
|
||||
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -19,7 +19,7 @@ from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import PaddingMode, center_crop, normalize, pad, rescale, resize, to_channel_dimension_format
|
||||
from ...image_transforms import PaddingMode, center_crop, pad, resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
OPENAI_CLIP_MEAN,
|
||||
OPENAI_CLIP_STD,
|
||||
@ -226,27 +226,6 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
|
||||
output_size = get_resize_output_image_size(image, shorter=shorter, longer=longer, size_divisor=size_divisor)
|
||||
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
|
||||
|
||||
# Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.rescale
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def center_crop(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
@ -269,30 +248,6 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
|
||||
output_size = size["shortest_edge"]
|
||||
return center_crop(image, size=(output_size, output_size), data_format=data_format, **kwargs)
|
||||
|
||||
# Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.normalize
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def _pad_image(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
|
@ -23,8 +23,6 @@ from ...image_transforms import (
|
||||
center_crop,
|
||||
convert_to_rgb,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
@ -171,49 +169,6 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
|
||||
size = get_size_dict(size)
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -23,8 +23,6 @@ from ...image_transforms import (
|
||||
center_crop,
|
||||
convert_to_rgb,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
@ -173,49 +171,6 @@ class CLIPImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}")
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -28,7 +28,6 @@ from ...image_transforms import (
|
||||
center_to_corners_format,
|
||||
corners_to_center_format,
|
||||
id_to_rgb,
|
||||
normalize,
|
||||
pad,
|
||||
rescale,
|
||||
resize,
|
||||
@ -943,19 +942,6 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
|
||||
"""
|
||||
return rescale(image, rescale_factor, data_format=data_format)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, Iterable[float]],
|
||||
std: Union[float, Iterable[float]],
|
||||
data_format: Optional[ChannelDimension] = None,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize the image with the given mean and standard deviation.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
|
||||
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
|
||||
"""
|
||||
|
@ -22,8 +22,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
|
||||
from ...image_transforms import (
|
||||
center_crop,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
@ -158,49 +156,6 @@ class ConvNextImageProcessor(BaseImageProcessor):
|
||||
image, size=(shortest_edge, shortest_edge), resample=resample, data_format=data_format, **kwargs
|
||||
)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -28,7 +28,6 @@ from ...image_transforms import (
|
||||
center_to_corners_format,
|
||||
corners_to_center_format,
|
||||
id_to_rgb,
|
||||
normalize,
|
||||
pad,
|
||||
rescale,
|
||||
resize,
|
||||
@ -941,19 +940,6 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
|
||||
"""
|
||||
return rescale(image, rescale_factor, data_format=data_format)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, Iterable[float]],
|
||||
std: Union[float, Iterable[float]],
|
||||
data_format: Optional[ChannelDimension] = None,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize the image with the given mean and standard deviation.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
|
||||
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
|
||||
"""
|
||||
|
@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
|
||||
from ...image_transforms import center_crop, resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
IMAGENET_STANDARD_MEAN,
|
||||
IMAGENET_STANDARD_STD,
|
||||
@ -159,49 +159,6 @@ class DeiTImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}")
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -25,7 +25,6 @@ from ...image_transforms import (
|
||||
PaddingMode,
|
||||
center_to_corners_format,
|
||||
corners_to_center_format,
|
||||
normalize,
|
||||
pad,
|
||||
rescale,
|
||||
resize,
|
||||
@ -614,19 +613,6 @@ class DetaImageProcessor(BaseImageProcessor):
|
||||
"""
|
||||
return rescale(image, rescale_factor, data_format=data_format)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, Iterable[float]],
|
||||
std: Union[float, Iterable[float]],
|
||||
data_format: Optional[ChannelDimension] = None,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize the image with the given mean and standard deviation.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
|
||||
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
|
||||
"""
|
||||
|
@ -27,7 +27,6 @@ from ...image_transforms import (
|
||||
center_to_corners_format,
|
||||
corners_to_center_format,
|
||||
id_to_rgb,
|
||||
normalize,
|
||||
pad,
|
||||
rescale,
|
||||
resize,
|
||||
@ -916,18 +915,6 @@ class DetrImageProcessor(BaseImageProcessor):
|
||||
"""
|
||||
return rescale(image, rescale_factor, data_format=data_format)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, Iterable[float]],
|
||||
std: Union[float, Iterable[float]],
|
||||
data_format: Optional[ChannelDimension] = None,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize the image with the given mean and standard deviation.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format)
|
||||
|
||||
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
|
||||
"""
|
||||
Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to
|
||||
|
@ -21,9 +21,7 @@ import numpy as np
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import (
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
pad,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
@ -263,49 +261,6 @@ class DonutImageProcessor(BaseImageProcessor):
|
||||
resized_image = resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
|
||||
return resized_image
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -20,7 +20,7 @@ from typing import Dict, Iterable, List, Optional, Tuple, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
|
||||
from ...image_transforms import resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
IMAGENET_STANDARD_MEAN,
|
||||
IMAGENET_STANDARD_STD,
|
||||
@ -191,49 +191,6 @@ class DPTImageProcessor(BaseImageProcessor):
|
||||
)
|
||||
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -22,8 +22,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
|
||||
from ...image_transforms import (
|
||||
center_crop,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
@ -175,57 +173,6 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}")
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self, image: np.ndarray, scale: float, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`float`):
|
||||
The scaling factor to rescale pixel values by.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The rescaled image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `List[float]`):
|
||||
Image mean to use for normalization.
|
||||
std (`float` or `List[float]`):
|
||||
Image standard deviation to use for normalization.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The normalized image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
|
||||
from ...image_transforms import center_crop, rescale, resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
IMAGENET_STANDARD_MEAN,
|
||||
IMAGENET_STANDARD_STD,
|
||||
@ -198,29 +198,6 @@ class EfficientNetImageProcessor(BaseImageProcessor):
|
||||
rescaled_image = rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
return rescaled_image
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -22,7 +22,7 @@ from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
|
||||
from ...image_transforms import center_crop, resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
OPENAI_CLIP_MEAN,
|
||||
OPENAI_CLIP_STD,
|
||||
@ -383,49 +383,6 @@ class FlavaImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"The size dictionary must contain 'height' and 'width' keys. Got {size.keys()}")
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def map_pixels(self, image: np.ndarray) -> np.ndarray:
|
||||
return (1 - 2 * LOGIT_LAPLACE_EPS) * image + LOGIT_LAPLACE_EPS
|
||||
|
||||
|
@ -20,7 +20,7 @@ import numpy as np
|
||||
import PIL.Image
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature
|
||||
from ...image_transforms import rescale, resize, to_channel_dimension_format
|
||||
from ...image_transforms import resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
ChannelDimension,
|
||||
PILImageResampling,
|
||||
@ -101,28 +101,6 @@ class GLPNImageProcessor(BaseImageProcessor):
|
||||
image = resize(image, (new_h, new_w), resample=resample, data_format=data_format, **kwargs)
|
||||
return image
|
||||
|
||||
def rescale(
|
||||
self, image: np.ndarray, scale: float, data_format: Optional[ChannelDimension] = None, **kwargs
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Rescale the image by the given scaling factor `scale`.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
The image to rescale.
|
||||
scale (`float`):
|
||||
The scaling factor to rescale pixel values by.
|
||||
data_format (`ChannelDimension` or `str`, *optional*):
|
||||
The channel dimension format for the output image. If `None`, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The rescaled image.
|
||||
"""
|
||||
return rescale(image=image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]],
|
||||
|
@ -19,7 +19,7 @@ from typing import Dict, Iterable, Optional, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image
|
||||
from ...image_transforms import resize, to_channel_dimension_format, to_pil_image
|
||||
from ...image_utils import (
|
||||
IMAGENET_STANDARD_MEAN,
|
||||
IMAGENET_STANDARD_STD,
|
||||
@ -184,49 +184,6 @@ class LayoutLMv3ImageProcessor(BaseImageProcessor):
|
||||
output_size = (size["height"], size["width"])
|
||||
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, Iterable[float]],
|
||||
std: Union[float, Iterable[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `Iterable[float]`):
|
||||
Mean values to be used for normalization.
|
||||
std (`float` or `Iterable[float]`):
|
||||
Standard deviation values to be used for normalization.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -14,7 +14,7 @@
|
||||
# limitations under the License.
|
||||
"""Image processor class for LeViT."""
|
||||
|
||||
from typing import Dict, Iterable, List, Optional, Union
|
||||
from typing import Dict, Iterable, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
@ -22,8 +22,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
|
||||
from ...image_transforms import (
|
||||
center_crop,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
@ -184,49 +182,6 @@ class LevitImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"Size dict must have keys 'height' and 'width'. Got {size.keys()}")
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -24,7 +24,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
|
||||
from ...image_transforms import (
|
||||
PaddingMode,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
pad,
|
||||
rescale,
|
||||
resize,
|
||||
@ -492,18 +491,6 @@ class Mask2FormerImageProcessor(BaseImageProcessor):
|
||||
"""
|
||||
return rescale(image, rescale_factor, data_format=data_format)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, Iterable[float]],
|
||||
std: Union[float, Iterable[float]],
|
||||
data_format: Optional[ChannelDimension] = None,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize the image with the given mean and standard deviation.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format)
|
||||
|
||||
def convert_segmentation_map_to_binary_masks(
|
||||
self,
|
||||
segmentation_map: "np.ndarray",
|
||||
|
@ -24,7 +24,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
|
||||
from ...image_transforms import (
|
||||
PaddingMode,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
pad,
|
||||
rescale,
|
||||
resize,
|
||||
@ -503,18 +502,6 @@ class MaskFormerImageProcessor(BaseImageProcessor):
|
||||
"""
|
||||
return rescale(image, rescale_factor, data_format=data_format)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, Iterable[float]],
|
||||
std: Union[float, Iterable[float]],
|
||||
data_format: Optional[ChannelDimension] = None,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize the image with the given mean and standard deviation.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format)
|
||||
|
||||
def convert_segmentation_map_to_binary_masks(
|
||||
self,
|
||||
segmentation_map: "np.ndarray",
|
||||
|
@ -22,8 +22,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
|
||||
from ...image_transforms import (
|
||||
center_crop,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
@ -164,57 +162,6 @@ class MobileNetV1ImageProcessor(BaseImageProcessor):
|
||||
size = get_size_dict(size)
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self, image: np.ndarray, scale: float, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`float`):
|
||||
The scaling factor to rescale pixel values by.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The rescaled image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `List[float]`):
|
||||
Image mean to use for normalization.
|
||||
std (`float` or `List[float]`):
|
||||
Image standard deviation to use for normalization.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The normalized image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -22,8 +22,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
|
||||
from ...image_transforms import (
|
||||
center_crop,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
@ -170,57 +168,6 @@ class MobileNetV2ImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}")
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self, image: np.ndarray, scale: float, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`float`):
|
||||
The scaling factor to rescale pixel values by.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The rescaled image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `List[float]`):
|
||||
Image mean to use for normalization.
|
||||
std (`float` or `List[float]`):
|
||||
Image standard deviation to use for normalization.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The normalized image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -23,7 +23,6 @@ from ...image_transforms import (
|
||||
center_crop,
|
||||
flip_channel_order,
|
||||
get_resize_output_image_size,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
@ -161,26 +160,6 @@ class MobileViTImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def flip_channel_order(
|
||||
self, image: np.ndarray, data_format: Optional[Union[str, ChannelDimension]] = None
|
||||
) -> np.ndarray:
|
||||
|
@ -25,7 +25,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
|
||||
from ...image_transforms import (
|
||||
PaddingMode,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
pad,
|
||||
rescale,
|
||||
resize,
|
||||
@ -487,19 +486,6 @@ class OneFormerImageProcessor(BaseImageProcessor):
|
||||
"""
|
||||
return rescale(image, rescale_factor, data_format=data_format)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, Iterable[float]],
|
||||
std: Union[float, Iterable[float]],
|
||||
data_format: Optional[ChannelDimension] = None,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize the image with the given mean and standard deviation.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format)
|
||||
|
||||
# Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.convert_segmentation_map_to_binary_masks
|
||||
def convert_segmentation_map_to_binary_masks(
|
||||
self,
|
||||
|
@ -23,7 +23,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
|
||||
from ...image_transforms import (
|
||||
center_crop,
|
||||
center_to_corners_format,
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
@ -210,19 +209,6 @@ class OwlViTImageProcessor(BaseImageProcessor):
|
||||
"""
|
||||
return rescale(image, rescale_factor, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: List[float],
|
||||
std: List[float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image with a certain mean and standard deviation.
|
||||
"""
|
||||
return normalize(image, mean, std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
|
||||
from ...image_transforms import center_crop, resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
IMAGENET_DEFAULT_MEAN,
|
||||
IMAGENET_DEFAULT_STD,
|
||||
@ -174,49 +174,6 @@ class PerceiverImageProcessor(BaseImageProcessor):
|
||||
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
|
||||
)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -22,8 +22,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
|
||||
from ...image_transforms import (
|
||||
center_crop,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
@ -219,49 +217,6 @@ class PoolFormerImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"size must contain 'height' and 'width' as keys. Got {size.keys()}")
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
|
||||
from ...image_transforms import resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
IMAGENET_DEFAULT_MEAN,
|
||||
IMAGENET_DEFAULT_STD,
|
||||
@ -127,57 +127,6 @@ class PvtImageProcessor(BaseImageProcessor):
|
||||
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
|
||||
)
|
||||
|
||||
def rescale(
|
||||
self, image: np.ndarray, scale: float, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`float`):
|
||||
The scaling factor to rescale pixel values by.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The rescaled image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `List[float]`):
|
||||
Image mean to use for normalization.
|
||||
std (`float` or `List[float]`):
|
||||
Image standard deviation to use for normalization.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The normalized image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -21,7 +21,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import convert_to_rgb, normalize, pad, rescale, resize, to_channel_dimension_format
|
||||
from ...image_transforms import convert_to_rgb, pad, resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
IMAGENET_DEFAULT_MEAN,
|
||||
IMAGENET_DEFAULT_STD,
|
||||
@ -212,49 +212,6 @@ class SamImageProcessor(BaseImageProcessor):
|
||||
output_height, output_width = self._get_preprocess_shape(input_size, size["longest_edge"])
|
||||
return resize(image, size=(output_height, output_width), resample=resample, data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -20,7 +20,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
|
||||
from ...image_transforms import resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
IMAGENET_DEFAULT_MEAN,
|
||||
IMAGENET_DEFAULT_STD,
|
||||
@ -156,49 +156,6 @@ class SegformerImageProcessor(BaseImageProcessor):
|
||||
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
|
||||
)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def reduce_label(self, label: ImageInput) -> np.ndarray:
|
||||
label = to_numpy_array(label)
|
||||
# Avoid using underflow conversion
|
||||
|
@ -19,7 +19,7 @@ from typing import Optional, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature
|
||||
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
|
||||
from ...image_transforms import get_image_size, pad, to_channel_dimension_format
|
||||
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
|
||||
from ...utils import TensorType, logging
|
||||
|
||||
@ -57,28 +57,6 @@ class Swin2SRImageProcessor(BaseImageProcessor):
|
||||
self.do_pad = do_pad
|
||||
self.pad_size = pad_size
|
||||
|
||||
def rescale(
|
||||
self, image: np.ndarray, scale: float, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`float`):
|
||||
The scaling factor to rescale pixel values by.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The rescaled image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def pad(self, image: np.ndarray, size: int, data_format: Optional[Union[str, ChannelDimension]] = None):
|
||||
"""
|
||||
Pad an image to make the height and width divisible by `size`.
|
||||
|
@ -21,8 +21,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
|
||||
from ...image_transforms import (
|
||||
center_crop,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
@ -208,56 +206,6 @@ class TvltImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}")
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.normalize
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `List[float]`):
|
||||
Image mean to use for normalization.
|
||||
std (`float` or `List[float]`):
|
||||
Image standard deviation to use for normalization.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The normalized image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def _preprocess_image(
|
||||
self,
|
||||
image: ImageInput,
|
||||
|
@ -22,8 +22,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
|
||||
from ...image_transforms import (
|
||||
center_crop,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
@ -187,49 +185,6 @@ class VideoMAEImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}")
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def _preprocess_image(
|
||||
self,
|
||||
image: ImageInput,
|
||||
|
@ -19,7 +19,7 @@ from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import PaddingMode, normalize, pad, rescale, resize, to_channel_dimension_format
|
||||
from ...image_transforms import PaddingMode, pad, resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
IMAGENET_STANDARD_MEAN,
|
||||
IMAGENET_STANDARD_STD,
|
||||
@ -229,49 +229,6 @@ class ViltImageProcessor(BaseImageProcessor):
|
||||
output_size = get_resize_output_image_size(image, shorter=shorter, longer=longer, size_divisor=size_divisor)
|
||||
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def _pad_image(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
|
@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
|
||||
from ...image_transforms import resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
IMAGENET_STANDARD_MEAN,
|
||||
IMAGENET_STANDARD_STD,
|
||||
@ -127,57 +127,6 @@ class ViTImageProcessor(BaseImageProcessor):
|
||||
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
|
||||
)
|
||||
|
||||
def rescale(
|
||||
self, image: np.ndarray, scale: float, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`float`):
|
||||
The scaling factor to rescale pixel values by.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The rescaled image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `List[float]`):
|
||||
Image mean to use for normalization.
|
||||
std (`float` or `List[float]`):
|
||||
Image standard deviation to use for normalization.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||||
image is used. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The normalized image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -23,8 +23,6 @@ from ...image_transforms import (
|
||||
center_crop,
|
||||
convert_to_rgb,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
@ -173,49 +171,6 @@ class ViTHybridImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}")
|
||||
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
|
@ -24,7 +24,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
|
||||
from ...image_transforms import (
|
||||
center_crop,
|
||||
get_resize_output_image_size,
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
@ -222,29 +221,6 @@ class VivitImageProcessor(BaseImageProcessor):
|
||||
image = image - (scale / 2)
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
image_mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
image_std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def _preprocess_image(
|
||||
self,
|
||||
image: ImageInput,
|
||||
|
@ -26,7 +26,6 @@ from ...image_transforms import (
|
||||
center_to_corners_format,
|
||||
corners_to_center_format,
|
||||
id_to_rgb,
|
||||
normalize,
|
||||
pad,
|
||||
rescale,
|
||||
resize,
|
||||
@ -852,19 +851,6 @@ class YolosImageProcessor(BaseImageProcessor):
|
||||
"""
|
||||
return rescale(image, rescale_factor, data_format=data_format)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, Iterable[float]],
|
||||
std: Union[float, Iterable[float]],
|
||||
data_format: Optional[ChannelDimension] = None,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize the image with the given mean and standard deviation.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
|
||||
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
|
||||
"""
|
||||
|
Loading…
Reference in New Issue
Block a user