mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
switch to full google code
This commit is contained in:
parent
12e013dbac
commit
13ee61e4de
119
.gitignore
vendored
119
.gitignore
vendored
@ -1,2 +1,119 @@
|
||||
# VSCode
|
||||
# Initially taken from Github's Python gitignore file
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
.python-version
|
||||
|
||||
# celery beat schedule file
|
||||
celerybeat-schedule
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# vscode
|
||||
.vscode
|
31
CONTRIBUTING.md
Normal file
31
CONTRIBUTING.md
Normal file
@ -0,0 +1,31 @@
|
||||
# How to Contribute
|
||||
|
||||
BERT needs to maintain permanent compatibility with the pre-trained model files,
|
||||
so we do not plan to make any major changes to this library (other than what was
|
||||
promised in the README). However, we can accept small patches related to
|
||||
re-factoring and documentation. To submit contributes, there are just a few
|
||||
small guidelines you need to follow.
|
||||
|
||||
## Contributor License Agreement
|
||||
|
||||
Contributions to this project must be accompanied by a Contributor License
|
||||
Agreement. You (or your employer) retain the copyright to your contribution;
|
||||
this simply gives us permission to use and redistribute your contributions as
|
||||
part of the project. Head over to <https://cla.developers.google.com/> to see
|
||||
your current agreements on file or to sign a new one.
|
||||
|
||||
You generally only need to submit a CLA once, so if you've already submitted one
|
||||
(even if it was for a different project), you probably don't need to do it
|
||||
again.
|
||||
|
||||
## Code reviews
|
||||
|
||||
All submissions, including submissions by project members, require review. We
|
||||
use GitHub pull requests for this purpose. Consult
|
||||
[GitHub Help](https://help.github.com/articles/about-pull-requests/) for more
|
||||
information on using pull requests.
|
||||
|
||||
## Community Guidelines
|
||||
|
||||
This project follows
|
||||
[Google's Open Source Community Guidelines](https://opensource.google.com/conduct/).
|
202
LICENSE
Normal file
202
LICENSE
Normal file
@ -0,0 +1,202 @@
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
796
README.md
796
README.md
@ -1,23 +1,789 @@
|
||||
# pytorch-pretrained-BERT
|
||||
A PyTorch version of Google's pretrained BERT model as described in
|
||||
# BERT
|
||||
|
||||
No bells and whitles, just:
|
||||
- [one class](bert_model.py) with a clean commented version of Google's BERT model that can load the weights pre-trained by Google's authors,
|
||||
- [another class](data_processor.py) with all you need to pre- and post-process text data for the model (tokenize and encode),
|
||||
- and [a script](download_weigths.sh) to download Google's pre-trained weights.
|
||||
## Introduction
|
||||
|
||||
Here is how to use these:
|
||||
**BERT**, or **B**idirectional **E**mbedding **R**epresentations from
|
||||
**T**ransformers, is a new method of pre-training language representations which
|
||||
obtains state-of-the-art results on a wide array of Natural Language Processing
|
||||
(NLP) tasks.
|
||||
|
||||
Our academic paper which describes BERT in detail and provides full results on a
|
||||
number of tasks can be found here:
|
||||
[https://arxiv.org/abs/1810.04805](https://arxiv.org/abs/1810.04805).
|
||||
|
||||
To give a few numbers, here are the results on the
|
||||
[SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/) question answering
|
||||
task:
|
||||
|
||||
SQuAD v1.1 Leaderboard (Oct 8th 2018) | Test EM | Test F1
|
||||
------------------------------------- | :------: | :------:
|
||||
1st Place Ensemble - BERT | **87.4** | **93.2**
|
||||
2nd Place Ensemble - nlnet | 86.0 | 91.7
|
||||
1st Place Single Model - BERT | **85.1** | **91.8**
|
||||
2nd Place Single Model - nlnet | 83.5 | 90.1
|
||||
|
||||
And several natural language inference tasks:
|
||||
|
||||
System | MultiNLI | Question NLI | SWAG
|
||||
----------------------- | :------: | :----------: | :------:
|
||||
BERT | **86.7** | **91.1** | **86.3**
|
||||
OpenAI GPT (Prev. SOTA) | 82.2 | 88.1 | 75.0
|
||||
|
||||
Plus many other tasks.
|
||||
|
||||
Moreover, these results were all obtained with almost no task-specific neural
|
||||
network architecture design.
|
||||
|
||||
If you already know what BERT is and you just want to get started, you can
|
||||
[download the pre-trained models](#pre-trained-models) and
|
||||
[run a state-of-the-art fine-tuning](#fine-tuning-with-bert) in only a few
|
||||
minutes.
|
||||
|
||||
## What is BERT?
|
||||
|
||||
BERT is method of pre-training language representations, meaning that we train a
|
||||
general-purpose "language understanding" model on a large text corpus (like
|
||||
Wikipedia), and then use that model for downstream NLP tasks that we are about
|
||||
(like question answering). BERT outperforms previous methods because it is the
|
||||
first *unsupervised*, *deeply bidirectional* system for pre-training NLP.
|
||||
|
||||
*Unsupervised* means that BERT was trained using only a plain text corpus, which
|
||||
is important because an enormous amount of plain text data is publicly available
|
||||
on the web in many languages.
|
||||
|
||||
Pre-trained representations can also either be *context-free* or *contextual*,
|
||||
and contextual representations can further be *unidirectional* or
|
||||
*bidirectional*. Context-free models such as
|
||||
[word2vec](https://www.tensorflow.org/tutorials/representation/word2vec) or
|
||||
[GloVe](https://nlp.stanford.edu/projects/glove/) generate a single "word
|
||||
embedding" representation for each word in the vocabulary, so `bank` would have
|
||||
the same representation in `bank deposit` and `river bank`. Contextual models
|
||||
instead generate a representation of each word that is based on the other words
|
||||
in the sentence.
|
||||
|
||||
BERT was built upon recent work in pre-training contextual representations —
|
||||
including [Semi-supervised Sequence Learning](https://arxiv.org/abs/1511.01432),
|
||||
[Generative Pre-Training](https://blog.openai.com/language-unsupervised/),
|
||||
[ELMo](https://allennlp.org/elmo), and
|
||||
[ULMFit](http://nlp.fast.ai/classification/2018/05/15/introducting-ulmfit.html)
|
||||
— but crucially these models are all *unidirectional* or *shallowly
|
||||
bidirectional*. This means that each word is only contextualized using the words
|
||||
to its left (or right). For example, in the sentence `I made a bank deposit` the
|
||||
unidirectional representation of `bank` is only based on `I made a` but not
|
||||
`deposit`. Some previous work does combine the representations from separate
|
||||
left-context and right-context models, but only in a "shallow" manner. BERT
|
||||
represents "bank" using both its left and right context — `I made a ... deposit`
|
||||
— starting from the very bottom of a deep neural network, so it is *deeply
|
||||
bidirectional*.
|
||||
|
||||
BERT uses a simple approach for this: We mask out 15% of the words in the input,
|
||||
run the entire sequence through a deep bidirectional
|
||||
[Transformer](https://arxiv.org/abs/1706.03762) encoder, and then predict only
|
||||
the masked words. For example:
|
||||
|
||||
```
|
||||
Input: the man went to the [MASK1] . he bought a [MASK2] of milk.
|
||||
Labels: [MASK1] = store; [MASK2] = gallon
|
||||
```
|
||||
|
||||
In order to learn relationships between sentences, we also train on a simple
|
||||
task which can be generated from any monolingual corpus: Given two sentences `A`
|
||||
and `B`, is `B` the actual next sentence that comes after `A`, or just a random
|
||||
sentence from the corpus?
|
||||
|
||||
```
|
||||
Sentence A: the man went to the store .
|
||||
Sentence B: he bought a gallon of milk .
|
||||
Label: IsNextSentence
|
||||
```
|
||||
|
||||
```
|
||||
Sentence A: the man went to the store .
|
||||
Sentence B: penguins are flightless .
|
||||
Label: NotNextSentence
|
||||
```
|
||||
|
||||
We then train a large model (12-layer to 24-layer Transformer) on a large corpus
|
||||
(Wikipedia + [BookCorpus](http://yknzhu.wixsite.com/mbweb)) for a long time (1M
|
||||
update steps), and that's BERT.
|
||||
|
||||
Using BERT has two stages: *Pre-training* and *fine-tuning*.
|
||||
|
||||
**Pre-training** is fairly expensive (four days on 4 to 16 Cloud TPUs), but is a
|
||||
one-time procedure for each language (current models are English-only, but
|
||||
multilingual models will be released in the near future). We are releasing a
|
||||
number of pre-trained models from the paper which were pre-trained at Google.
|
||||
Most NLP researchers will never need to pre-train their own model from scratch.
|
||||
|
||||
**Fine-tuning** is inexpensive. All of the results in the paper can be
|
||||
replicated in at most 1 hour on a single Cloud TPU, or a few hours on a GPU,
|
||||
starting from the exact same pre-trained model. SQuAD, for example, can be
|
||||
trained in around 30 minutes on a single Cloud TPU to achieve a Dev F1 score of
|
||||
91.0%, which is the single system state-of-the-art.
|
||||
|
||||
The other important aspect of BERT is that it can be adapted to many types of
|
||||
NLP tasks very easily. In the paper, we demonstrate state-of-the-art results on
|
||||
sentence-level (e.g., SST-2), sentence-pair-level (e.g., MultiNLI), word-level
|
||||
(e.g., NER), and span-level (e.g., SQuAD) tasks with almost no task-specific
|
||||
modifications.
|
||||
|
||||
## What has been released in this repository?
|
||||
|
||||
We are releasing the following:
|
||||
|
||||
* TensorFlow code for the BERT model architecture (which is mostly a standard
|
||||
[Transformer](https://arxiv.org/abs/1706.03762) architecture).
|
||||
* Pre-trained checkpoints for both the lowercase and cased version of
|
||||
`BERT-Base` and `BERT-Large` from the paper.
|
||||
* TensorFlow code for push-button replication of the most important
|
||||
fine-tuning experiments from the paper, including SQuAD, MultiNLI, and MRPC.
|
||||
|
||||
All of the code in this repository works out-of-the-box with CPU, GPU, and Cloud
|
||||
TPU.
|
||||
|
||||
## Pre-trained models
|
||||
|
||||
We are releasing the `BERT-Base` and `BERT-Large` models from the paper.
|
||||
`Uncased` means that the text has been lowercased before WordPiece tokenization,
|
||||
e.g., `John Smith` becomes `john smith`. The `Uncased` model also strips out any
|
||||
accent markers. `Cased` means that the true case and accent markers are
|
||||
preserved. Typically, the `Uncased` model is better unless you know that case
|
||||
information is important for your task (e.g., Named Entity Recognition or
|
||||
Part-of-Speech tagging).
|
||||
|
||||
These models are all released under the same license as the source code (Apache
|
||||
2.0).
|
||||
|
||||
The links to the models are here (right-cick, 'Save link as...' on the name):
|
||||
|
||||
* **[`BERT-Base, Uncased`](https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip)**:
|
||||
12-layer, 768-hidden, 12-heads, 110M parameters
|
||||
* **[`BERT-Large, Uncased`](https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_A-16.zip)**:
|
||||
24-layer, 1024-hidden, 16-heads, 340M parameters
|
||||
* **[`BERT-Base, Cased`](https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip)**:
|
||||
12-layer, 768-hidden, 12-heads , 110M parameters
|
||||
* **`BERT-Large, Cased`**: 24-layer, 1024-hidden, 16-heads, 340M parameters
|
||||
(Not available yet. Needs to be re-generated).
|
||||
|
||||
Each .zip file contains three items:
|
||||
|
||||
* A TensorFlow checkpoint (`bert_model.ckpt`) containing the pre-trained
|
||||
weights (which is actually 3 files).
|
||||
* A vocab file (`vocab.txt`) to map WordPiece to word id.
|
||||
* A config file (`bert_config.json`) which specifies the hyperparameters of
|
||||
the model.
|
||||
|
||||
## Fine-tuning with BERT
|
||||
|
||||
**Important**: All results on the paper were fine-tuned on a single Cloud TPU,
|
||||
which has 64GB of RAM. It is currently not possible to re-produce most of the
|
||||
`BERT-Large` results on the paper using a GPU with 12GB - 16GB of RAM, because
|
||||
the maximum batch size that can fit in memory is too small. We are working on
|
||||
adding code to this repository which allows for much larger effective batch size
|
||||
on the GPU. See the section on [out-of-memory issues](#out-of-memory-issues) for
|
||||
more details.
|
||||
|
||||
This code was tested with TensorFlow 1.11.0. It was tested with Python2 and
|
||||
Python3 (but more thoroughly with Python2, since this is what's used internally
|
||||
in Google).
|
||||
|
||||
The fine-tuning examples which use `BERT-Base` should be able to run on a GPU
|
||||
that has at least 12GB of RAM using the hyperparameters given.
|
||||
|
||||
### Fine-tuning with Cloud TPUs
|
||||
|
||||
Most of the examples below assumes that you will be running training/evaluation
|
||||
on your local machine, using a GPU like a Titan X or GTX 1080.
|
||||
|
||||
However, if you have access to a Cloud TPU that you want to train on, just add
|
||||
the following flags to `run_classifier.py` or `run_squad.py`:
|
||||
|
||||
```
|
||||
--use_tpu=True \
|
||||
--tpu_name=$TPU_NAME
|
||||
```
|
||||
|
||||
Please see the
|
||||
[Google Cloud TPU tutorial](https://cloud.google.com/tpu/docs/tutorials/mnist)
|
||||
for how to use Cloud TPUs.
|
||||
|
||||
On Cloud TPUs, the pretrained model and the output directory will need to be on
|
||||
Google Cloud Storage. For example, if you have a bucket named `some_bucket`, you
|
||||
might use the following flags instead:
|
||||
|
||||
```
|
||||
--output_dir=gs://some_bucket/my_output_dir/
|
||||
```
|
||||
|
||||
The unzipped pre-trained model files can also be found in the Google Cloud
|
||||
Storage folder `gs://bert_models/2018_10_18`. For example:
|
||||
|
||||
```
|
||||
export BERT_BASE_DIR=gs://bert_models/2018_10_18/uncased_L-12_H-768_A-12
|
||||
```
|
||||
|
||||
### Sentence (and sentence-pair) classification tasks
|
||||
|
||||
Before running this example you must download the
|
||||
[GLUE data](https://gluebenchmark.com/tasks) by running
|
||||
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
|
||||
and unpack it to some directory `$GLUE_DIR`. Next, download the `BERT-Base`
|
||||
checkpoint and unzip it to some directory `$BERT_BASE_DIR`.
|
||||
|
||||
This example code fine-tunes `BERT-Base` on the Microsoft Research Paraphrase
|
||||
Corpus (MRPC) corpus, which only contains 3,600 examples and can fine-tune in a
|
||||
few minutes on most GPUs.
|
||||
|
||||
```shell
|
||||
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
|
||||
export GLUE_DIR=/path/to/glue
|
||||
|
||||
python run_classifier.py \
|
||||
--task_name=MRPC \
|
||||
--do_train=true \
|
||||
--do_eval=true \
|
||||
--data_dir=$GLUE_DIR/MRPC \
|
||||
--vocab_file=$BERT_BASE_DIR/vocab.txt \
|
||||
--bert_config_file=$BERT_BASE_DIR/bert_config.json \
|
||||
--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
|
||||
--max_seq_length=128 \
|
||||
--train_batch_size=32 \
|
||||
--learning_rate=2e-5 \
|
||||
--num_train_epochs=3.0 \
|
||||
--output_dir=/tmp/mrpc_output/
|
||||
```
|
||||
|
||||
You should see output like this:
|
||||
|
||||
```
|
||||
***** Eval results *****
|
||||
eval_accuracy = 0.845588
|
||||
eval_loss = 0.505248
|
||||
global_step = 343
|
||||
loss = 0.505248
|
||||
```
|
||||
|
||||
This means that the Dev set accuracy was 84.55%. Small sets like MRPC have a
|
||||
high variance in the Dev set accuracy, even when starting from the same
|
||||
pre-training checkpoint. If you re-run multiple times (making sure to point to
|
||||
different `output_dir`), you should see results between 84% and 88%.
|
||||
|
||||
A few other pre-trained models are implemented off-the-shelf in
|
||||
`run_classifier.py`, so it should be straightforward to follow those examples to
|
||||
use BERT for any single-sentence or sentence-pair classification task.
|
||||
|
||||
Note: You might see a message `Running train on CPU`. This really just means
|
||||
that it's running on something other than a Cloud TPU, which includes a GPU.
|
||||
|
||||
### SQuAD
|
||||
|
||||
The Stanford Question Answering Dataset (SQuAD) is a popular question answering
|
||||
benchmark dataset. BERT (at the time of the release) obtains state-of-the-art
|
||||
results on SQuAD with almost no task-specific network architecture modifications
|
||||
or data augmentation. However, it does require semi-complex data pre-processing
|
||||
and post-processing to deal with (a) the variable-length nature of SQuAD context
|
||||
paragraphs, and (b) the character-level answer annotations which are used for
|
||||
SQuAD training. This processing is implemented and documented in `run_squad.py`.
|
||||
|
||||
To run on SQuAD, you will first need to download the dataset. The
|
||||
[SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/) does not seem to
|
||||
link to the v1.1 datasets any longer, but the necessary files can be found here:
|
||||
|
||||
* [train-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json)
|
||||
* [dev-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json)
|
||||
* [evaluate-v1.1.py](https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py)
|
||||
|
||||
Download these to some directory `$SQUAD_DIR`.
|
||||
|
||||
The state-of-the-art SQuAD results from the paper currently cannot be reproduced
|
||||
on a 12GB-16GB GPU due to memory constraints (in fact, even batch size 1 does
|
||||
not seem to fit on a 12GB GPU using `BERT-Large`). However, a reasonably strong
|
||||
`BERT-Base` model can be trained on the GPU with these hyperparameters:
|
||||
|
||||
```shell
|
||||
python run_squad.py \
|
||||
--vocab_file=$BERT_BASE_DIR/vocab.txt \
|
||||
--bert_config_file=$BERT_BASE_DIR/bert_config.json \
|
||||
--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
|
||||
--do_train=True \
|
||||
--train_file=$SQUAD_DIR/train-v1.1.json \
|
||||
--do_predict=True \
|
||||
--predict_file=$SQUAD_DIR/dev-v1.1.json \
|
||||
--train_batch_size=12 \
|
||||
--learning_rate=5e-5 \
|
||||
--num_train_epochs=2.0 \
|
||||
--max_seq_length=384 \
|
||||
--doc_stride=128 \
|
||||
--output_dir=/tmp/squad_base/
|
||||
```
|
||||
|
||||
The dev set predictions will be saved into a file called `predictions.json` in
|
||||
the `output_dir`:
|
||||
|
||||
```shell
|
||||
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ./squad/predictions.json
|
||||
```
|
||||
|
||||
Which should produce an output like this:
|
||||
|
||||
```shell
|
||||
{"f1": 88.41249612335034, "exact_match": 81.2488174077578}
|
||||
```
|
||||
|
||||
You should see a result similar to the 88.5% reported in the paper for
|
||||
`BERT-Base`.
|
||||
|
||||
If you have access to a Cloud TPU, you can train with `BERT-Large`. Here is a
|
||||
set of hyperparameters (slightly different than the paper) which consistently
|
||||
obtain around 90.5%-91.0% F1 single-system trained only on SQuAD:
|
||||
|
||||
```shell
|
||||
python run_squad.py \
|
||||
--vocab_file=$BERT_LARGE_DIR/vocab.txt \
|
||||
--bert_config_file=$BERT_LARGE_DIR/bert_config.json \
|
||||
--init_checkpoint=$BERT_LARGE_DIR/bert_model.ckpt \
|
||||
--do_train=True \
|
||||
--train_file=$SQUAD_DIR/train-v1.1.json \
|
||||
--do_predict=True \
|
||||
--predict_file=$SQUAD_DIR/dev-v1.1.json \
|
||||
--train_batch_size=48 \
|
||||
--learning_rate=5e-5 \
|
||||
--num_train_epochs=2.0 \
|
||||
--max_seq_length=384 \
|
||||
--doc_stride=128 \
|
||||
--output_dir=gs://some_bucket/squad_large/ \
|
||||
--use_tpu=True \
|
||||
--tpu_name=$TPU_NAME
|
||||
```
|
||||
|
||||
For example, one random run with these parameters produces the following Dev
|
||||
scores:
|
||||
|
||||
```shell
|
||||
{"f1": 90.87081895814865, "exact_match": 84.38978240302744}
|
||||
```
|
||||
|
||||
If you fine-tune for one epoch on
|
||||
[TriviaQA](http://nlp.cs.washington.edu/triviaqa/) before this the results will
|
||||
be even better, but you will need to convert TriviaQA into the SQuAD json
|
||||
format.
|
||||
|
||||
### Out-of-memory issues
|
||||
|
||||
All experiments in the paper were fine-tuned on a Cloud TPU, which has 64GB of
|
||||
device RAM. Therefore, when using a GPU with 12GB - 16GB of RAM, you are likely
|
||||
to encounter out-of-memory issues if you use the same hyperparameters described
|
||||
in the paper.
|
||||
|
||||
The factors that affect memory usage are:
|
||||
|
||||
* **`max_seq_length`**: The released models were trained with sequence lengths
|
||||
up to 512, but you can fine-tune with a shorter max sequence length to save
|
||||
substantial memory. This is controlled by the `max_seq_length` flag in our
|
||||
example code.
|
||||
|
||||
* **`train_batch_size`**: The memory usage is also directly proportional to
|
||||
the batch size.
|
||||
|
||||
* **Model type, `BERT-Base` vs. `BERT-Large`**: The `BERT-Large` model
|
||||
requires significantly more memory than `BERT-Base`.
|
||||
|
||||
* **Optimizer**: The default optimizer for BERT is Adam, which requires a lot
|
||||
of extra memory to store the `m` and `v` vectors. Switching to a more memory
|
||||
efficient optimizer can reduce memory usage, but can also affect the
|
||||
results. We have not experimented with other optimizers for fine-tuning.
|
||||
|
||||
Using the default training scripts (`run_classifier.py` and `run_squad.py`), we
|
||||
benchmarked the maximum batch size on single Titan X GPU (12GB RAM) with
|
||||
TensorFlow 1.11.0:
|
||||
|
||||
System | Seq Length | Max Batch Size
|
||||
------------ | ---------- | --------------
|
||||
`BERT-Base` | 64 | 64
|
||||
... | 128 | 32
|
||||
... | 256 | 16
|
||||
... | 320 | 14
|
||||
... | 384 | 12
|
||||
... | 512 | 6
|
||||
`BERT-Large` | 64 | 12
|
||||
... | 128 | 6
|
||||
... | 256 | 2
|
||||
... | 320 | 1
|
||||
... | 384 | 0
|
||||
... | 512 | 0
|
||||
|
||||
Unfortunately, these max batch sizes for `BERT-Large` are so small that they
|
||||
will actually harm the model accuracy, regardless of the learning rate used. We
|
||||
are working on adding code to this repository which will allow much larger
|
||||
effective batch sizes to be used on the GPU. The code will be based on one (or
|
||||
both) of the following techniques:
|
||||
|
||||
* **Gradient accumulation**: The samples in a minibatch are typically
|
||||
independent with respect to gradient computation (excluding batch
|
||||
normalization, which is not used here). This means that the gradients of
|
||||
multiple smaller minibatches can be accumulated before performing the weight
|
||||
update, and this will be exactly equivalent to a single larger update.
|
||||
|
||||
* [**Gradient checkpointing**](https://github.com/openai/gradient-checkpointing):
|
||||
The major use of GPU/TPU memory during DNN training is caching the
|
||||
intermediate activations in the forward pass that are necessary for
|
||||
efficient computation in the backward pass. "Gradient checkpointing" trades
|
||||
memory for compute time by re-computing the activations in an intelligent
|
||||
way.
|
||||
|
||||
**However, this is not implemented in the current release.**
|
||||
|
||||
## Using BERT to extract fixed feature vectors (like ELMo)
|
||||
|
||||
In certain cases, rather than fine-tuning the entire pre-trained model
|
||||
end-to-end, it can be beneficial to obtained *pre-trained contextual
|
||||
embeddings*, which are fixed contextual representations of each input token
|
||||
generated from the hidden layers of the pre-trained model. This should also
|
||||
mitigate most of the out-of-memory issues.
|
||||
|
||||
As an example, we include the script `extract_features.py` which can be used
|
||||
like this:
|
||||
|
||||
```shell
|
||||
# Sentence A and Sentence B are separated by the ||| delimiter.
|
||||
# For single sentence inputs, don't use the delimiter.
|
||||
echo 'Who was Jim Henson ? ||| Jim Henson was a puppeteer' > /tmp/input.txt
|
||||
|
||||
python extract_features.py \
|
||||
--input_file=/tmp/input.txt \
|
||||
--output_file=/tmp/output.jsonl \
|
||||
--vocab_file=$BERT_BASE_DIR/vocab.txt \
|
||||
--bert_config_file=$BERT_BASE_DIR/bert_config.json \
|
||||
--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
|
||||
--layers=-1,-2,-3,-4 \
|
||||
--max_seq_length=128 \
|
||||
--batch_size=8
|
||||
```
|
||||
|
||||
This will create a JSON file (one line per line of input) containing the BERT
|
||||
activations from each Transformer layer specified by `layers` (-1 is the final
|
||||
hidden layer of the Transformer, etc.)
|
||||
|
||||
Note that this script will produce very large output files (by default, around
|
||||
15kb for every input token).
|
||||
|
||||
If you need to maintain alignment between the original and tokenized words (for
|
||||
projecting training labels), see the [Tokenization](#tokenization) section
|
||||
below.
|
||||
|
||||
## Tokenization
|
||||
|
||||
For sentence-level tasks (or sentence-pair) tasks, tokenization is very simple.
|
||||
Just follow the example code in `run_classifier.py` and `extract_features.py`.
|
||||
The basic procedure for sentence-level tasks is:
|
||||
|
||||
1. Instantiate an instance of `tokenizer = tokenization.FullTokenizer`
|
||||
|
||||
2. Tokenize the raw text with `tokens = tokenizer.tokenize(raw_text)`.
|
||||
|
||||
3. Truncate to the maximum sequence length. (You can use up to 512, but you
|
||||
probably want to use shorter if possible for memory and speed reasons.)
|
||||
|
||||
4. Add the `[CLS]` and `[SEP]` tokens in the right place.
|
||||
|
||||
Word-level and span-level tasks (e.g., SQuAD and NER) are more complex, since
|
||||
you need to maintain alignment between your input text and output text so that
|
||||
you can project your training labels. SQuAD is a particularly complex example
|
||||
because the input labels are *character*-based, and SQuAD paragraphs are often
|
||||
longer than our maximum sequence length. See the code in `run_squad.py` to show
|
||||
how we handle this.
|
||||
|
||||
Before we describe the general recipe for handling word-level tasks, it's
|
||||
important to understand what exactly our tokenizer is doing. It has three main
|
||||
steps:
|
||||
|
||||
1. **Text normalization**: Convert all whitespace characters to spaces, and
|
||||
(for the `Uncased` model) lowercase the input and strip out accent markers.
|
||||
E.g., `John Johanson's, → john johanson's,`.
|
||||
|
||||
2. **Punctuation splitting**: Split *all* punctuation characters on both sides
|
||||
(i.e., add whitespace around all punctuation characters). Punctuation
|
||||
characters are defined as (a) Anything with a `P*` Unicode class, (b) any
|
||||
non-letter/number/space ASCII character (e.g., characters like `$` which are
|
||||
technically not punctuation). E.g., `john johanson's, → john johanson ' s ,`
|
||||
|
||||
3. **WordPiece tokenization**: Apply whitespace tokenization to the output of
|
||||
the above procedure, and apply
|
||||
[WordPiece](https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/text_encoder.py)
|
||||
tokenization to each token separately. (Our implementation is directly based
|
||||
on the one from `tensor2tensor`, which is linked). E.g., `john johanson ' s
|
||||
, → john johan ##son ' s ,`
|
||||
|
||||
The advantage of this scheme is that it is "compatible" with most existing
|
||||
English tokenizers. For example, imagine that you have a part-of-speech tagging
|
||||
task which looks like this:
|
||||
|
||||
```
|
||||
Input: John Johanson 's house
|
||||
Labels: NNP NNP POS NN
|
||||
```
|
||||
|
||||
The tokenized output will look like this:
|
||||
|
||||
```
|
||||
Tokens: john johan ##son ' s house
|
||||
```
|
||||
|
||||
Crucially, this would be the same output as if the raw text were `John
|
||||
Johanson's house` (with no space before the `'s`).
|
||||
|
||||
If you have a pre-tokenized representation with word-level annotations, you can
|
||||
simply tokenize each input word independently, and deterministically maintain an
|
||||
original-to-tokenized alignment:
|
||||
|
||||
```python
|
||||
from .bert_model import BERT
|
||||
from .data_processor import DataProcessor
|
||||
### Input
|
||||
orig_tokens = ["John", "Johanson", "'s", "house"]
|
||||
labels = ["NNP", "NNP", "POS", "NN"]
|
||||
|
||||
bert_model = BERT(bert_model_path='.')
|
||||
data_processor = DataProcessor(bert_vocab_path='.')
|
||||
### Output
|
||||
bert_tokens = []
|
||||
|
||||
input_sentence = "We are playing with the BERT model."
|
||||
# Token map will be an int -> int mapping between the `orig_tokens` index and
|
||||
# the `bert_tokens` index.
|
||||
orig_to_tok_map = []
|
||||
|
||||
tensor_input = data_processor.encode(input_sentence)
|
||||
tensor_output = bert_model(prepared_input)
|
||||
output_sentence = data_processor.decode(tensor_output)
|
||||
tokenizer = tokenization.FullTokenizer(
|
||||
vocab_file=vocab_file, do_lower_case=True)
|
||||
|
||||
bert_tokens.append("[CLS]")
|
||||
for orig_token in orig_tokens:
|
||||
orig_to_tok_map.append(len(bert_tokens))
|
||||
bert_tokens.extend(tokenizer.tokenize(orig_token))
|
||||
bert_tokens.append("[SEP]")
|
||||
|
||||
# bert_tokens == ["[CLS]", "john", "johan", "##son", "'", "s", "house", "[SEP]"]
|
||||
# orig_to_tok_map == [1, 2, 4, 6]
|
||||
```
|
||||
|
||||
Now `orig_to_tok_map` can be used to project `labels` to the tokenized
|
||||
representation.
|
||||
|
||||
There are common English tokenization schemes which will cause a slight mismatch
|
||||
between how BERT was pre-trained. For example, if your input tokenization splits
|
||||
off contractions like `do n't`, this will cause a mismatch. If it is possible to
|
||||
do so, you should pre-process your data to convert these back to raw-looking
|
||||
text, but if it's not possible, this mismatch is likely not a big deal.
|
||||
|
||||
## Pre-training with BERT
|
||||
|
||||
We are releasing code to do "masked LM" and "next sentence prediction" on an
|
||||
arbitrary text corpus. Note that this is *not* the exact code that was used for
|
||||
the paper (the original code was written in C++, and had some additional
|
||||
complexity), but this code does generate pre-training data as described in the
|
||||
paper.
|
||||
|
||||
Here's how to run the data generation. The input is a plain text file, with one
|
||||
sentence per line. (It is important that these be actual sentences for the "next
|
||||
sentence prediction" task). Documents are delimited by empty lines. The output
|
||||
is a set of `tf.train.Example`s serialized into `TFRecord` file format.
|
||||
|
||||
This script stores all of the examples for the entire input file in memory, so
|
||||
for large data files you should shard the input file and call the script
|
||||
multiple times. (You can pass in a file glob to `run_pretraining.py`, e.g.,
|
||||
`tf_examples.tf_record*`.)
|
||||
|
||||
The `max_predictions_per_seq` is the maximum number of masked LM predictions per
|
||||
sequence. You should set this to around `max_seq_length` * `masked_lm_prob` (the
|
||||
script doesn't do that automatically because the exact value needs to be passed
|
||||
to both scripts).
|
||||
|
||||
```shell
|
||||
python create_pretraining_data.py \
|
||||
--input_file=./sample_text.txt \
|
||||
--output_file=/tmp/tf_examples.tfrecord \
|
||||
--vocab_file=$BERT_BASE_DIR/vocab.txt \
|
||||
--do_lower_case=True \
|
||||
--max_seq_length=128 \
|
||||
--max_predictions_per_seq=20 \
|
||||
--masked_lm_prob=0.15 \
|
||||
--random_seed=12345 \
|
||||
--dupe_factor=5
|
||||
```
|
||||
|
||||
Here's how to run the pre-training. Do not include `init_checkpoint` if you are
|
||||
pre-training from scratch. The model configuration (including vocab size) is
|
||||
specified in `bert_config_file`. This demo code only pre-trains for a small
|
||||
number of steps (20), but in practice you will probably want to set
|
||||
`num_train_steps` to 10000 steps or more. The `max_seq_length` and
|
||||
`max_predictions_per_seq` parameters passed to `run_pretraining.py` must be the
|
||||
same as `create_pretraining_data.py`.
|
||||
|
||||
```shell
|
||||
python run_pretraining.py \
|
||||
--input_file=/tmp/tf_examples.tfrecord \
|
||||
--output_dir=/tmp/pretraining_output \
|
||||
--do_train=True \
|
||||
--do_eval=True \
|
||||
--bert_config_file=$BERT_BASE_DIR/bert_config.json \
|
||||
--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
|
||||
--train_batch_size=32 \
|
||||
--max_seq_length=128 \
|
||||
--max_predictions_per_seq=20 \
|
||||
--num_train_steps=20 \
|
||||
--num_warmup_steps=10 \
|
||||
--learning_rate=2e-5
|
||||
```
|
||||
|
||||
This will produce an output like this:
|
||||
|
||||
```
|
||||
***** Eval results *****
|
||||
global_step = 20
|
||||
loss = 0.0979674
|
||||
masked_lm_accuracy = 0.985479
|
||||
masked_lm_loss = 0.0979328
|
||||
next_sentence_accuracy = 1.0
|
||||
next_sentence_loss = 3.45724e-05
|
||||
```
|
||||
|
||||
Note that since our `sample_text.txt` file is very small, this example training
|
||||
will overfit that data in only a few steps and produce unrealistically high
|
||||
accuracy numbers.
|
||||
|
||||
### Pre-training tips and caveats
|
||||
|
||||
* If your task has a large domain-specific corpus available (e.g., "movie
|
||||
reviews" or "scientific papers"), it will likely be beneficial to run
|
||||
additional steps of pre-training on your corpus, starting from the BERT
|
||||
checkpoint.
|
||||
* The learning rate we used in the paper was 1e-4. However, if you are doing
|
||||
additional steps of pre-training starting from an existing BERT checkpoint,
|
||||
you should use a smaller learning rate (e.g., 2e-5).
|
||||
* Current BERT models are English-only, but we do plan to release a
|
||||
multilingual model which has been pre-trained on a lot of languages in the
|
||||
near future (hopefully by the end of November 2018).
|
||||
* Longer sequences are disproportionately expensive because attention is
|
||||
quadratic to the sequence length. In other words, a batch of 64 sequences of
|
||||
length 512 is much more expensive than a batch of 256 sequences of
|
||||
length 128. The fully-connected/convolutional cost is the same, but the
|
||||
attention cost is far greater for the 512-length sequences. Therefore, one
|
||||
good recipe is to pre-train for, say, 90,000 steps with a sequence length of
|
||||
128 and then for 10,000 additional steps with a sequence length of 512. The
|
||||
very long sequences are mostly needed to learn positional embeddings, which
|
||||
can be learned fairly quickly. Note that this does require generating the
|
||||
data twice with different values of `max_seq_length`.
|
||||
* If you are pre-training from scratch, be prepared that pre-training is
|
||||
computationally expensive, especially on GPUs. If you are pre-training from
|
||||
scratch, our recommended recipe is to pre-train a `BERT-Base` on a single
|
||||
[preemptable Cloud TPU v2](https://cloud.google.com/tpu/docs/pricing), which
|
||||
takes about 2 weeks at a cost of about $500 USD (based on the pricing in
|
||||
October 2018). You will have to scale down the batch size when only training
|
||||
on a single Cloud TPU, compared to what was used in the paper. It is
|
||||
recommended to use the largest batch size that fits into TPU memory.
|
||||
|
||||
### Pre-training data
|
||||
|
||||
We will **not** be able to release the pre-processed datasets used in the paper.
|
||||
For Wikipedia, the recommended pre-processing is to download
|
||||
[the latest dump](https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2),
|
||||
extract the text with
|
||||
[`WikiExtractor.py`](https://github.com/attardi/wikiextractor), and then apply
|
||||
any necessary cleanup to convert it into plain text.
|
||||
|
||||
Unfortunately the researchers who collected the
|
||||
[BookCorpus](http://yknzhu.wixsite.com/mbweb) no longer have it available for
|
||||
public download. The
|
||||
[Project Guttenberg Dataset](https://web.eecs.umich.edu/~lahiri/gutenberg_dataset.html)
|
||||
is a somewhat smaller (200M word) collection of older books that are public
|
||||
domain.
|
||||
|
||||
[Common Crawl](http://commoncrawl.org/) is another very large collection of
|
||||
text, but you will likely have to do substantial pre-processing and cleanup to
|
||||
extract a usuable corpus for pre-training BERT.
|
||||
|
||||
### Learning a new WordPiece vocabulary
|
||||
|
||||
This repository does not include code for *learning* a new WordPiece vocabulary.
|
||||
The reason is that the code used in the paper was implemented in C++ with
|
||||
dependencies on Google's internal libraries. For English, it is almost always
|
||||
better to just start with our vocabulary and pre-trained models. For learning
|
||||
vocabularies of other languages, there are a number of open source options
|
||||
available. However, keep in mind that these are not compatible with our
|
||||
`tokenization.py` library:
|
||||
|
||||
* [Google's SentencePiece library](https://github.com/google/sentencepiece)
|
||||
|
||||
* [tensor2tensor's WordPiece generation script](https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/text_encoder_build_subword.py)
|
||||
|
||||
* [Rico Sennrich's Byte Pair Encoding library](https://github.com/rsennrich/subword-nmt)
|
||||
|
||||
## Using BERT in Colab
|
||||
|
||||
If you want to use BERT with [Colab](https://colab.sandbox.google.com), you can
|
||||
get started with the notebook
|
||||
"[BERT FineTuning with Cloud TPUs](https://colab.sandbox.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb)".
|
||||
**At the time of this writing (October 31st, 2018), Colab users can access a
|
||||
Cloud TPU completely for free.** Note: One per user, availability limited,
|
||||
requires a Google Cloud Platform account with storage (although storage may be
|
||||
purchased with free credit for signing up with GCP), and this capability may not
|
||||
longer be available in the future. Click on the BERT Colab that was just linked
|
||||
for more information.
|
||||
|
||||
## FAQ
|
||||
|
||||
#### Is this code compatible with Cloud TPUs? What about GPUs?
|
||||
|
||||
Yes, all of the code in this repository works out-of-the-box with CPU, GPU, and
|
||||
Cloud TPU. However, GPU training is single-GPU only.
|
||||
|
||||
#### I am getting out-of-memory errors, what is wrong?
|
||||
|
||||
See the section on [out-of-memory issues](#out-of-memory-issues) for more
|
||||
information.
|
||||
|
||||
#### Is there a PyTorch version available?
|
||||
|
||||
There is no official PyTorch implementation. If someone creates a line-for-line
|
||||
PyTorch reimplementation so that our pre-trained checkpoints can be directly
|
||||
converted, we would be happy to link to that PyTorch version here.
|
||||
|
||||
#### Will models in other languages be released?
|
||||
|
||||
Yes, we plan to release a multi-lingual BERT model in the near future. We cannot
|
||||
make promises about exactly which languages will be included, but it will likely
|
||||
be a single model which includes *most* of the languages which have a
|
||||
significantly-sized Wikipedia.
|
||||
|
||||
#### Will models larger than `BERT-Large` be released?
|
||||
|
||||
So far we have not attempted to train anything larger than `BERT-Large`. It is
|
||||
possible that we will release larger models if we are able to obtain significant
|
||||
improvements.
|
||||
|
||||
#### What license is this library released under?
|
||||
|
||||
All code *and* models are released under the Apache 2.0 license. See the
|
||||
`LICENSE` file for more information.
|
||||
|
||||
#### How do I cite BERT?
|
||||
|
||||
For now, cite [the Arxiv paper](https://arxiv.org/abs/1810.04805):
|
||||
|
||||
```
|
||||
@article{devlin2018bert,
|
||||
title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding},
|
||||
author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
|
||||
journal={arXiv preprint arXiv:1810.04805},
|
||||
year={2018}
|
||||
}
|
||||
```
|
||||
|
||||
If we submit the paper to a conference or journal, we will update the BibTeX.
|
||||
|
||||
## Disclaimer
|
||||
|
||||
This is not an official Google product.
|
||||
|
||||
## Contact information
|
||||
|
||||
For help or issues using BERT, please submit a GitHub issue.
|
||||
|
||||
For personal communication related to BERT, please contact Jacob Devlin
|
||||
(`jacobdevlin@google.com`), Ming-Wei Chang (`mingweichang@google.com`), or
|
||||
Kenton Lee (`kentonl@google.com`).
|
||||
|
15
__init__.py
Normal file
15
__init__.py
Normal file
@ -0,0 +1,15 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
474
bert_model.py
474
bert_model.py
@ -1,474 +0,0 @@
|
||||
"""
|
||||
A PyTorch implementation of Google's BERT Model.
|
||||
|
||||
From "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"
|
||||
By Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
|
||||
Link: http://arxiv.org/abs/1810.04805
|
||||
|
||||
Adapted from HuggingFace's OpenAI PyTorch code and its adaptation by AllenNLP.
|
||||
"""
|
||||
|
||||
# pylint: disable=invalid-name,arguments-differ
|
||||
from typing import NamedTuple, List
|
||||
import copy
|
||||
import io
|
||||
import json
|
||||
import math
|
||||
import pathlib
|
||||
import re
|
||||
import tarfile
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn import Parameter
|
||||
|
||||
# pylint: disable=line-too-long
|
||||
_PARAMETER_NAMES = ["model/we:0",
|
||||
"model/h0/attn/c_attn/w:0", "model/h0/attn/c_attn/b:0", "model/h0/attn/c_proj/w:0",
|
||||
"model/h0/attn/c_proj/b:0", "model/h0/ln_1/g:0", "model/h0/ln_1/b:0", "model/h0/mlp/c_fc/w:0",
|
||||
"model/h0/mlp/c_fc/b:0", "model/h0/mlp/c_proj/w:0", "model/h0/mlp/c_proj/b:0", "model/h0/ln_2/g:0",
|
||||
"model/h0/ln_2/b:0", "model/h1/attn/c_attn/w:0", "model/h1/attn/c_attn/b:0", "model/h1/attn/c_proj/w:0",
|
||||
"model/h1/attn/c_proj/b:0", "model/h1/ln_1/g:0", "model/h1/ln_1/b:0", "model/h1/mlp/c_fc/w:0",
|
||||
"model/h1/mlp/c_fc/b:0", "model/h1/mlp/c_proj/w:0", "model/h1/mlp/c_proj/b:0", "model/h1/ln_2/g:0",
|
||||
"model/h1/ln_2/b:0", "model/h2/attn/c_attn/w:0", "model/h2/attn/c_attn/b:0", "model/h2/attn/c_proj/w:0",
|
||||
"model/h2/attn/c_proj/b:0", "model/h2/ln_1/g:0", "model/h2/ln_1/b:0", "model/h2/mlp/c_fc/w:0",
|
||||
"model/h2/mlp/c_fc/b:0", "model/h2/mlp/c_proj/w:0", "model/h2/mlp/c_proj/b:0", "model/h2/ln_2/g:0",
|
||||
"model/h2/ln_2/b:0", "model/h3/attn/c_attn/w:0", "model/h3/attn/c_attn/b:0", "model/h3/attn/c_proj/w:0",
|
||||
"model/h3/attn/c_proj/b:0", "model/h3/ln_1/g:0", "model/h3/ln_1/b:0", "model/h3/mlp/c_fc/w:0",
|
||||
"model/h3/mlp/c_fc/b:0", "model/h3/mlp/c_proj/w:0", "model/h3/mlp/c_proj/b:0", "model/h3/ln_2/g:0",
|
||||
"model/h3/ln_2/b:0", "model/h4/attn/c_attn/w:0", "model/h4/attn/c_attn/b:0", "model/h4/attn/c_proj/w:0",
|
||||
"model/h4/attn/c_proj/b:0", "model/h4/ln_1/g:0", "model/h4/ln_1/b:0", "model/h4/mlp/c_fc/w:0",
|
||||
"model/h4/mlp/c_fc/b:0", "model/h4/mlp/c_proj/w:0", "model/h4/mlp/c_proj/b:0", "model/h4/ln_2/g:0",
|
||||
"model/h4/ln_2/b:0", "model/h5/attn/c_attn/w:0", "model/h5/attn/c_attn/b:0", "model/h5/attn/c_proj/w:0",
|
||||
"model/h5/attn/c_proj/b:0", "model/h5/ln_1/g:0", "model/h5/ln_1/b:0", "model/h5/mlp/c_fc/w:0",
|
||||
"model/h5/mlp/c_fc/b:0", "model/h5/mlp/c_proj/w:0", "model/h5/mlp/c_proj/b:0", "model/h5/ln_2/g:0",
|
||||
"model/h5/ln_2/b:0", "model/h6/attn/c_attn/w:0", "model/h6/attn/c_attn/b:0", "model/h6/attn/c_proj/w:0",
|
||||
"model/h6/attn/c_proj/b:0", "model/h6/ln_1/g:0", "model/h6/ln_1/b:0", "model/h6/mlp/c_fc/w:0",
|
||||
"model/h6/mlp/c_fc/b:0", "model/h6/mlp/c_proj/w:0", "model/h6/mlp/c_proj/b:0", "model/h6/ln_2/g:0",
|
||||
"model/h6/ln_2/b:0", "model/h7/attn/c_attn/w:0", "model/h7/attn/c_attn/b:0", "model/h7/attn/c_proj/w:0",
|
||||
"model/h7/attn/c_proj/b:0", "model/h7/ln_1/g:0", "model/h7/ln_1/b:0", "model/h7/mlp/c_fc/w:0",
|
||||
"model/h7/mlp/c_fc/b:0", "model/h7/mlp/c_proj/w:0", "model/h7/mlp/c_proj/b:0", "model/h7/ln_2/g:0",
|
||||
"model/h7/ln_2/b:0", "model/h8/attn/c_attn/w:0", "model/h8/attn/c_attn/b:0", "model/h8/attn/c_proj/w:0",
|
||||
"model/h8/attn/c_proj/b:0", "model/h8/ln_1/g:0", "model/h8/ln_1/b:0", "model/h8/mlp/c_fc/w:0",
|
||||
"model/h8/mlp/c_fc/b:0", "model/h8/mlp/c_proj/w:0", "model/h8/mlp/c_proj/b:0", "model/h8/ln_2/g:0",
|
||||
"model/h8/ln_2/b:0", "model/h9/attn/c_attn/w:0", "model/h9/attn/c_attn/b:0", "model/h9/attn/c_proj/w:0",
|
||||
"model/h9/attn/c_proj/b:0", "model/h9/ln_1/g:0", "model/h9/ln_1/b:0", "model/h9/mlp/c_fc/w:0",
|
||||
"model/h9/mlp/c_fc/b:0", "model/h9/mlp/c_proj/w:0", "model/h9/mlp/c_proj/b:0", "model/h9/ln_2/g:0",
|
||||
"model/h9/ln_2/b:0", "model/h10/attn/c_attn/w:0", "model/h10/attn/c_attn/b:0", "model/h10/attn/c_proj/w:0",
|
||||
"model/h10/attn/c_proj/b:0", "model/h10/ln_1/g:0", "model/h10/ln_1/b:0", "model/h10/mlp/c_fc/w:0",
|
||||
"model/h10/mlp/c_fc/b:0", "model/h10/mlp/c_proj/w:0", "model/h10/mlp/c_proj/b:0", "model/h10/ln_2/g:0",
|
||||
"model/h10/ln_2/b:0", "model/h11/attn/c_attn/w:0", "model/h11/attn/c_attn/b:0", "model/h11/attn/c_proj/w:0",
|
||||
"model/h11/attn/c_proj/b:0", "model/h11/ln_1/g:0", "model/h11/ln_1/b:0", "model/h11/mlp/c_fc/w:0",
|
||||
"model/h11/mlp/c_fc/b:0", "model/h11/mlp/c_proj/w:0", "model/h11/mlp/c_proj/b:0", "model/h11/ln_2/g:0",
|
||||
"model/h11/ln_2/b:0", "model/clf/w:0", "model/clf/b:0"]
|
||||
# pylint: enable=line-too-long
|
||||
|
||||
def gelu(x: torch.Tensor) -> torch.Tensor:
|
||||
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
||||
|
||||
class BERTConfig(NamedTuple):
|
||||
"""
|
||||
BERT's hyper-parameters
|
||||
"""
|
||||
embedding_dim: int = 768
|
||||
num_heads: int = 12
|
||||
dropout: float = 0.1
|
||||
|
||||
class LayerNorm(torch.nn.Module):
|
||||
"""
|
||||
A layernorm module in the Tensorflow style (with the epsilon inside the square root).
|
||||
"""
|
||||
|
||||
def __init__(self, n_state, e=1e-5):
|
||||
super().__init__()
|
||||
self.g = torch.nn.Parameter(torch.ones(n_state))
|
||||
self.b = torch.nn.Parameter(torch.zeros(n_state))
|
||||
self.e = e
|
||||
|
||||
def forward(self, x):
|
||||
u = x.mean(-1, keepdim=True)
|
||||
s = (x - u).pow(2).mean(-1, keepdim=True)
|
||||
x = (x - u) / torch.sqrt(s + self.e)
|
||||
return self.g * x + self.b
|
||||
|
||||
|
||||
class Conv1D(torch.nn.Module):
|
||||
"""
|
||||
A batched linear layer using torch.addmm
|
||||
"""
|
||||
def __init__(self, nf: int, rf: int, nx: int) -> None:
|
||||
super().__init__()
|
||||
self.rf = rf
|
||||
self.nf = nf
|
||||
w = torch.empty(nx, nf)
|
||||
torch.nn.init.normal_(w, std=0.02)
|
||||
self.w = Parameter(w)
|
||||
self.b = Parameter(torch.zeros(nf))
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
size_out = x.size()[:-1] + (self.nf,)
|
||||
x = torch.addmm(self.b, x.view(-1, x.size(-1)), self.w)
|
||||
x = x.view(*size_out)
|
||||
return x
|
||||
|
||||
class Attention(torch.nn.Module):
|
||||
"""
|
||||
A self-attention layer comprising a sequence of:
|
||||
- a linear layer: instance of the `Conv1D` class,
|
||||
- spliting the inputs in key, value, query tensors (x.split),
|
||||
- reshaping key, value, query tensors according to the number of head (self.split_heads)
|
||||
- appying self attention (self._attn)
|
||||
- merging back the heads results (self.merge_heads)
|
||||
- a linear layer: instance of the `Conv1D` class,
|
||||
- a dropout layer: instance of `torch.nn.Dropout` class.
|
||||
|
||||
See above for the details of Conv1D.
|
||||
"""
|
||||
def __init__(self,
|
||||
nx: int,
|
||||
n_ctx: int,
|
||||
config: BERTConfig,
|
||||
scale: bool = False) -> None:
|
||||
super().__init__()
|
||||
n_state = nx # in Attention: n_state=768 (nx=n_embd)
|
||||
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
|
||||
assert n_state % config.num_heads == 0
|
||||
self.register_buffer('b', torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
|
||||
self.n_head = config.num_heads
|
||||
self.split_size = n_state
|
||||
self.scale = scale
|
||||
self.c_attn = Conv1D(n_state * 3, 1, nx)
|
||||
self.c_proj = Conv1D(n_state, 1, nx)
|
||||
self.attn_dropout = torch.nn.Dropout(config.dropout)
|
||||
self.resid_dropout = torch.nn.Dropout(config.dropout)
|
||||
|
||||
def _attn(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
|
||||
w = torch.matmul(q, k)
|
||||
if self.scale:
|
||||
w = w / math.sqrt(v.size(-1))
|
||||
w = w * self.b + -1e9 * (1 - self.b) # TF implem method: mask_attn_weights
|
||||
w = torch.nn.Softmax(dim=-1)(w)
|
||||
w = self.attn_dropout(w)
|
||||
return torch.matmul(w, v)
|
||||
|
||||
def merge_heads(self, x: torch.Tensor):
|
||||
# pylint: disable=no-self-use
|
||||
x = x.permute(0, 2, 1, 3).contiguous()
|
||||
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
|
||||
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
|
||||
|
||||
def split_heads(self, x: torch.Tensor, k: bool = False):
|
||||
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
|
||||
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
|
||||
if k:
|
||||
return x.permute(0, 2, 3, 1)
|
||||
else:
|
||||
return x.permute(0, 2, 1, 3)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.c_attn(x)
|
||||
query, key, value = x.split(self.split_size, dim=2)
|
||||
query = self.split_heads(query)
|
||||
key = self.split_heads(key, k=True)
|
||||
value = self.split_heads(value)
|
||||
a = self._attn(query, key, value)
|
||||
a = self.merge_heads(a)
|
||||
a = self.c_proj(a)
|
||||
a = self.resid_dropout(a)
|
||||
return a
|
||||
|
||||
|
||||
class MLP(torch.nn.Module):
|
||||
"""
|
||||
A multi-layer perceptron layer comprising a sequence of:
|
||||
- a linear layer: instance of the `Conv1D` class,
|
||||
- an activation function: the `gelu` function,
|
||||
- another linear layer: instance of the `Conv1D` class,
|
||||
- a dropout layer: instance of `torch.nn.Dropout` class.
|
||||
|
||||
See above for the details of Conv1D and the gelu function.
|
||||
"""
|
||||
def __init__(self, n_state: int, config: BERTConfig) -> None: # in MLP: n_state=3072 (4 * n_embd)
|
||||
super().__init__()
|
||||
self.c_fc = Conv1D(n_state, 1, config.embedding_dim)
|
||||
self.c_proj = Conv1D(config.embedding_dim, 1, n_state)
|
||||
self.act = gelu
|
||||
self.dropout = torch.nn.Dropout(config.dropout)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
h = self.act(self.c_fc(x))
|
||||
h2 = self.c_proj(h)
|
||||
return self.dropout(h2)
|
||||
|
||||
|
||||
class Block(torch.nn.Module):
|
||||
"""
|
||||
A Transformer Block comprising a sequence of:
|
||||
- a self-attention layer: instance of the `Attention` class,
|
||||
- a Layer Normalization layer: instance of the `LayerNorm` class,
|
||||
- a Multi-layer perceptron layer: instance of the `MLP` class,
|
||||
- another Layer Normalization layer: instance of the `LayerNorm` class.
|
||||
|
||||
See above for the details of these classes.
|
||||
"""
|
||||
def __init__(self,
|
||||
n_ctx: int,
|
||||
config: BERTConfig,
|
||||
scale: bool = False) -> None:
|
||||
super().__init__()
|
||||
nx = config.embedding_dim
|
||||
self.attn = Attention(nx, n_ctx, config, scale)
|
||||
self.ln_1 = LayerNorm(nx)
|
||||
self.mlp = MLP(4 * nx, config)
|
||||
self.ln_2 = LayerNorm(nx)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
a = self.attn(x)
|
||||
n = self.ln_1(x + a)
|
||||
m = self.mlp(n)
|
||||
h = self.ln_2(n + m)
|
||||
return h
|
||||
|
||||
class BERT(torch.nn.Module):
|
||||
"""
|
||||
Google's BERT Model.
|
||||
Default parameters are the ones for Google's pretrained model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
vocab_size: ``int`` (optional, default: 40478)
|
||||
The size of the vocabulary (number of byte pair embeddings)
|
||||
excluding the n_special embeddings (if any), and the positional embeddings.
|
||||
n_ctx: ``int`` (optional, default: 512)
|
||||
The number of positional encodings to use for evaluation.
|
||||
embedding_dim: ``int`` (optional, default: 768)
|
||||
The dimension of the output embeddings.
|
||||
num_heads: ``int`` (optional, default: 12)
|
||||
How many "heads" the attention has.
|
||||
num_layers: ``int`` (optional, default: 12)
|
||||
How many layers of "blocks" the transformer has.
|
||||
dropout_probability: ``float`` (optional, default: 0.1)
|
||||
Dropout for all layers.
|
||||
model_path: ``str`` (optional, default: ``None``)
|
||||
A tar.gz file containing serialized model weights. If supplied,
|
||||
the weights will be loaded from that file.
|
||||
requires_grad: ``bool`` (optional, default: ``False``)
|
||||
If true, the transformer will be fine-tuneable.
|
||||
n_special: ``int`` (optional, default: ``-1``)
|
||||
The number of special tokens added to the byte pair vocabulary
|
||||
"""
|
||||
def __init__(self,
|
||||
vocab_size: int = 40478,
|
||||
n_ctx: int = 512,
|
||||
embedding_dim: int = 768,
|
||||
num_heads: int = 12,
|
||||
num_layers: int = 12,
|
||||
dropout_probability: float = 0.1,
|
||||
model_path: str = None,
|
||||
requires_grad: bool = False,
|
||||
n_special: int = -1) -> None:
|
||||
super().__init__()
|
||||
|
||||
config = BERTConfig(
|
||||
embedding_dim,
|
||||
num_heads,
|
||||
dropout_probability,
|
||||
)
|
||||
|
||||
# the embedding size is vocab_size + n_special embeddings + n_ctx
|
||||
embedding_size = vocab_size + max(n_special, 0) + n_ctx
|
||||
self.vocab_size = embedding_size
|
||||
self.n_ctx = n_ctx
|
||||
self.n_special = n_special
|
||||
|
||||
self.num_output_layers = 1 + num_layers
|
||||
|
||||
self.embed = torch.nn.Embedding(embedding_size, embedding_dim)
|
||||
self.drop = torch.nn.Dropout(dropout_probability)
|
||||
|
||||
block = Block(n_ctx, config, scale=True)
|
||||
self.h = torch.nn.ModuleList([copy.deepcopy(block) for _ in range(num_layers)])
|
||||
self.decoder = torch.nn.Linear(embedding_dim, embedding_size, bias=False)
|
||||
self.decoder.weight = self.embed.weight # Tied weights
|
||||
# To reproduce the noise_shape parameter of TF implementation
|
||||
|
||||
torch.nn.init.normal_(self.embed.weight, std=0.02)
|
||||
|
||||
for parameter in self.parameters():
|
||||
parameter.requires_grad = requires_grad
|
||||
|
||||
if model_path:
|
||||
self.load_weights(model_path, n_special=n_special, n_ctx=n_ctx)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
||||
#x = x.view(-1, x.size(2), x.size(3))
|
||||
|
||||
# x is (batch_size, sequence_length) tensor of byte-pair ids
|
||||
|
||||
# e is (batch_size, sequence_length, 2, embedding_dim) tensor of embeddings
|
||||
e = self.embed(x)
|
||||
|
||||
# h is (batch_size, sequence_length, embedding_dim)
|
||||
h = e.sum(dim=2)
|
||||
|
||||
all_layers = [h]
|
||||
for block in self.h:
|
||||
h = block(h)
|
||||
all_layers.append(h)
|
||||
|
||||
# result is list of (batch_size, sequence_length, embedding_dim)
|
||||
return all_layers
|
||||
|
||||
def load_weights(self,
|
||||
bert_model_path: str,
|
||||
n_ctx: int = -1,
|
||||
n_special: int = -1,
|
||||
n_transfer: int = 12,
|
||||
n_embd: int = 768,
|
||||
names: List[str] = _PARAMETER_NAMES) -> None:
|
||||
# pylint: disable=dangerous-default-value
|
||||
|
||||
with tarfile.open(bert_model_path) as tmp:
|
||||
num_params_files = len([member for member in tmp.getmembers() if member.name.endswith('.npy')])
|
||||
shapesfile = tmp.extractfile('model/params_shapes.json')
|
||||
if shapesfile:
|
||||
shapes = json.loads(shapesfile.read())
|
||||
else:
|
||||
raise Exception("unable to find model/params_shapes.json in the archive")
|
||||
|
||||
# numpy can't read from a tarfile directly, so we need a workaround
|
||||
# https://github.com/numpy/numpy/issues/7989#issuecomment-341656702
|
||||
init_params: List[np.ndarray] = []
|
||||
for n in range(num_params_files):
|
||||
array_file = io.BytesIO()
|
||||
array_file.write(tmp.extractfile(f'model/params_{n}.npy').read())
|
||||
array_file.seek(0)
|
||||
# each np.load is a (11653478,) numpy array
|
||||
init_params.append(np.load(array_file))
|
||||
|
||||
# init_params is a list of 10 arrays of size (11653578,)
|
||||
# shapes are [[512, 768], [40478, 768], [1, 768, 2304], [2304], ... # 146 elts
|
||||
# products are [512 * 768, 40478 * 768, ...]
|
||||
# offsets is [512 * 768, 512 * 768 + 40478 * 768, ...]
|
||||
offsets = np.cumsum([np.prod(shape) for shape in shapes])
|
||||
|
||||
# split into the 146 subarrays corresponding to shapes
|
||||
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
|
||||
|
||||
# reshape
|
||||
init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]
|
||||
|
||||
# truncate if necessary
|
||||
if n_ctx > 0:
|
||||
# positional embeddings?
|
||||
# init_params[0] is (512, 768) = (max_chars, embedding_dim)
|
||||
init_params[0] = init_params[0][:n_ctx]
|
||||
|
||||
# combine init_params[1] and init_params[0]
|
||||
if n_special > 0:
|
||||
# init_params[1] is (40478, 768)
|
||||
# special is (n_special, 768)
|
||||
# init_params[0] is (512, 768)
|
||||
# result is (40990 + n_special, 768)
|
||||
init_params[0] = np.concatenate(
|
||||
[init_params[1],
|
||||
(np.random.randn(n_special, n_embd) * 0.02).astype(np.float32),
|
||||
init_params[0]],
|
||||
0
|
||||
)
|
||||
else:
|
||||
# result is (40990, 768)
|
||||
init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
|
||||
del init_params[1]
|
||||
|
||||
# number of dimensions to transfer, 12 per layer, plus one extra
|
||||
if n_transfer == -1:
|
||||
n_transfer = 0
|
||||
else:
|
||||
n_transfer = 1 + n_transfer * 12
|
||||
|
||||
# squeeze?
|
||||
init_params = [arr.squeeze() for arr in init_params]
|
||||
|
||||
# embedding.weight is (vocab_size, embedding_dim)
|
||||
# make sure init_params[0] has the same shape
|
||||
try:
|
||||
assert self.embed.weight.shape == init_params[0].shape
|
||||
except AssertionError as e:
|
||||
e.args += (self.embed.weight.shape, init_params[0].shape)
|
||||
raise
|
||||
|
||||
# and then assign it
|
||||
self.embed.weight.data = torch.from_numpy(init_params[0])
|
||||
self.decoder.weight = self.embed.weight
|
||||
|
||||
# for each (name, array) pair to transfer over
|
||||
for name, ip in zip(names[1:n_transfer], init_params[1:n_transfer]):
|
||||
# "model/h0/attn/c_attn/w:0"
|
||||
name = name[6:] # "h0/attn/c_attn/w:0"
|
||||
assert name[-2:] == ":0"
|
||||
name = name[:-2] # "h0/attn/c_attn/w"
|
||||
name_parts = name.split('/') # ['h0', 'attn', 'c_attn', 'w']
|
||||
|
||||
pointer = self
|
||||
for m_name in name_parts:
|
||||
if re.fullmatch(r'[A-Za-z]+\d+', m_name):
|
||||
l = re.split(r'(\d+)', m_name) # ['h', '0', '']
|
||||
else:
|
||||
l = [m_name] # ['attn']
|
||||
pointer = getattr(pointer, l[0])
|
||||
if len(l) >= 2:
|
||||
num = int(l[1])
|
||||
pointer = pointer[num]
|
||||
try:
|
||||
assert pointer.shape == ip.shape
|
||||
except AssertionError as e:
|
||||
e.args += (pointer.shape, ip.shape)
|
||||
raise
|
||||
|
||||
pointer.data = torch.from_numpy(ip) # pylint: disable=attribute-defined-outside-init
|
||||
|
||||
def dump_weights(self,
|
||||
output_dir: str,
|
||||
num_pieces: int = 10) -> None:
|
||||
output_path = pathlib.Path(output_dir) / 'model'
|
||||
output_path.mkdir(exist_ok=True, parents=True) # pylint: disable=no-member
|
||||
|
||||
named_parameters = list(self.named_parameters())
|
||||
|
||||
# embedding weights get special treatment
|
||||
_, array = named_parameters[0]
|
||||
num_bpe = self.vocab_size - self.n_ctx
|
||||
byte_pair_embeddings = array[:num_bpe]
|
||||
positional_embeddings = array[num_bpe:]
|
||||
|
||||
arrays = [positional_embeddings.numpy().ravel(), byte_pair_embeddings.numpy().ravel()]
|
||||
shapes = [positional_embeddings.shape, byte_pair_embeddings.shape]
|
||||
names = ["model/we:0"]
|
||||
|
||||
for param_name, tensor in named_parameters[1:]:
|
||||
param_name = f'h{param_name}' # 'h0.attn.c_attn.w'
|
||||
parts = param_name.split(".") # ['h0', 'attn', 'c_attn', 'w']
|
||||
name = "model/" + '/'.join(parts) + ':0' # 'model/h0/attn/c_attn/w:0'
|
||||
array = tensor.numpy().ravel()
|
||||
|
||||
arrays.append(array)
|
||||
shapes.append(list(tensor.shape))
|
||||
names.append(name)
|
||||
|
||||
# write out the arrays
|
||||
big_array = np.concatenate(arrays)
|
||||
total_size = len(big_array)
|
||||
batch_size = math.ceil(total_size / num_pieces)
|
||||
|
||||
for i in range(num_pieces):
|
||||
filename = output_path / f"params_{i}.npy"
|
||||
start = i * batch_size
|
||||
end = start + batch_size
|
||||
subarray = big_array[start:end]
|
||||
|
||||
np.save(filename, subarray)
|
||||
|
||||
# write out the shapes
|
||||
with open(output_path / 'params_shapes.json', 'w') as shapes_file:
|
||||
json.dump(shapes, shapes_file)
|
441
create_pretraining_data.py
Normal file
441
create_pretraining_data.py
Normal file
@ -0,0 +1,441 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Create masked LM/next sentence masked_lm TF examples for BERT."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
import random
|
||||
|
||||
import tokenization
|
||||
import tensorflow as tf
|
||||
|
||||
flags = tf.flags
|
||||
|
||||
FLAGS = flags.FLAGS
|
||||
|
||||
flags.DEFINE_string("input_file", None,
|
||||
"Input raw text file (or comma-separated list of files).")
|
||||
|
||||
flags.DEFINE_string(
|
||||
"output_file", None,
|
||||
"Output TF example file (or comma-separated list of files).")
|
||||
|
||||
flags.DEFINE_string("vocab_file", None,
|
||||
"The vocabulary file that the BERT model was trained on.")
|
||||
|
||||
flags.DEFINE_bool(
|
||||
"do_lower_case", True,
|
||||
"Whether to lower case the input text. Should be True for uncased "
|
||||
"models and False for cased models.")
|
||||
|
||||
flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.")
|
||||
|
||||
flags.DEFINE_integer("max_predictions_per_seq", 20,
|
||||
"Maximum number of masked LM predictions per sequence.")
|
||||
|
||||
flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.")
|
||||
|
||||
flags.DEFINE_integer(
|
||||
"dupe_factor", 10,
|
||||
"Number of times to duplicate the input data (with different masks).")
|
||||
|
||||
flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.")
|
||||
|
||||
flags.DEFINE_float(
|
||||
"short_seq_prob", 0.1,
|
||||
"Probability of creating sequences which are shorter than the "
|
||||
"maximum length.")
|
||||
|
||||
|
||||
class TrainingInstance(object):
|
||||
"""A single training instance (sentence pair)."""
|
||||
|
||||
def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels,
|
||||
is_random_next):
|
||||
self.tokens = tokens
|
||||
self.segment_ids = segment_ids
|
||||
self.is_random_next = is_random_next
|
||||
self.masked_lm_positions = masked_lm_positions
|
||||
self.masked_lm_labels = masked_lm_labels
|
||||
|
||||
def __str__(self):
|
||||
s = ""
|
||||
s += "tokens: %s\n" % (" ".join(
|
||||
[tokenization.printable_text(x) for x in self.tokens]))
|
||||
s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids]))
|
||||
s += "is_random_next: %s\n" % self.is_random_next
|
||||
s += "masked_lm_positions: %s\n" % (" ".join(
|
||||
[str(x) for x in self.masked_lm_positions]))
|
||||
s += "masked_lm_labels: %s\n" % (" ".join(
|
||||
[tokenization.printable_text(x) for x in self.masked_lm_labels]))
|
||||
s += "\n"
|
||||
return s
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
||||
|
||||
def write_instance_to_example_files(instances, tokenizer, max_seq_length,
|
||||
max_predictions_per_seq, output_files):
|
||||
"""Create TF example files from `TrainingInstance`s."""
|
||||
writers = []
|
||||
for output_file in output_files:
|
||||
writers.append(tf.python_io.TFRecordWriter(output_file))
|
||||
|
||||
writer_index = 0
|
||||
|
||||
total_written = 0
|
||||
for (inst_index, instance) in enumerate(instances):
|
||||
input_ids = tokenizer.convert_tokens_to_ids(instance.tokens)
|
||||
input_mask = [1] * len(input_ids)
|
||||
segment_ids = list(instance.segment_ids)
|
||||
assert len(input_ids) <= max_seq_length
|
||||
|
||||
while len(input_ids) < max_seq_length:
|
||||
input_ids.append(0)
|
||||
input_mask.append(0)
|
||||
segment_ids.append(0)
|
||||
|
||||
assert len(input_ids) == max_seq_length
|
||||
assert len(input_mask) == max_seq_length
|
||||
assert len(segment_ids) == max_seq_length
|
||||
|
||||
masked_lm_positions = list(instance.masked_lm_positions)
|
||||
masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels)
|
||||
masked_lm_weights = [1.0] * len(masked_lm_ids)
|
||||
|
||||
while len(masked_lm_positions) < max_predictions_per_seq:
|
||||
masked_lm_positions.append(0)
|
||||
masked_lm_ids.append(0)
|
||||
masked_lm_weights.append(0.0)
|
||||
|
||||
next_sentence_label = 1 if instance.is_random_next else 0
|
||||
|
||||
features = collections.OrderedDict()
|
||||
features["input_ids"] = create_int_feature(input_ids)
|
||||
features["input_mask"] = create_int_feature(input_mask)
|
||||
features["segment_ids"] = create_int_feature(segment_ids)
|
||||
features["masked_lm_positions"] = create_int_feature(masked_lm_positions)
|
||||
features["masked_lm_ids"] = create_int_feature(masked_lm_ids)
|
||||
features["masked_lm_weights"] = create_float_feature(masked_lm_weights)
|
||||
features["next_sentence_labels"] = create_int_feature([next_sentence_label])
|
||||
|
||||
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
|
||||
|
||||
writers[writer_index].write(tf_example.SerializeToString())
|
||||
writer_index = (writer_index + 1) % len(writers)
|
||||
|
||||
total_written += 1
|
||||
|
||||
if inst_index < 20:
|
||||
tf.logging.info("*** Example ***")
|
||||
tf.logging.info("tokens: %s" % " ".join(
|
||||
[tokenization.printable_text(x) for x in instance.tokens]))
|
||||
|
||||
for feature_name in features.keys():
|
||||
feature = features[feature_name]
|
||||
values = []
|
||||
if feature.int64_list.value:
|
||||
values = feature.int64_list.value
|
||||
elif feature.float_list.value:
|
||||
values = feature.float_list.value
|
||||
tf.logging.info(
|
||||
"%s: %s" % (feature_name, " ".join([str(x) for x in values])))
|
||||
|
||||
for writer in writers:
|
||||
writer.close()
|
||||
|
||||
tf.logging.info("Wrote %d total instances", total_written)
|
||||
|
||||
|
||||
def create_int_feature(values):
|
||||
feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
|
||||
return feature
|
||||
|
||||
|
||||
def create_float_feature(values):
|
||||
feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
|
||||
return feature
|
||||
|
||||
|
||||
def create_training_instances(input_files, tokenizer, max_seq_length,
|
||||
dupe_factor, short_seq_prob, masked_lm_prob,
|
||||
max_predictions_per_seq, rng):
|
||||
"""Create `TrainingInstance`s from raw text."""
|
||||
all_documents = [[]]
|
||||
|
||||
# Input file format:
|
||||
# (1) One sentence per line. These should ideally be actual sentences, not
|
||||
# entire paragraphs or arbitrary spans of text. (Because we use the
|
||||
# sentence boundaries for the "next sentence prediction" task).
|
||||
# (2) Blank lines between documents. Document boundaries are needed so
|
||||
# that the "next sentence prediction" task doesn't span between documents.
|
||||
for input_file in input_files:
|
||||
with tf.gfile.GFile(input_file, "r") as reader:
|
||||
while True:
|
||||
line = tokenization.convert_to_unicode(reader.readline())
|
||||
if not line:
|
||||
break
|
||||
line = line.strip()
|
||||
|
||||
# Empty lines are used as document delimiters
|
||||
if not line:
|
||||
all_documents.append([])
|
||||
tokens = tokenizer.tokenize(line)
|
||||
if tokens:
|
||||
all_documents[-1].append(tokens)
|
||||
|
||||
# Remove empty documents
|
||||
all_documents = [x for x in all_documents if x]
|
||||
rng.shuffle(all_documents)
|
||||
|
||||
vocab_words = list(tokenizer.vocab.keys())
|
||||
instances = []
|
||||
for _ in range(dupe_factor):
|
||||
for document_index in range(len(all_documents)):
|
||||
instances.extend(
|
||||
create_instances_from_document(
|
||||
all_documents, document_index, max_seq_length, short_seq_prob,
|
||||
masked_lm_prob, max_predictions_per_seq, vocab_words, rng))
|
||||
|
||||
rng.shuffle(instances)
|
||||
return instances
|
||||
|
||||
|
||||
def create_instances_from_document(
|
||||
all_documents, document_index, max_seq_length, short_seq_prob,
|
||||
masked_lm_prob, max_predictions_per_seq, vocab_words, rng):
|
||||
"""Creates `TrainingInstance`s for a single document."""
|
||||
document = all_documents[document_index]
|
||||
|
||||
# Account for [CLS], [SEP], [SEP]
|
||||
max_num_tokens = max_seq_length - 3
|
||||
|
||||
# We *usually* want to fill up the entire sequence since we are padding
|
||||
# to `max_seq_length` anyways, so short sequences are generally wasted
|
||||
# computation. However, we *sometimes*
|
||||
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
|
||||
# sequences to minimize the mismatch between pre-training and fine-tuning.
|
||||
# The `target_seq_length` is just a rough target however, whereas
|
||||
# `max_seq_length` is a hard limit.
|
||||
target_seq_length = max_num_tokens
|
||||
if rng.random() < short_seq_prob:
|
||||
target_seq_length = rng.randint(2, max_num_tokens)
|
||||
|
||||
# We DON'T just concatenate all of the tokens from a document into a long
|
||||
# sequence and choose an arbitrary split point because this would make the
|
||||
# next sentence prediction task too easy. Instead, we split the input into
|
||||
# segments "A" and "B" based on the actual "sentences" provided by the user
|
||||
# input.
|
||||
instances = []
|
||||
current_chunk = []
|
||||
current_length = 0
|
||||
i = 0
|
||||
while i < len(document):
|
||||
segment = document[i]
|
||||
current_chunk.append(segment)
|
||||
current_length += len(segment)
|
||||
if i == len(document) - 1 or current_length >= target_seq_length:
|
||||
if current_chunk:
|
||||
# `a_end` is how many segments from `current_chunk` go into the `A`
|
||||
# (first) sentence.
|
||||
a_end = 1
|
||||
if len(current_chunk) >= 2:
|
||||
a_end = rng.randint(1, len(current_chunk) - 1)
|
||||
|
||||
tokens_a = []
|
||||
for j in range(a_end):
|
||||
tokens_a.extend(current_chunk[j])
|
||||
|
||||
tokens_b = []
|
||||
# Random next
|
||||
is_random_next = False
|
||||
if len(current_chunk) == 1 or rng.random() < 0.5:
|
||||
is_random_next = True
|
||||
target_b_length = target_seq_length - len(tokens_a)
|
||||
|
||||
# This should rarely go for more than one iteration for large
|
||||
# corpora. However, just to be careful, we try to make sure that
|
||||
# the random document is not the same as the document
|
||||
# we're processing.
|
||||
for _ in range(10):
|
||||
random_document_index = rng.randint(0, len(all_documents) - 1)
|
||||
if random_document_index != document_index:
|
||||
break
|
||||
|
||||
random_document = all_documents[random_document_index]
|
||||
random_start = rng.randint(0, len(random_document) - 1)
|
||||
for j in range(random_start, len(random_document)):
|
||||
tokens_b.extend(random_document[j])
|
||||
if len(tokens_b) >= target_b_length:
|
||||
break
|
||||
# We didn't actually use these segments so we "put them back" so
|
||||
# they don't go to waste.
|
||||
num_unused_segments = len(current_chunk) - a_end
|
||||
i -= num_unused_segments
|
||||
# Actual next
|
||||
else:
|
||||
is_random_next = False
|
||||
for j in range(a_end, len(current_chunk)):
|
||||
tokens_b.extend(current_chunk[j])
|
||||
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng)
|
||||
|
||||
assert len(tokens_a) >= 1
|
||||
assert len(tokens_b) >= 1
|
||||
|
||||
tokens = []
|
||||
segment_ids = []
|
||||
tokens.append("[CLS]")
|
||||
segment_ids.append(0)
|
||||
for token in tokens_a:
|
||||
tokens.append(token)
|
||||
segment_ids.append(0)
|
||||
|
||||
tokens.append("[SEP]")
|
||||
segment_ids.append(0)
|
||||
|
||||
for token in tokens_b:
|
||||
tokens.append(token)
|
||||
segment_ids.append(1)
|
||||
tokens.append("[SEP]")
|
||||
segment_ids.append(1)
|
||||
|
||||
(tokens, masked_lm_positions,
|
||||
masked_lm_labels) = create_masked_lm_predictions(
|
||||
tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng)
|
||||
instance = TrainingInstance(
|
||||
tokens=tokens,
|
||||
segment_ids=segment_ids,
|
||||
is_random_next=is_random_next,
|
||||
masked_lm_positions=masked_lm_positions,
|
||||
masked_lm_labels=masked_lm_labels)
|
||||
instances.append(instance)
|
||||
current_chunk = []
|
||||
current_length = 0
|
||||
i += 1
|
||||
|
||||
return instances
|
||||
|
||||
|
||||
def create_masked_lm_predictions(tokens, masked_lm_prob,
|
||||
max_predictions_per_seq, vocab_words, rng):
|
||||
"""Creates the predictis for the masked LM objective."""
|
||||
|
||||
cand_indexes = []
|
||||
for (i, token) in enumerate(tokens):
|
||||
if token == "[CLS]" or token == "[SEP]":
|
||||
continue
|
||||
cand_indexes.append(i)
|
||||
|
||||
rng.shuffle(cand_indexes)
|
||||
|
||||
output_tokens = list(tokens)
|
||||
|
||||
masked_lm = collections.namedtuple("masked_lm", ["index", "label"]) # pylint: disable=invalid-name
|
||||
|
||||
num_to_predict = min(max_predictions_per_seq,
|
||||
max(1, int(round(len(tokens) * masked_lm_prob))))
|
||||
|
||||
masked_lms = []
|
||||
covered_indexes = set()
|
||||
for index in cand_indexes:
|
||||
if len(masked_lms) >= num_to_predict:
|
||||
break
|
||||
if index in covered_indexes:
|
||||
continue
|
||||
covered_indexes.add(index)
|
||||
|
||||
masked_token = None
|
||||
# 80% of the time, replace with [MASK]
|
||||
if rng.random() < 0.8:
|
||||
masked_token = "[MASK]"
|
||||
else:
|
||||
# 10% of the time, keep original
|
||||
if rng.random() < 0.5:
|
||||
masked_token = tokens[index]
|
||||
# 10% of the time, replace with random word
|
||||
else:
|
||||
masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)]
|
||||
|
||||
output_tokens[index] = masked_token
|
||||
|
||||
masked_lms.append(masked_lm(index=index, label=tokens[index]))
|
||||
|
||||
masked_lms = sorted(masked_lms, key=lambda x: x.index)
|
||||
|
||||
masked_lm_positions = []
|
||||
masked_lm_labels = []
|
||||
for p in masked_lms:
|
||||
masked_lm_positions.append(p.index)
|
||||
masked_lm_labels.append(p.label)
|
||||
|
||||
return (output_tokens, masked_lm_positions, masked_lm_labels)
|
||||
|
||||
|
||||
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng):
|
||||
"""Truncates a pair of sequences to a maximum sequence length."""
|
||||
while True:
|
||||
total_length = len(tokens_a) + len(tokens_b)
|
||||
if total_length <= max_num_tokens:
|
||||
break
|
||||
|
||||
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
|
||||
assert len(trunc_tokens) >= 1
|
||||
|
||||
# We want to sometimes truncate from the front and sometimes from the
|
||||
# back to add more randomness and avoid biases.
|
||||
if rng.random() < 0.5:
|
||||
del trunc_tokens[0]
|
||||
else:
|
||||
trunc_tokens.pop()
|
||||
|
||||
|
||||
def main(_):
|
||||
tf.logging.set_verbosity(tf.logging.INFO)
|
||||
|
||||
tokenizer = tokenization.FullTokenizer(
|
||||
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
|
||||
|
||||
input_files = []
|
||||
for input_pattern in FLAGS.input_file.split(","):
|
||||
input_files.extend(tf.gfile.Glob(input_pattern))
|
||||
|
||||
tf.logging.info("*** Reading from input files ***")
|
||||
for input_file in input_files:
|
||||
tf.logging.info(" %s", input_file)
|
||||
|
||||
rng = random.Random(FLAGS.random_seed)
|
||||
instances = create_training_instances(
|
||||
input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor,
|
||||
FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq,
|
||||
rng)
|
||||
|
||||
output_files = FLAGS.output_file.split(",")
|
||||
tf.logging.info("*** Writing to output files ***")
|
||||
for output_file in output_files:
|
||||
tf.logging.info(" %s", output_file)
|
||||
|
||||
write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length,
|
||||
FLAGS.max_predictions_per_seq, output_files)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
flags.mark_flag_as_required("input_file")
|
||||
flags.mark_flag_as_required("output_file")
|
||||
flags.mark_flag_as_required("vocab_file")
|
||||
tf.app.run()
|
@ -1,819 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Tensor2Tensor Authors and Thomas Wolf
|
||||
"""
|
||||
Prepare input data for Google's BERT Model using WordPiece tokenization
|
||||
and build arrays of word, position and sentence embeddings.
|
||||
|
||||
The WordPiece tokenization classes and functions are taken from the tensor2tensor library:
|
||||
https://github.com/tensorflow/tensor2tensor
|
||||
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from typing import NamedTuple, List, Union, Tuple
|
||||
import re
|
||||
import os
|
||||
import six
|
||||
import sys
|
||||
import time
|
||||
import glob
|
||||
import logging
|
||||
import collections
|
||||
import unicodedata
|
||||
from itertools import chain
|
||||
from six.moves import range # pylint: disable=redefined-builtin
|
||||
import numpy as np
|
||||
|
||||
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
# Reserved tokens for things like padding and EOS symbols.
|
||||
PAD = "<pad>"
|
||||
EOS = "<EOS>"
|
||||
RESERVED_TOKENS = [PAD, EOS]
|
||||
NUM_RESERVED_TOKENS = len(RESERVED_TOKENS)
|
||||
PAD_ID = RESERVED_TOKENS.index(PAD) # Normally 0
|
||||
EOS_ID = RESERVED_TOKENS.index(EOS) # Normally 1
|
||||
|
||||
# Regular expression for unescaping token strings.
|
||||
# '\u' is converted to '_'
|
||||
# '\\' is converted to '\'
|
||||
# '\213;' is converted to unichr(213)
|
||||
_UNESCAPE_REGEX = re.compile(r"\\u|\\\\|\\([0-9]+);")
|
||||
_ESCAPE_CHARS = set(u"\\_u;0123456789")
|
||||
|
||||
# This set contains all letter and number characters.
|
||||
_ALPHANUMERIC_CHAR_SET = set(
|
||||
six.unichr(i) for i in range(sys.maxunicode)
|
||||
if (unicodedata.category(six.unichr(i)).startswith("L") or
|
||||
unicodedata.category(six.unichr(i)).startswith("N")))
|
||||
|
||||
|
||||
# Unicode utility functions that work with Python 2 and 3
|
||||
def native_to_unicode(s):
|
||||
if is_unicode(s):
|
||||
return s
|
||||
try:
|
||||
return to_unicode(s)
|
||||
except UnicodeDecodeError:
|
||||
res = to_unicode(s, ignore_errors=True)
|
||||
logger.info("Ignoring Unicode error, outputting: {}".format(res))
|
||||
return res
|
||||
|
||||
|
||||
def unicode_to_native(s):
|
||||
if six.PY2:
|
||||
return s.encode("utf-8") if is_unicode(s) else s
|
||||
else:
|
||||
return s
|
||||
|
||||
|
||||
def is_unicode(s):
|
||||
if six.PY2:
|
||||
if isinstance(s, unicode):
|
||||
return True
|
||||
else:
|
||||
if isinstance(s, str):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def to_unicode(s, ignore_errors=False):
|
||||
if is_unicode(s):
|
||||
return s
|
||||
error_mode = "ignore" if ignore_errors else "strict"
|
||||
return s.decode("utf-8", errors=error_mode)
|
||||
|
||||
|
||||
def to_unicode_ignore_errors(s):
|
||||
return to_unicode(s, ignore_errors=True)
|
||||
|
||||
|
||||
def strip_ids(ids, ids_to_strip):
|
||||
"""Strip ids_to_strip from the end ids."""
|
||||
ids = list(ids)
|
||||
while ids and ids[-1] in ids_to_strip:
|
||||
ids.pop()
|
||||
return ids
|
||||
|
||||
|
||||
def tokenizer_encode(text):
|
||||
"""A simple invertible tokenizer (in words).
|
||||
|
||||
Converts from a unicode string to a list of tokens
|
||||
(represented as Unicode strings).
|
||||
|
||||
This tokenizer has the following desirable properties:
|
||||
- It is invertible.
|
||||
- Alphanumeric characters are broken away from non-alphanumeric characters.
|
||||
- A single space between words does not produce an extra token.
|
||||
- The full Unicode punctuation and separator set is recognized.
|
||||
|
||||
The tokenization algorithm is as follows:
|
||||
|
||||
1. Split the text into a list of tokens, splitting at every boundary of an
|
||||
alphanumeric character and a non-alphanumeric character. This produces
|
||||
a list which alternates between "alphanumeric tokens"
|
||||
(strings of alphanumeric characters) and "non-alphanumeric tokens"
|
||||
(strings of non-alphanumeric characters).
|
||||
|
||||
2. Remove every token consisting of a single space, unless it is
|
||||
the very first or very last token in the list. These tokens are now
|
||||
implied by the fact that there are two adjacent alphanumeric tokens.
|
||||
|
||||
e.g. u"Dude - that's so cool."
|
||||
-> [u"Dude", u" - ", u"that", u"'", u"s", u"so", u"cool", u"."]
|
||||
|
||||
Args:
|
||||
text: a unicode string
|
||||
Returns:
|
||||
a list of tokens as Unicode strings
|
||||
"""
|
||||
if not text:
|
||||
return []
|
||||
ret = []
|
||||
token_start = 0
|
||||
# Classify each character in the input string
|
||||
is_alnum = [c in _ALPHANUMERIC_CHAR_SET for c in text]
|
||||
for pos in range(1, len(text)):
|
||||
if is_alnum[pos] != is_alnum[pos - 1]:
|
||||
token = text[token_start:pos]
|
||||
if token != u" " or token_start == 0:
|
||||
ret.append(token)
|
||||
token_start = pos
|
||||
final_token = text[token_start:]
|
||||
ret.append(final_token)
|
||||
return ret
|
||||
|
||||
|
||||
def tokenizer_decode(tokens):
|
||||
"""Decode a list of tokens to a unicode string.
|
||||
|
||||
Args:
|
||||
tokens: a list of Unicode strings
|
||||
Returns:
|
||||
a unicode string
|
||||
"""
|
||||
token_is_alnum = [t[0] in _ALPHANUMERIC_CHAR_SET for t in tokens]
|
||||
ret = []
|
||||
for i, token in enumerate(tokens):
|
||||
if i > 0 and token_is_alnum[i - 1] and token_is_alnum[i]:
|
||||
ret.append(u" ")
|
||||
ret.append(token)
|
||||
return "".join(ret)
|
||||
|
||||
|
||||
class TextEncoder(object):
|
||||
"""Base class for converting from ints to/from human readable strings."""
|
||||
|
||||
def __init__(self, num_reserved_ids=NUM_RESERVED_TOKENS):
|
||||
self._num_reserved_ids = num_reserved_ids
|
||||
|
||||
@property
|
||||
def num_reserved_ids(self):
|
||||
return self._num_reserved_ids
|
||||
|
||||
def encode(self, s):
|
||||
"""Transform a human-readable string into a sequence of int ids.
|
||||
|
||||
The ids should be in the range [num_reserved_ids, vocab_size). Ids [0,
|
||||
num_reserved_ids) are reserved.
|
||||
|
||||
EOS is not appended.
|
||||
|
||||
Args:
|
||||
s: human-readable string to be converted.
|
||||
|
||||
Returns:
|
||||
ids: list of integers
|
||||
"""
|
||||
return [int(w) + self._num_reserved_ids for w in s.split()]
|
||||
|
||||
def decode(self, ids, strip_extraneous=False):
|
||||
"""Transform a sequence of int ids into a human-readable string.
|
||||
|
||||
EOS is not expected in ids.
|
||||
|
||||
Args:
|
||||
ids: list of integers to be converted.
|
||||
strip_extraneous: bool, whether to strip off extraneous tokens
|
||||
(EOS and PAD).
|
||||
|
||||
Returns:
|
||||
s: human-readable string.
|
||||
"""
|
||||
if strip_extraneous:
|
||||
ids = strip_ids(ids, list(range(self._num_reserved_ids or 0)))
|
||||
return " ".join(self.decode_list(ids))
|
||||
|
||||
def decode_list(self, ids):
|
||||
"""Transform a sequence of int ids into a their string versions.
|
||||
|
||||
This method supports transforming individual input/output ids to their
|
||||
string versions so that sequence to/from text conversions can be visualized
|
||||
in a human readable format.
|
||||
|
||||
Args:
|
||||
ids: list of integers to be converted.
|
||||
|
||||
Returns:
|
||||
strs: list of human-readable string.
|
||||
"""
|
||||
decoded_ids = []
|
||||
for id_ in ids:
|
||||
if 0 <= id_ < self._num_reserved_ids:
|
||||
decoded_ids.append(RESERVED_TOKENS[int(id_)])
|
||||
else:
|
||||
decoded_ids.append(id_ - self._num_reserved_ids)
|
||||
return [str(d) for d in decoded_ids]
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
def _escape_token(token, alphabet):
|
||||
"""Escape away underscores and OOV characters and append '_'.
|
||||
|
||||
This allows the token to be expressed as the concatenation of a list
|
||||
of subtokens from the vocabulary. The underscore acts as a sentinel
|
||||
which allows us to invertibly concatenate multiple such lists.
|
||||
|
||||
Args:
|
||||
token: A unicode string to be escaped.
|
||||
alphabet: A set of all characters in the vocabulary's alphabet.
|
||||
|
||||
Returns:
|
||||
escaped_token: An escaped unicode string.
|
||||
|
||||
Raises:
|
||||
ValueError: If the provided token is not unicode.
|
||||
"""
|
||||
if not isinstance(token, six.text_type):
|
||||
raise ValueError("Expected string type for token, got %s" % type(token))
|
||||
|
||||
token = token.replace(u"\\", u"\\\\").replace(u"_", u"\\u")
|
||||
ret = [c if c in alphabet and c != u"\n" else r"\%d;" % ord(c) for c in token]
|
||||
return u"".join(ret) + "_"
|
||||
|
||||
|
||||
def _unescape_token(escaped_token):
|
||||
"""Inverse of _escape_token().
|
||||
|
||||
Args:
|
||||
escaped_token: a unicode string
|
||||
|
||||
Returns:
|
||||
token: a unicode string
|
||||
"""
|
||||
|
||||
def match(m):
|
||||
if m.group(1) is None:
|
||||
return u"_" if m.group(0) == u"\\u" else u"\\"
|
||||
|
||||
try:
|
||||
return six.unichr(int(m.group(1)))
|
||||
except (ValueError, OverflowError) as _:
|
||||
return u"\u3013" # Unicode for undefined character.
|
||||
|
||||
trimmed = escaped_token[:-1] if escaped_token.endswith("_") else escaped_token
|
||||
return _UNESCAPE_REGEX.sub(match, trimmed)
|
||||
|
||||
|
||||
class SubwordTextEncoder(TextEncoder):
|
||||
"""Class for invertibly encoding text using a limited vocabulary.
|
||||
|
||||
Invertibly encodes a native string as a sequence of subtokens from a limited
|
||||
vocabulary.
|
||||
|
||||
A SubwordTextEncoder is built from a corpus (so it is tailored to the text in
|
||||
the corpus), and stored to a file. See text_encoder_build_subword.py.
|
||||
|
||||
It can then be loaded and used to encode/decode any text.
|
||||
|
||||
Encoding has four phases:
|
||||
|
||||
1. Tokenize into a list of tokens. Each token is a unicode string of either
|
||||
all alphanumeric characters or all non-alphanumeric characters. We drop
|
||||
tokens consisting of a single space that are between two alphanumeric
|
||||
tokens.
|
||||
|
||||
2. Escape each token. This escapes away special and out-of-vocabulary
|
||||
characters, and makes sure that each token ends with an underscore, and
|
||||
has no other underscores.
|
||||
|
||||
3. Represent each escaped token as a the concatenation of a list of subtokens
|
||||
from the limited vocabulary. Subtoken selection is done greedily from
|
||||
beginning to end. That is, we construct the list in order, always picking
|
||||
the longest subtoken in our vocabulary that matches a prefix of the
|
||||
remaining portion of the encoded token.
|
||||
|
||||
4. Concatenate these lists. This concatenation is invertible due to the
|
||||
fact that the trailing underscores indicate when one list is finished.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, filename=None):
|
||||
"""Initialize and read from a file, if provided.
|
||||
|
||||
Args:
|
||||
filename: filename from which to read vocab. If None, do not load a
|
||||
vocab
|
||||
"""
|
||||
self._alphabet = set()
|
||||
self.filename = filename
|
||||
if filename is not None:
|
||||
self._load_from_file(filename)
|
||||
super(SubwordTextEncoder, self).__init__()
|
||||
|
||||
def encode(self, s):
|
||||
"""Converts a native string to a list of subtoken ids.
|
||||
|
||||
Args:
|
||||
s: a native string.
|
||||
Returns:
|
||||
a list of integers in the range [0, vocab_size)
|
||||
"""
|
||||
return self._tokens_to_subtoken_ids(
|
||||
tokenizer_encode(native_to_unicode(s)))
|
||||
|
||||
def encode_without_tokenizing(self, token_text):
|
||||
"""Converts string to list of subtoken ids without calling tokenizer.
|
||||
|
||||
This treats `token_text` as a single token and directly converts it
|
||||
to subtoken ids. This may be useful when the default tokenizer doesn't
|
||||
do what we want (e.g., when encoding text with tokens composed of lots of
|
||||
nonalphanumeric characters). It is then up to the caller to make sure that
|
||||
raw text is consistently converted into tokens. Only use this if you are
|
||||
sure that `encode` doesn't suit your needs.
|
||||
|
||||
Args:
|
||||
token_text: A native string representation of a single token.
|
||||
Returns:
|
||||
A list of subword token ids; i.e., integers in the range [0, vocab_size).
|
||||
"""
|
||||
return self._tokens_to_subtoken_ids([native_to_unicode(token_text)])
|
||||
|
||||
def decode(self, ids, strip_extraneous=False):
|
||||
"""Converts a sequence of subtoken ids to a native string.
|
||||
|
||||
Args:
|
||||
ids: a list of integers in the range [0, vocab_size)
|
||||
strip_extraneous: bool, whether to strip off extraneous tokens
|
||||
(EOS and PAD).
|
||||
|
||||
Returns:
|
||||
a native string
|
||||
"""
|
||||
if strip_extraneous:
|
||||
ids = strip_ids(ids, list(range(self._num_reserved_ids or 0)))
|
||||
return unicode_to_native(
|
||||
tokenizer_decode(self._subtoken_ids_to_tokens(ids)))
|
||||
|
||||
def decode_list(self, ids):
|
||||
return [self._subtoken_id_to_subtoken_string(s) for s in ids]
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
"""The subtoken vocabulary size."""
|
||||
return len(self._all_subtoken_strings)
|
||||
|
||||
def _tokens_to_subtoken_ids(self, tokens):
|
||||
"""Converts a list of tokens to a list of subtoken ids.
|
||||
|
||||
Args:
|
||||
tokens: a list of strings.
|
||||
Returns:
|
||||
a list of integers in the range [0, vocab_size)
|
||||
"""
|
||||
ret = []
|
||||
for token in tokens:
|
||||
ret.extend(self._token_to_subtoken_ids(token))
|
||||
return ret
|
||||
|
||||
def _token_to_subtoken_ids(self, token):
|
||||
"""Converts token to a list of subtoken ids.
|
||||
|
||||
Args:
|
||||
token: a string.
|
||||
Returns:
|
||||
a list of integers in the range [0, vocab_size)
|
||||
"""
|
||||
cache_location = hash(token) % self._cache_size
|
||||
cache_key, cache_value = self._cache[cache_location]
|
||||
if cache_key == token:
|
||||
return cache_value
|
||||
ret = self._escaped_token_to_subtoken_ids(
|
||||
_escape_token(token, self._alphabet))
|
||||
self._cache[cache_location] = (token, ret)
|
||||
return ret
|
||||
|
||||
def _subtoken_ids_to_tokens(self, subtokens):
|
||||
"""Converts a list of subtoken ids to a list of tokens.
|
||||
|
||||
Args:
|
||||
subtokens: a list of integers in the range [0, vocab_size)
|
||||
Returns:
|
||||
a list of strings.
|
||||
"""
|
||||
concatenated = "".join(
|
||||
[self._subtoken_id_to_subtoken_string(s) for s in subtokens])
|
||||
split = concatenated.split("_")
|
||||
ret = []
|
||||
for t in split:
|
||||
if t:
|
||||
unescaped = _unescape_token(t + "_")
|
||||
if unescaped:
|
||||
ret.append(unescaped)
|
||||
return ret
|
||||
|
||||
def _subtoken_id_to_subtoken_string(self, subtoken):
|
||||
"""Converts a subtoken integer ID to a subtoken string."""
|
||||
if 0 <= subtoken < self.vocab_size:
|
||||
return self._all_subtoken_strings[subtoken]
|
||||
return u""
|
||||
|
||||
def _escaped_token_to_subtoken_strings(self, escaped_token):
|
||||
"""Converts an escaped token string to a list of subtoken strings.
|
||||
|
||||
Args:
|
||||
escaped_token: An escaped token as a unicode string.
|
||||
Returns:
|
||||
A list of subtokens as unicode strings.
|
||||
"""
|
||||
# NOTE: This algorithm is greedy; it won't necessarily produce the "best"
|
||||
# list of subtokens.
|
||||
ret = []
|
||||
start = 0
|
||||
token_len = len(escaped_token)
|
||||
while start < token_len:
|
||||
for end in range(
|
||||
min(token_len, start + self._max_subtoken_len), start, -1):
|
||||
subtoken = escaped_token[start:end]
|
||||
if subtoken in self._subtoken_string_to_id:
|
||||
ret.append(subtoken)
|
||||
start = end
|
||||
break
|
||||
|
||||
else: # Did not break
|
||||
# If there is no possible encoding of the escaped token then one of the
|
||||
# characters in the token is not in the alphabet. This should be
|
||||
# impossible and would be indicative of a bug.
|
||||
assert False, "Token substring not found in subtoken vocabulary."
|
||||
|
||||
return ret
|
||||
|
||||
def _escaped_token_to_subtoken_ids(self, escaped_token):
|
||||
"""Converts an escaped token string to a list of subtoken IDs.
|
||||
|
||||
Args:
|
||||
escaped_token: An escaped token as a unicode string.
|
||||
Returns:
|
||||
A list of subtoken IDs as integers.
|
||||
"""
|
||||
return [
|
||||
self._subtoken_string_to_id[subtoken]
|
||||
for subtoken in self._escaped_token_to_subtoken_strings(escaped_token)
|
||||
]
|
||||
|
||||
@classmethod
|
||||
def build_from_generator(cls,
|
||||
generator,
|
||||
target_size,
|
||||
max_subtoken_length=None,
|
||||
reserved_tokens=None):
|
||||
"""Builds a SubwordTextEncoder from the generated text.
|
||||
|
||||
Args:
|
||||
generator: yields text.
|
||||
target_size: int, approximate vocabulary size to create.
|
||||
max_subtoken_length: Maximum length of a subtoken. If this is not set,
|
||||
then the runtime and memory use of creating the vocab is quadratic in
|
||||
the length of the longest token. If this is set, then it is instead
|
||||
O(max_subtoken_length * length of longest token).
|
||||
reserved_tokens: List of reserved tokens. The global variable
|
||||
`RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this
|
||||
argument is `None`, it will use `RESERVED_TOKENS`.
|
||||
|
||||
Returns:
|
||||
SubwordTextEncoder with `vocab_size` approximately `target_size`.
|
||||
"""
|
||||
token_counts = collections.defaultdict(int)
|
||||
for item in generator:
|
||||
for tok in tokenizer_encode(native_to_unicode(item)):
|
||||
token_counts[tok] += 1
|
||||
encoder = cls.build_to_target_size(
|
||||
target_size, token_counts, 1, 1e3,
|
||||
max_subtoken_length=max_subtoken_length,
|
||||
reserved_tokens=reserved_tokens)
|
||||
return encoder
|
||||
|
||||
@classmethod
|
||||
def build_to_target_size(cls,
|
||||
target_size,
|
||||
token_counts,
|
||||
min_val,
|
||||
max_val,
|
||||
max_subtoken_length=None,
|
||||
reserved_tokens=None,
|
||||
num_iterations=4):
|
||||
"""Builds a SubwordTextEncoder that has `vocab_size` near `target_size`.
|
||||
|
||||
Uses simple recursive binary search to find a minimum token count that most
|
||||
closely matches the `target_size`.
|
||||
|
||||
Args:
|
||||
target_size: Desired vocab_size to approximate.
|
||||
token_counts: A dictionary of token counts, mapping string to int.
|
||||
min_val: An integer; lower bound for the minimum token count.
|
||||
max_val: An integer; upper bound for the minimum token count.
|
||||
max_subtoken_length: Maximum length of a subtoken. If this is not set,
|
||||
then the runtime and memory use of creating the vocab is quadratic in
|
||||
the length of the longest token. If this is set, then it is instead
|
||||
O(max_subtoken_length * length of longest token).
|
||||
reserved_tokens: List of reserved tokens. The global variable
|
||||
`RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this
|
||||
argument is `None`, it will use `RESERVED_TOKENS`.
|
||||
num_iterations: An integer; how many iterations of refinement.
|
||||
|
||||
Returns:
|
||||
A SubwordTextEncoder instance.
|
||||
|
||||
Raises:
|
||||
ValueError: If `min_val` is greater than `max_val`.
|
||||
"""
|
||||
if min_val > max_val:
|
||||
raise ValueError("Lower bound for the minimum token count "
|
||||
"is greater than the upper bound.")
|
||||
if target_size < 1:
|
||||
raise ValueError("Target size must be positive.")
|
||||
|
||||
if reserved_tokens is None:
|
||||
reserved_tokens = RESERVED_TOKENS
|
||||
|
||||
def bisect(min_val, max_val):
|
||||
"""Bisection to find the right size."""
|
||||
present_count = (max_val + min_val) // 2
|
||||
logger.info("Trying min_count %d" % present_count)
|
||||
subtokenizer = cls()
|
||||
subtokenizer.build_from_token_counts(
|
||||
token_counts, present_count, num_iterations,
|
||||
max_subtoken_length=max_subtoken_length,
|
||||
reserved_tokens=reserved_tokens)
|
||||
|
||||
# Being within 1% of the target size is ok.
|
||||
is_ok = abs(subtokenizer.vocab_size - target_size) * 100 < target_size
|
||||
# If min_val == max_val, we can't do any better than this.
|
||||
if is_ok or min_val >= max_val or present_count < 2:
|
||||
return subtokenizer
|
||||
|
||||
if subtokenizer.vocab_size > target_size:
|
||||
other_subtokenizer = bisect(present_count + 1, max_val)
|
||||
else:
|
||||
other_subtokenizer = bisect(min_val, present_count - 1)
|
||||
|
||||
if other_subtokenizer is None:
|
||||
return subtokenizer
|
||||
|
||||
if (abs(other_subtokenizer.vocab_size - target_size) <
|
||||
abs(subtokenizer.vocab_size - target_size)):
|
||||
return other_subtokenizer
|
||||
return subtokenizer
|
||||
|
||||
return bisect(min_val, max_val)
|
||||
|
||||
def build_from_token_counts(self,
|
||||
token_counts,
|
||||
min_count,
|
||||
num_iterations=4,
|
||||
reserved_tokens=None,
|
||||
max_subtoken_length=None):
|
||||
"""Train a SubwordTextEncoder based on a dictionary of word counts.
|
||||
|
||||
Args:
|
||||
token_counts: a dictionary of Unicode strings to int.
|
||||
min_count: an integer - discard subtokens with lower counts.
|
||||
num_iterations: an integer. how many iterations of refinement.
|
||||
reserved_tokens: List of reserved tokens. The global variable
|
||||
`RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this
|
||||
argument is `None`, it will use `RESERVED_TOKENS`.
|
||||
max_subtoken_length: Maximum length of a subtoken. If this is not set,
|
||||
then the runtime and memory use of creating the vocab is quadratic in
|
||||
the length of the longest token. If this is set, then it is instead
|
||||
O(max_subtoken_length * length of longest token).
|
||||
|
||||
Raises:
|
||||
ValueError: if reserved is not 0 or len(RESERVED_TOKENS). In this case, it
|
||||
is not clear what the space is being reserved for, or when it will be
|
||||
filled in.
|
||||
"""
|
||||
if reserved_tokens is None:
|
||||
reserved_tokens = RESERVED_TOKENS
|
||||
else:
|
||||
# There is not complete freedom in replacing RESERVED_TOKENS.
|
||||
for default, proposed in zip(RESERVED_TOKENS, reserved_tokens):
|
||||
if default != proposed:
|
||||
raise ValueError("RESERVED_TOKENS must be a prefix of "
|
||||
"reserved_tokens.")
|
||||
|
||||
# Initialize the alphabet. Note, this must include reserved tokens or it can
|
||||
# result in encoding failures.
|
||||
alphabet_tokens = chain(six.iterkeys(token_counts),
|
||||
[native_to_unicode(t) for t in reserved_tokens])
|
||||
|
||||
self._init_alphabet_from_tokens(alphabet_tokens)
|
||||
|
||||
# Bootstrap the initial list of subtokens with the characters from the
|
||||
# alphabet plus the escaping characters.
|
||||
self._init_subtokens_from_list(list(self._alphabet),
|
||||
reserved_tokens=reserved_tokens)
|
||||
|
||||
# We build iteratively. On each iteration, we segment all the words,
|
||||
# then count the resulting potential subtokens, keeping the ones
|
||||
# with high enough counts for our new vocabulary.
|
||||
if min_count < 1:
|
||||
min_count = 1
|
||||
for i in range(num_iterations):
|
||||
logger.info("Iteration {0}".format(i))
|
||||
|
||||
# Collect all substrings of the encoded token that break along current
|
||||
# subtoken boundaries.
|
||||
subtoken_counts = collections.defaultdict(int)
|
||||
for token, count in six.iteritems(token_counts):
|
||||
iter_start_time = time.time()
|
||||
escaped_token = _escape_token(token, self._alphabet)
|
||||
subtokens = self._escaped_token_to_subtoken_strings(escaped_token)
|
||||
start = 0
|
||||
for subtoken in subtokens:
|
||||
last_position = len(escaped_token) + 1
|
||||
if max_subtoken_length is not None:
|
||||
last_position = min(last_position, start + max_subtoken_length)
|
||||
|
||||
for end in range(start + 1, last_position):
|
||||
new_subtoken = escaped_token[start:end]
|
||||
subtoken_counts[new_subtoken] += count
|
||||
start += len(subtoken)
|
||||
iter_time_secs = time.time() - iter_start_time
|
||||
if iter_time_secs > 0.1:
|
||||
logger.info(u"Processing token [{0}] took {1} seconds, consider "
|
||||
"setting Text2TextProblem.max_subtoken_length to a "
|
||||
"smaller value.".format(token, iter_time_secs))
|
||||
|
||||
# Array of sets of candidate subtoken strings, by length.
|
||||
len_to_subtoken_strings = []
|
||||
for subtoken_string, count in six.iteritems(subtoken_counts):
|
||||
lsub = len(subtoken_string)
|
||||
if count >= min_count:
|
||||
while len(len_to_subtoken_strings) <= lsub:
|
||||
len_to_subtoken_strings.append(set())
|
||||
len_to_subtoken_strings[lsub].add(subtoken_string)
|
||||
|
||||
# Consider the candidates longest to shortest, so that if we accept
|
||||
# a longer subtoken string, we can decrement the counts of its prefixes.
|
||||
new_subtoken_strings = []
|
||||
for lsub in range(len(len_to_subtoken_strings) - 1, 0, -1):
|
||||
subtoken_strings = len_to_subtoken_strings[lsub]
|
||||
for subtoken_string in subtoken_strings:
|
||||
count = subtoken_counts[subtoken_string]
|
||||
if count >= min_count:
|
||||
# Exclude alphabet tokens here, as they must be included later,
|
||||
# explicitly, regardless of count.
|
||||
if subtoken_string not in self._alphabet:
|
||||
new_subtoken_strings.append((count, subtoken_string))
|
||||
for l in range(1, lsub):
|
||||
subtoken_counts[subtoken_string[:l]] -= count
|
||||
|
||||
# Include the alphabet explicitly to guarantee all strings are encodable.
|
||||
new_subtoken_strings.extend((subtoken_counts.get(a, 0), a)
|
||||
for a in self._alphabet)
|
||||
new_subtoken_strings.sort(reverse=True)
|
||||
|
||||
# Reinitialize to the candidate vocabulary.
|
||||
new_subtoken_strings = [subtoken for _, subtoken in new_subtoken_strings]
|
||||
if reserved_tokens:
|
||||
escaped_reserved_tokens = [
|
||||
_escape_token(native_to_unicode(t), self._alphabet)
|
||||
for t in reserved_tokens
|
||||
]
|
||||
new_subtoken_strings = escaped_reserved_tokens + new_subtoken_strings
|
||||
|
||||
self._init_subtokens_from_list(new_subtoken_strings)
|
||||
logger.info("vocab_size = %d" % self.vocab_size)
|
||||
|
||||
@property
|
||||
def all_subtoken_strings(self):
|
||||
return tuple(self._all_subtoken_strings)
|
||||
|
||||
def dump(self):
|
||||
"""Debugging dump of the current subtoken vocabulary."""
|
||||
subtoken_strings = [(i, s)
|
||||
for s, i in six.iteritems(self._subtoken_string_to_id)]
|
||||
print(u", ".join(u"{0} : '{1}'".format(i, s)
|
||||
for i, s in sorted(subtoken_strings)))
|
||||
|
||||
def _init_subtokens_from_list(self, subtoken_strings, reserved_tokens=None):
|
||||
"""Initialize token information from a list of subtoken strings.
|
||||
|
||||
Args:
|
||||
subtoken_strings: a list of subtokens
|
||||
reserved_tokens: List of reserved tokens. We must have `reserved_tokens`
|
||||
as None or the empty list, or else the global variable `RESERVED_TOKENS`
|
||||
must be a prefix of `reserved_tokens`.
|
||||
|
||||
Raises:
|
||||
ValueError: if reserved is not 0 or len(RESERVED_TOKENS). In this case, it
|
||||
is not clear what the space is being reserved for, or when it will be
|
||||
filled in.
|
||||
"""
|
||||
if reserved_tokens is None:
|
||||
reserved_tokens = []
|
||||
|
||||
if reserved_tokens:
|
||||
self._all_subtoken_strings = reserved_tokens + subtoken_strings
|
||||
else:
|
||||
self._all_subtoken_strings = subtoken_strings
|
||||
|
||||
# we remember the maximum length of any subtoken to avoid having to
|
||||
# check arbitrarily long strings.
|
||||
self._max_subtoken_len = max([len(s) for s in subtoken_strings])
|
||||
self._subtoken_string_to_id = {
|
||||
s: i + len(reserved_tokens)
|
||||
for i, s in enumerate(subtoken_strings) if s
|
||||
}
|
||||
# Initialize the cache to empty.
|
||||
self._cache_size = 2 ** 20
|
||||
self._cache = [(None, None)] * self._cache_size
|
||||
|
||||
def _init_alphabet_from_tokens(self, tokens):
|
||||
"""Initialize alphabet from an iterable of token or subtoken strings."""
|
||||
# Include all characters from all tokens in the alphabet to guarantee that
|
||||
# any token can be encoded. Additionally, include all escaping characters.
|
||||
self._alphabet = {c for token in tokens for c in token}
|
||||
self._alphabet |= _ESCAPE_CHARS
|
||||
|
||||
def _load_from_file_object(self, f):
|
||||
"""Load from a file object.
|
||||
|
||||
Args:
|
||||
f: File object to load vocabulary from
|
||||
"""
|
||||
subtoken_strings = []
|
||||
for line in f:
|
||||
s = line.strip()
|
||||
# Some vocab files wrap words in single quotes, but others don't
|
||||
if ((s.startswith("'") and s.endswith("'")) or
|
||||
(s.startswith("\"") and s.endswith("\""))):
|
||||
s = s[1:-1]
|
||||
subtoken_strings.append(native_to_unicode(s))
|
||||
self._init_subtokens_from_list(subtoken_strings)
|
||||
self._init_alphabet_from_tokens(subtoken_strings)
|
||||
|
||||
def _load_from_file(self, filename):
|
||||
"""Load from a vocab file."""
|
||||
if not os.path.isfile(filename):
|
||||
raise ValueError("File %s not found" % filename)
|
||||
with open(filename) as f:
|
||||
self._load_from_file_object(f)
|
||||
|
||||
def store_to_file(self, filename, add_single_quotes=True):
|
||||
with open(filename, "w") as f:
|
||||
for subtoken_string in self._all_subtoken_strings:
|
||||
if add_single_quotes:
|
||||
f.write("'" + unicode_to_native(subtoken_string) + "'\n")
|
||||
else:
|
||||
f.write(unicode_to_native(subtoken_string) + "\n")
|
||||
|
||||
|
||||
class DataProcessor():
|
||||
def __init__(self, bert_vocab_path, n_ctx=512):
|
||||
self.text_encoder = SubwordTextEncoder(bert_vocab_path)
|
||||
self.clf_token = self.text_encoder.decode('Clf')
|
||||
self.sep_token = self.text_encoder.decode('Sep')
|
||||
self.A_token = self.text_encoder.decode('A')
|
||||
self.B_token = self.text_encoder.decode('B')
|
||||
self.n_ctx = 512
|
||||
|
||||
def encode_single_sentences(self, input_sentences: List[str]) -> np.array:
|
||||
""" Prepare a torch.Tensor of inputs for BERT model from a string.
|
||||
|
||||
Args:
|
||||
input_sentences: list of single sentences (always considered as a sentence_A type)
|
||||
|
||||
Return:
|
||||
Numpy array of formated inputs for BERT model
|
||||
"""
|
||||
batch_size = len(input_sentences)
|
||||
input_array = np.zeros((batch_size, self.n_ctx, 3), dtype=np.int32)
|
||||
input_mask = np.zeros((batch_size, self.n_ctx), dtype=np.float32)
|
||||
i = 0
|
||||
for sentence in input_sentences:
|
||||
tokenized_sentence = self.text_encoder.encode(sentence)
|
||||
x1j = [self.clf_token] + tokenized_sentence
|
||||
lxj = len(x1j)
|
||||
input_array[i, :lxj, 0] = x1j
|
||||
input_array[i, :lxj, 0] = [self.A_token] * lxj
|
||||
input_array[i, :, 1] = np.arange(self.n_vocab+self.n_special, self.n_vocab+self.n_special+self.n_ctx)
|
||||
input_mask[i, :lxj] = 1
|
||||
i += 1
|
||||
return input_array, input_mask
|
@ -1,5 +0,0 @@
|
||||
echo "=== Downloading BERT pre-trained weights ==="
|
||||
echo "---"
|
||||
wget --quiet --continue http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
|
||||
tar -xzf simple-examples.tgz
|
||||
rm -rf simple-examples.tgz
|
409
extract_features.py
Normal file
409
extract_features.py
Normal file
@ -0,0 +1,409 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Extract pre-computed feature vectors from BERT."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import codecs
|
||||
import collections
|
||||
import json
|
||||
import re
|
||||
|
||||
import modeling
|
||||
import tokenization
|
||||
import tensorflow as tf
|
||||
|
||||
flags = tf.flags
|
||||
|
||||
FLAGS = flags.FLAGS
|
||||
|
||||
flags.DEFINE_string("input_file", None, "")
|
||||
|
||||
flags.DEFINE_string("output_file", None, "")
|
||||
|
||||
flags.DEFINE_string("layers", "-1,-2,-3,-4", "")
|
||||
|
||||
flags.DEFINE_string(
|
||||
"bert_config_file", None,
|
||||
"The config json file corresponding to the pre-trained BERT model. "
|
||||
"This specifies the model architecture.")
|
||||
|
||||
flags.DEFINE_integer(
|
||||
"max_seq_length", 128,
|
||||
"The maximum total input sequence length after WordPiece tokenization. "
|
||||
"Sequences longer than this will be truncated, and sequences shorter "
|
||||
"than this will be padded.")
|
||||
|
||||
flags.DEFINE_string(
|
||||
"init_checkpoint", None,
|
||||
"Initial checkpoint (usually from a pre-trained BERT model).")
|
||||
|
||||
flags.DEFINE_string("vocab_file", None,
|
||||
"The vocabulary file that the BERT model was trained on.")
|
||||
|
||||
flags.DEFINE_bool(
|
||||
"do_lower_case", True,
|
||||
"Whethre to lower case the input text. Should be True for uncased "
|
||||
"models and False for cased models.")
|
||||
|
||||
flags.DEFINE_integer("batch_size", 32, "Batch size for predictions.")
|
||||
|
||||
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
|
||||
|
||||
flags.DEFINE_string("master", None,
|
||||
"If using a TPU, the address of the master.")
|
||||
|
||||
flags.DEFINE_integer(
|
||||
"num_tpu_cores", 8,
|
||||
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
|
||||
|
||||
flags.DEFINE_bool(
|
||||
"use_one_hot_embeddings", False,
|
||||
"If True, tf.one_hot will be used for embedding lookups, otherwise "
|
||||
"tf.nn.embedding_lookup will be used. On TPUs, this should be True "
|
||||
"since it is much faster.")
|
||||
|
||||
|
||||
class InputExample(object):
|
||||
|
||||
def __init__(self, unique_id, text_a, text_b):
|
||||
self.unique_id = unique_id
|
||||
self.text_a = text_a
|
||||
self.text_b = text_b
|
||||
|
||||
|
||||
class InputFeatures(object):
|
||||
"""A single set of features of data."""
|
||||
|
||||
def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
|
||||
self.unique_id = unique_id
|
||||
self.tokens = tokens
|
||||
self.input_ids = input_ids
|
||||
self.input_mask = input_mask
|
||||
self.input_type_ids = input_type_ids
|
||||
|
||||
|
||||
def input_fn_builder(features, seq_length):
|
||||
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
|
||||
|
||||
all_unique_ids = []
|
||||
all_input_ids = []
|
||||
all_input_mask = []
|
||||
all_input_type_ids = []
|
||||
|
||||
for feature in features:
|
||||
all_unique_ids.append(feature.unique_id)
|
||||
all_input_ids.append(feature.input_ids)
|
||||
all_input_mask.append(feature.input_mask)
|
||||
all_input_type_ids.append(feature.input_type_ids)
|
||||
|
||||
def input_fn(params):
|
||||
"""The actual input function."""
|
||||
batch_size = params["batch_size"]
|
||||
|
||||
num_examples = len(features)
|
||||
|
||||
# This is for demo purposes and does NOT scale to large data sets. We do
|
||||
# not use Dataset.from_generator() because that uses tf.py_func which is
|
||||
# not TPU compatible. The right way to load data is with TFRecordReader.
|
||||
d = tf.data.Dataset.from_tensor_slices({
|
||||
"unique_ids":
|
||||
tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32),
|
||||
"input_ids":
|
||||
tf.constant(
|
||||
all_input_ids, shape=[num_examples, seq_length],
|
||||
dtype=tf.int32),
|
||||
"input_mask":
|
||||
tf.constant(
|
||||
all_input_mask,
|
||||
shape=[num_examples, seq_length],
|
||||
dtype=tf.int32),
|
||||
"input_type_ids":
|
||||
tf.constant(
|
||||
all_input_type_ids,
|
||||
shape=[num_examples, seq_length],
|
||||
dtype=tf.int32),
|
||||
})
|
||||
|
||||
d = d.batch(batch_size=batch_size, drop_remainder=False)
|
||||
return d
|
||||
|
||||
return input_fn
|
||||
|
||||
|
||||
def model_fn_builder(bert_config, init_checkpoint, layer_indexes, use_tpu,
|
||||
use_one_hot_embeddings):
|
||||
"""Returns `model_fn` closure for TPUEstimator."""
|
||||
|
||||
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
|
||||
"""The `model_fn` for TPUEstimator."""
|
||||
|
||||
unique_ids = features["unique_ids"]
|
||||
input_ids = features["input_ids"]
|
||||
input_mask = features["input_mask"]
|
||||
input_type_ids = features["input_type_ids"]
|
||||
|
||||
model = modeling.BertModel(
|
||||
config=bert_config,
|
||||
is_training=False,
|
||||
input_ids=input_ids,
|
||||
input_mask=input_mask,
|
||||
token_type_ids=input_type_ids,
|
||||
use_one_hot_embeddings=use_one_hot_embeddings)
|
||||
|
||||
if mode != tf.estimator.ModeKeys.PREDICT:
|
||||
raise ValueError("Only PREDICT modes are supported: %s" % (mode))
|
||||
|
||||
tvars = tf.trainable_variables()
|
||||
scaffold_fn = None
|
||||
(assignment_map, _) = modeling.get_assigment_map_from_checkpoint(
|
||||
tvars, init_checkpoint)
|
||||
if use_tpu:
|
||||
|
||||
def tpu_scaffold():
|
||||
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
|
||||
return tf.train.Scaffold()
|
||||
|
||||
scaffold_fn = tpu_scaffold
|
||||
else:
|
||||
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
|
||||
|
||||
all_layers = model.get_all_encoder_layers()
|
||||
|
||||
predictions = {
|
||||
"unique_id": unique_ids,
|
||||
}
|
||||
|
||||
for (i, layer_index) in enumerate(layer_indexes):
|
||||
predictions["layer_output_%d" % i] = all_layers[layer_index]
|
||||
|
||||
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
|
||||
mode=mode, predictions=predictions, scaffold_fn=scaffold_fn)
|
||||
return output_spec
|
||||
|
||||
return model_fn
|
||||
|
||||
|
||||
def convert_examples_to_features(examples, seq_length, tokenizer):
|
||||
"""Loads a data file into a list of `InputBatch`s."""
|
||||
|
||||
features = []
|
||||
for (ex_index, example) in enumerate(examples):
|
||||
tokens_a = tokenizer.tokenize(example.text_a)
|
||||
|
||||
tokens_b = None
|
||||
if example.text_b:
|
||||
tokens_b = tokenizer.tokenize(example.text_b)
|
||||
|
||||
if tokens_b:
|
||||
# Modifies `tokens_a` and `tokens_b` in place so that the total
|
||||
# length is less than the specified length.
|
||||
# Account for [CLS], [SEP], [SEP] with "- 3"
|
||||
_truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
|
||||
else:
|
||||
# Account for [CLS] and [SEP] with "- 2"
|
||||
if len(tokens_a) > seq_length - 2:
|
||||
tokens_a = tokens_a[0:(seq_length - 2)]
|
||||
|
||||
# The convention in BERT is:
|
||||
# (a) For sequence pairs:
|
||||
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
|
||||
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
|
||||
# (b) For single sequences:
|
||||
# tokens: [CLS] the dog is hairy . [SEP]
|
||||
# type_ids: 0 0 0 0 0 0 0
|
||||
#
|
||||
# Where "type_ids" are used to indicate whether this is the first
|
||||
# sequence or the second sequence. The embedding vectors for `type=0` and
|
||||
# `type=1` were learned during pre-training and are added to the wordpiece
|
||||
# embedding vector (and position vector). This is not *strictly* necessary
|
||||
# since the [SEP] token unambigiously separates the sequences, but it makes
|
||||
# it easier for the model to learn the concept of sequences.
|
||||
#
|
||||
# For classification tasks, the first vector (corresponding to [CLS]) is
|
||||
# used as as the "sentence vector". Note that this only makes sense because
|
||||
# the entire model is fine-tuned.
|
||||
tokens = []
|
||||
input_type_ids = []
|
||||
tokens.append("[CLS]")
|
||||
input_type_ids.append(0)
|
||||
for token in tokens_a:
|
||||
tokens.append(token)
|
||||
input_type_ids.append(0)
|
||||
tokens.append("[SEP]")
|
||||
input_type_ids.append(0)
|
||||
|
||||
if tokens_b:
|
||||
for token in tokens_b:
|
||||
tokens.append(token)
|
||||
input_type_ids.append(1)
|
||||
tokens.append("[SEP]")
|
||||
input_type_ids.append(1)
|
||||
|
||||
input_ids = tokenizer.convert_tokens_to_ids(tokens)
|
||||
|
||||
# The mask has 1 for real tokens and 0 for padding tokens. Only real
|
||||
# tokens are attended to.
|
||||
input_mask = [1] * len(input_ids)
|
||||
|
||||
# Zero-pad up to the sequence length.
|
||||
while len(input_ids) < seq_length:
|
||||
input_ids.append(0)
|
||||
input_mask.append(0)
|
||||
input_type_ids.append(0)
|
||||
|
||||
assert len(input_ids) == seq_length
|
||||
assert len(input_mask) == seq_length
|
||||
assert len(input_type_ids) == seq_length
|
||||
|
||||
if ex_index < 5:
|
||||
tf.logging.info("*** Example ***")
|
||||
tf.logging.info("unique_id: %s" % (example.unique_id))
|
||||
tf.logging.info("tokens: %s" % " ".join([str(x) for x in tokens]))
|
||||
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
|
||||
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
|
||||
tf.logging.info(
|
||||
"input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))
|
||||
|
||||
features.append(
|
||||
InputFeatures(
|
||||
unique_id=example.unique_id,
|
||||
tokens=tokens,
|
||||
input_ids=input_ids,
|
||||
input_mask=input_mask,
|
||||
input_type_ids=input_type_ids))
|
||||
return features
|
||||
|
||||
|
||||
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
|
||||
"""Truncates a sequence pair in place to the maximum length."""
|
||||
|
||||
# This is a simple heuristic which will always truncate the longer sequence
|
||||
# one token at a time. This makes more sense than truncating an equal percent
|
||||
# of tokens from each, since if one sequence is very short then each token
|
||||
# that's truncated likely contains more information than a longer sequence.
|
||||
while True:
|
||||
total_length = len(tokens_a) + len(tokens_b)
|
||||
if total_length <= max_length:
|
||||
break
|
||||
if len(tokens_a) > len(tokens_b):
|
||||
tokens_a.pop()
|
||||
else:
|
||||
tokens_b.pop()
|
||||
|
||||
|
||||
def read_examples(input_file):
|
||||
"""Read a list of `InputExample`s from an input file."""
|
||||
examples = []
|
||||
unique_id = 0
|
||||
with tf.gfile.GFile(input_file, "r") as reader:
|
||||
while True:
|
||||
line = tokenization.convert_to_unicode(reader.readline())
|
||||
if not line:
|
||||
break
|
||||
line = line.strip()
|
||||
text_a = None
|
||||
text_b = None
|
||||
m = re.match(r"^(.*) \|\|\| (.*)$", line)
|
||||
if m is None:
|
||||
text_a = line
|
||||
else:
|
||||
text_a = m.group(1)
|
||||
text_b = m.group(2)
|
||||
examples.append(
|
||||
InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))
|
||||
unique_id += 1
|
||||
return examples
|
||||
|
||||
|
||||
def main(_):
|
||||
tf.logging.set_verbosity(tf.logging.INFO)
|
||||
|
||||
layer_indexes = [int(x) for x in FLAGS.layers.split(",")]
|
||||
|
||||
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
|
||||
|
||||
tokenizer = tokenization.FullTokenizer(
|
||||
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
|
||||
|
||||
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
|
||||
run_config = tf.contrib.tpu.RunConfig(
|
||||
master=FLAGS.master,
|
||||
tpu_config=tf.contrib.tpu.TPUConfig(
|
||||
num_shards=FLAGS.num_tpu_cores,
|
||||
per_host_input_for_training=is_per_host))
|
||||
|
||||
examples = read_examples(FLAGS.input_file)
|
||||
|
||||
features = convert_examples_to_features(
|
||||
examples=examples, seq_length=FLAGS.max_seq_length, tokenizer=tokenizer)
|
||||
|
||||
unique_id_to_feature = {}
|
||||
for feature in features:
|
||||
unique_id_to_feature[feature.unique_id] = feature
|
||||
|
||||
model_fn = model_fn_builder(
|
||||
bert_config=bert_config,
|
||||
init_checkpoint=FLAGS.init_checkpoint,
|
||||
layer_indexes=layer_indexes,
|
||||
use_tpu=FLAGS.use_tpu,
|
||||
use_one_hot_embeddings=FLAGS.use_one_hot_embeddings)
|
||||
|
||||
# If TPU is not available, this will fall back to normal Estimator on CPU
|
||||
# or GPU.
|
||||
estimator = tf.contrib.tpu.TPUEstimator(
|
||||
use_tpu=FLAGS.use_tpu,
|
||||
model_fn=model_fn,
|
||||
config=run_config,
|
||||
predict_batch_size=FLAGS.batch_size)
|
||||
|
||||
input_fn = input_fn_builder(
|
||||
features=features, seq_length=FLAGS.max_seq_length)
|
||||
|
||||
with codecs.getwriter("utf-8")(tf.gfile.Open(FLAGS.output_file,
|
||||
"w")) as writer:
|
||||
for result in estimator.predict(input_fn, yield_single_examples=True):
|
||||
unique_id = int(result["unique_id"])
|
||||
feature = unique_id_to_feature[unique_id]
|
||||
output_json = collections.OrderedDict()
|
||||
output_json["linex_index"] = unique_id
|
||||
all_features = []
|
||||
for (i, token) in enumerate(feature.tokens):
|
||||
all_layers = []
|
||||
for (j, layer_index) in enumerate(layer_indexes):
|
||||
layer_output = result["layer_output_%d" % j]
|
||||
layers = collections.OrderedDict()
|
||||
layers["index"] = layer_index
|
||||
layers["values"] = [
|
||||
round(float(x), 6) for x in layer_output[i:(i + 1)].flat
|
||||
]
|
||||
all_layers.append(layers)
|
||||
features = collections.OrderedDict()
|
||||
features["token"] = token
|
||||
features["layers"] = all_layers
|
||||
all_features.append(features)
|
||||
output_json["features"] = all_features
|
||||
writer.write(json.dumps(output_json) + "\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
flags.mark_flag_as_required("input_file")
|
||||
flags.mark_flag_as_required("vocab_file")
|
||||
flags.mark_flag_as_required("bert_config_file")
|
||||
flags.mark_flag_as_required("init_checkpoint")
|
||||
flags.mark_flag_as_required("output_file")
|
||||
tf.app.run()
|
994
modeling.py
Normal file
994
modeling.py
Normal file
@ -0,0 +1,994 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Common utility functions related to TensorFlow."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
import copy
|
||||
import json
|
||||
import math
|
||||
import re
|
||||
import six
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
class BertConfig(object):
|
||||
"""Configuration for `BertModel`."""
|
||||
|
||||
def __init__(self,
|
||||
vocab_size,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=12,
|
||||
intermediate_size=3072,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=16,
|
||||
initializer_range=0.02):
|
||||
"""Constructs BertConfig.
|
||||
|
||||
Args:
|
||||
vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
|
||||
hidden_size: Size of the encoder layers and the pooler layer.
|
||||
num_hidden_layers: Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads: Number of attention heads for each attention layer in
|
||||
the Transformer encoder.
|
||||
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
|
||||
layer in the Transformer encoder.
|
||||
hidden_act: The non-linear activation function (function or string) in the
|
||||
encoder and pooler.
|
||||
hidden_dropout_prob: The dropout probabilitiy for all fully connected
|
||||
layers in the embeddings, encoder, and pooler.
|
||||
attention_probs_dropout_prob: The dropout ratio for the attention
|
||||
probabilities.
|
||||
max_position_embeddings: The maximum sequence length that this model might
|
||||
ever be used with. Typically set this to something large just in case
|
||||
(e.g., 512 or 1024 or 2048).
|
||||
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
|
||||
`BertModel`.
|
||||
initializer_range: The sttdev of the truncated_normal_initializer for
|
||||
initializing all weight matrices.
|
||||
"""
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.initializer_range = initializer_range
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, json_object):
|
||||
"""Constructs a `BertConfig` from a Python dictionary of parameters."""
|
||||
config = BertConfig(vocab_size=None)
|
||||
for (key, value) in six.iteritems(json_object):
|
||||
config.__dict__[key] = value
|
||||
return config
|
||||
|
||||
@classmethod
|
||||
def from_json_file(cls, json_file):
|
||||
"""Constructs a `BertConfig` from a json file of parameters."""
|
||||
with tf.gfile.GFile(json_file, "r") as reader:
|
||||
text = reader.read()
|
||||
return cls.from_dict(json.loads(text))
|
||||
|
||||
def to_dict(self):
|
||||
"""Serializes this instance to a Python dictionary."""
|
||||
output = copy.deepcopy(self.__dict__)
|
||||
return output
|
||||
|
||||
def to_json_string(self):
|
||||
"""Serializes this instance to a JSON string."""
|
||||
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
|
||||
|
||||
|
||||
class BertModel(object):
|
||||
"""BERT model ("Bidirectional Embedding Representations from a Transformer").
|
||||
|
||||
Example usage:
|
||||
|
||||
```python
|
||||
# Already been converted into WordPiece token ids
|
||||
input_ids = tf.constant([[31, 51, 99], [15, 5, 0]])
|
||||
input_mask = tf.constant([[1, 1, 1], [1, 1, 0]])
|
||||
token_type_ids = tf.constant([[0, 0, 1], [0, 2, 0]])
|
||||
|
||||
config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
|
||||
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
|
||||
|
||||
model = modeling.BertModel(config=config, is_training=True,
|
||||
input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type_ids)
|
||||
|
||||
label_embeddings = tf.get_variable(...)
|
||||
pooled_output = model.get_pooled_output()
|
||||
logits = tf.matmul(pooled_output, label_embeddings)
|
||||
...
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
config,
|
||||
is_training,
|
||||
input_ids,
|
||||
input_mask=None,
|
||||
token_type_ids=None,
|
||||
use_one_hot_embeddings=True,
|
||||
scope=None):
|
||||
"""Constructor for BertModel.
|
||||
|
||||
Args:
|
||||
config: `BertConfig` instance.
|
||||
is_training: bool. rue for training model, false for eval model. Controls
|
||||
whether dropout will be applied.
|
||||
input_ids: int32 Tensor of shape [batch_size, seq_length].
|
||||
input_mask: (optional) int32 Tensor of shape [batch_size, seq_length].
|
||||
token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
|
||||
use_one_hot_embeddings: (optional) bool. Whether to use one-hot word
|
||||
embeddings or tf.embedding_lookup() for the word embeddings. On the TPU,
|
||||
it is must faster if this is True, on the CPU or GPU, it is faster if
|
||||
this is False.
|
||||
scope: (optional) variable scope. Defaults to "bert".
|
||||
|
||||
Raises:
|
||||
ValueError: The config is invalid or one of the input tensor shapes
|
||||
is invalid.
|
||||
"""
|
||||
config = copy.deepcopy(config)
|
||||
if not is_training:
|
||||
config.hidden_dropout_prob = 0.0
|
||||
config.attention_probs_dropout_prob = 0.0
|
||||
|
||||
input_shape = get_shape_list(input_ids, expected_rank=2)
|
||||
batch_size = input_shape[0]
|
||||
seq_length = input_shape[1]
|
||||
|
||||
if input_mask is None:
|
||||
input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32)
|
||||
|
||||
if token_type_ids is None:
|
||||
token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)
|
||||
|
||||
with tf.variable_scope("bert", scope):
|
||||
with tf.variable_scope("embeddings"):
|
||||
# Perform embedding lookup on the word ids.
|
||||
(self.embedding_output, self.embedding_table) = embedding_lookup(
|
||||
input_ids=input_ids,
|
||||
vocab_size=config.vocab_size,
|
||||
embedding_size=config.hidden_size,
|
||||
initializer_range=config.initializer_range,
|
||||
word_embedding_name="word_embeddings",
|
||||
use_one_hot_embeddings=use_one_hot_embeddings)
|
||||
|
||||
# Add positional embeddings and token type embeddings, then layer
|
||||
# normalize and perform dropout.
|
||||
self.embedding_output = embedding_postprocessor(
|
||||
input_tensor=self.embedding_output,
|
||||
use_token_type=True,
|
||||
token_type_ids=token_type_ids,
|
||||
token_type_vocab_size=config.type_vocab_size,
|
||||
token_type_embedding_name="token_type_embeddings",
|
||||
use_position_embeddings=True,
|
||||
position_embedding_name="position_embeddings",
|
||||
initializer_range=config.initializer_range,
|
||||
max_position_embeddings=config.max_position_embeddings,
|
||||
dropout_prob=config.hidden_dropout_prob)
|
||||
|
||||
with tf.variable_scope("encoder"):
|
||||
# This converts a 2D mask of shape [batch_size, seq_length] to a 3D
|
||||
# mask of shape [batch_size, seq_length, seq_length] which is used
|
||||
# for the attention scores.
|
||||
attention_mask = create_attention_mask_from_input_mask(
|
||||
input_ids, input_mask)
|
||||
|
||||
# Run the stacked transformer.
|
||||
# `sequence_output` shape = [batch_size, seq_length, hidden_size].
|
||||
self.all_encoder_layers = transformer_model(
|
||||
input_tensor=self.embedding_output,
|
||||
attention_mask=attention_mask,
|
||||
hidden_size=config.hidden_size,
|
||||
num_hidden_layers=config.num_hidden_layers,
|
||||
num_attention_heads=config.num_attention_heads,
|
||||
intermediate_size=config.intermediate_size,
|
||||
intermediate_act_fn=get_activation(config.hidden_act),
|
||||
hidden_dropout_prob=config.hidden_dropout_prob,
|
||||
attention_probs_dropout_prob=config.attention_probs_dropout_prob,
|
||||
initializer_range=config.initializer_range,
|
||||
do_return_all_layers=True)
|
||||
|
||||
self.sequence_output = self.all_encoder_layers[-1]
|
||||
# The "pooler" converts the encoded sequence tensor of shape
|
||||
# [batch_size, seq_length, hidden_size] to a tensor of shape
|
||||
# [batch_size, hidden_size]. This is necessary for segment-level
|
||||
# (or segment-pair-level) classification tasks where we need a fixed
|
||||
# dimensional representation of the segment.
|
||||
with tf.variable_scope("pooler"):
|
||||
# We "pool" the model by simply taking the hidden state corresponding
|
||||
# to the first token. We assume that this has been pre-trained
|
||||
first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)
|
||||
self.pooled_output = tf.layers.dense(
|
||||
first_token_tensor,
|
||||
config.hidden_size,
|
||||
activation=tf.tanh,
|
||||
kernel_initializer=create_initializer(config.initializer_range))
|
||||
|
||||
def get_pooled_output(self):
|
||||
return self.pooled_output
|
||||
|
||||
def get_sequence_output(self):
|
||||
"""Gets final hidden layer of encoder.
|
||||
|
||||
Returns:
|
||||
float Tensor of shape [batch_size, seq_length, hidden_size] corresponding
|
||||
to the final hidden of the transformer encoder.
|
||||
"""
|
||||
return self.sequence_output
|
||||
|
||||
def get_all_encoder_layers(self):
|
||||
return self.all_encoder_layers
|
||||
|
||||
def get_embedding_output(self):
|
||||
"""Gets output of the embedding lookup (i.e., input to the transformer).
|
||||
|
||||
Returns:
|
||||
float Tensor of shape [batch_size, seq_length, hidden_size] corresponding
|
||||
to the output of the embedding layer, after summing the word
|
||||
embeddings with the positional embeddings and the token type embeddings,
|
||||
then performing layer normalization. This is the input to the transformer.
|
||||
"""
|
||||
return self.embedding_output
|
||||
|
||||
def get_embedding_table(self):
|
||||
return self.embedding_table
|
||||
|
||||
|
||||
def gelu(input_tensor):
|
||||
"""Gaussian Error Linear Unit.
|
||||
|
||||
This is a smoother version of the RELU.
|
||||
Original paper: https://arxiv.org/abs/1606.08415
|
||||
|
||||
Args:
|
||||
input_tensor: float Tensor to perform activation.
|
||||
|
||||
Returns:
|
||||
`input_tensor` with the GELU activation applied.
|
||||
"""
|
||||
cdf = 0.5 * (1.0 + tf.erf(input_tensor / tf.sqrt(2.0)))
|
||||
return input_tensor * cdf
|
||||
|
||||
|
||||
def get_activation(activation_string):
|
||||
"""Maps a string to a Python function, e.g., "relu" => `tf.nn.relu`.
|
||||
|
||||
Args:
|
||||
activation_string: String name of the activation function.
|
||||
|
||||
Returns:
|
||||
A Python function corresponding to the activation function. If
|
||||
`activation_string` is None, empty, or "linear", this will return None.
|
||||
If `activation_string` is not a string, it will return `activation_string`.
|
||||
|
||||
Raises:
|
||||
ValueError: The `activation_string` does not correspond to a known
|
||||
activation.
|
||||
"""
|
||||
|
||||
# We assume that anything that"s not a string is already an activation
|
||||
# function, so we just return it.
|
||||
if not isinstance(activation_string, six.string_types):
|
||||
return activation_string
|
||||
|
||||
if not activation_string:
|
||||
return None
|
||||
|
||||
act = activation_string.lower()
|
||||
if act == "linear":
|
||||
return None
|
||||
elif act == "relu":
|
||||
return tf.nn.relu
|
||||
elif act == "gelu":
|
||||
return gelu
|
||||
elif act == "tanh":
|
||||
return tf.tanh
|
||||
else:
|
||||
raise ValueError("Unsupported activation: %s" % act)
|
||||
|
||||
|
||||
def get_assigment_map_from_checkpoint(tvars, init_checkpoint):
|
||||
"""Compute the union of the current variables and checkpoint variables."""
|
||||
assignment_map = {}
|
||||
initialized_variable_names = {}
|
||||
|
||||
name_to_variable = collections.OrderedDict()
|
||||
for var in tvars:
|
||||
name = var.name
|
||||
m = re.match("^(.*):\\d+$", name)
|
||||
if m is not None:
|
||||
name = m.group(1)
|
||||
name_to_variable[name] = var
|
||||
|
||||
init_vars = tf.train.list_variables(init_checkpoint)
|
||||
|
||||
assignment_map = collections.OrderedDict()
|
||||
for x in init_vars:
|
||||
(name, var) = (x[0], x[1])
|
||||
if name not in name_to_variable:
|
||||
continue
|
||||
assignment_map[name] = name
|
||||
initialized_variable_names[name] = 1
|
||||
initialized_variable_names[name + ":0"] = 1
|
||||
|
||||
return (assignment_map, initialized_variable_names)
|
||||
|
||||
|
||||
def dropout(input_tensor, dropout_prob):
|
||||
"""Perform dropout.
|
||||
|
||||
Args:
|
||||
input_tensor: float Tensor.
|
||||
dropout_prob: Python float. The probabiltiy of dropping out a value (NOT of
|
||||
*keeping* a dimension as in `tf.nn.dropout`).
|
||||
|
||||
Returns:
|
||||
A version of `input_tensor` with dropout applied.
|
||||
"""
|
||||
if dropout_prob is None or dropout_prob == 0.0:
|
||||
return input_tensor
|
||||
|
||||
output = tf.nn.dropout(input_tensor, 1.0 - dropout_prob)
|
||||
return output
|
||||
|
||||
|
||||
def layer_norm(input_tensor, name=None):
|
||||
"""Run layer normalization on the last dimension of the tensor."""
|
||||
return tf.contrib.layers.layer_norm(
|
||||
inputs=input_tensor, begin_norm_axis=-1, begin_params_axis=-1, scope=name)
|
||||
|
||||
|
||||
def layer_norm_and_dropout(input_tensor, dropout_prob, name=None):
|
||||
"""Runs layer normalization followed by dropout."""
|
||||
output_tensor = layer_norm(input_tensor, name)
|
||||
output_tensor = dropout(output_tensor, dropout_prob)
|
||||
return output_tensor
|
||||
|
||||
|
||||
def create_initializer(initializer_range=0.02):
|
||||
"""Creates a `truncated_normal_initializer` with the given range."""
|
||||
return tf.truncated_normal_initializer(stddev=initializer_range)
|
||||
|
||||
|
||||
def embedding_lookup(input_ids,
|
||||
vocab_size,
|
||||
embedding_size=128,
|
||||
initializer_range=0.02,
|
||||
word_embedding_name="word_embeddings",
|
||||
use_one_hot_embeddings=False):
|
||||
"""Looks up words embeddings for id tensor.
|
||||
|
||||
Args:
|
||||
input_ids: int32 Tensor of shape [batch_size, seq_length] containing word
|
||||
ids.
|
||||
vocab_size: int. Size of the embedding vocabulary.
|
||||
embedding_size: int. Width of the word embeddings.
|
||||
initializer_range: float. Embedding initialization range.
|
||||
word_embedding_name: string. Name of the embedding table.
|
||||
use_one_hot_embeddings: bool. If True, use one-hot method for word
|
||||
embeddings. If False, use `tf.nn.embedding_lookup()`. One hot is better
|
||||
for TPUs.
|
||||
|
||||
Returns:
|
||||
float Tensor of shape [batch_size, seq_length, embedding_size].
|
||||
"""
|
||||
# This function assumes that the input is of shape [batch_size, seq_length,
|
||||
# num_inputs].
|
||||
#
|
||||
# If the input is a 2D tensor of shape [batch_size, seq_length], we
|
||||
# reshape to [batch_size, seq_length, 1].
|
||||
if input_ids.shape.ndims == 2:
|
||||
input_ids = tf.expand_dims(input_ids, axis=[-1])
|
||||
|
||||
embedding_table = tf.get_variable(
|
||||
name=word_embedding_name,
|
||||
shape=[vocab_size, embedding_size],
|
||||
initializer=create_initializer(initializer_range))
|
||||
|
||||
if use_one_hot_embeddings:
|
||||
flat_input_ids = tf.reshape(input_ids, [-1])
|
||||
one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
|
||||
output = tf.matmul(one_hot_input_ids, embedding_table)
|
||||
else:
|
||||
output = tf.nn.embedding_lookup(embedding_table, input_ids)
|
||||
|
||||
input_shape = get_shape_list(input_ids)
|
||||
|
||||
output = tf.reshape(output,
|
||||
input_shape[0:-1] + [input_shape[-1] * embedding_size])
|
||||
return (output, embedding_table)
|
||||
|
||||
|
||||
def embedding_postprocessor(input_tensor,
|
||||
use_token_type=False,
|
||||
token_type_ids=None,
|
||||
token_type_vocab_size=16,
|
||||
token_type_embedding_name="token_type_embeddings",
|
||||
use_position_embeddings=True,
|
||||
position_embedding_name="position_embeddings",
|
||||
initializer_range=0.02,
|
||||
max_position_embeddings=512,
|
||||
dropout_prob=0.1):
|
||||
"""Performs various post-processing on a word embedding tensor.
|
||||
|
||||
Args:
|
||||
input_tensor: float Tensor of shape [batch_size, seq_length,
|
||||
embedding_size].
|
||||
use_token_type: bool. Whether to add embeddings for `token_type_ids`.
|
||||
token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
|
||||
Must be specified if `use_token_type` is True.
|
||||
token_type_vocab_size: int. The vocabulary size of `token_type_ids`.
|
||||
token_type_embedding_name: string. The name of the embedding table variable
|
||||
for token type ids.
|
||||
use_position_embeddings: bool. Whether to add position embeddings for the
|
||||
position of each token in the sequence.
|
||||
position_embedding_name: string. The name of the embedding table variable
|
||||
for positional embeddings.
|
||||
initializer_range: float. Range of the weight initialization.
|
||||
max_position_embeddings: int. Maximum sequence length that might ever be
|
||||
used with this model. This can be longer than the sequence length of
|
||||
input_tensor, but cannot be shorter.
|
||||
dropout_prob: float. Dropout probability applied to the final output tensor.
|
||||
|
||||
Returns:
|
||||
float tensor with same shape as `input_tensor`.
|
||||
|
||||
Raises:
|
||||
ValueError: One of the tensor shapes or input values is invalid.
|
||||
"""
|
||||
input_shape = get_shape_list(input_tensor, expected_rank=3)
|
||||
batch_size = input_shape[0]
|
||||
seq_length = input_shape[1]
|
||||
width = input_shape[2]
|
||||
|
||||
if seq_length > max_position_embeddings:
|
||||
raise ValueError("The seq length (%d) cannot be greater than "
|
||||
"`max_position_embeddings` (%d)" %
|
||||
(seq_length, max_position_embeddings))
|
||||
|
||||
output = input_tensor
|
||||
|
||||
if use_token_type:
|
||||
if token_type_ids is None:
|
||||
raise ValueError("`token_type_ids` must be specified if"
|
||||
"`use_token_type` is True.")
|
||||
token_type_table = tf.get_variable(
|
||||
name=token_type_embedding_name,
|
||||
shape=[token_type_vocab_size, width],
|
||||
initializer=create_initializer(initializer_range))
|
||||
# This vocab will be small so we always do one-hot here, since it is always
|
||||
# faster for a small vocabulary.
|
||||
flat_token_type_ids = tf.reshape(token_type_ids, [-1])
|
||||
one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
|
||||
token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
|
||||
token_type_embeddings = tf.reshape(token_type_embeddings,
|
||||
[batch_size, seq_length, width])
|
||||
output += token_type_embeddings
|
||||
|
||||
if use_position_embeddings:
|
||||
full_position_embeddings = tf.get_variable(
|
||||
name=position_embedding_name,
|
||||
shape=[max_position_embeddings, width],
|
||||
initializer=create_initializer(initializer_range))
|
||||
# Since the position embedding table is a learned variable, we create it
|
||||
# using a (long) sequence length `max_position_embeddings`. The actual
|
||||
# sequence length might be shorter than this, for faster training of
|
||||
# tasks that do not have long sequences.
|
||||
#
|
||||
# So `full_position_embeddings` is effectively an embedding table
|
||||
# for position [0, 1, 2, ..., max_position_embeddings-1], and the current
|
||||
# sequence has positions [0, 1, 2, ... seq_length-1], so we can just
|
||||
# perform a slice.
|
||||
if seq_length < max_position_embeddings:
|
||||
position_embeddings = tf.slice(full_position_embeddings, [0, 0],
|
||||
[seq_length, -1])
|
||||
else:
|
||||
position_embeddings = full_position_embeddings
|
||||
|
||||
num_dims = len(output.shape.as_list())
|
||||
|
||||
# Only the last two dimensions are relevant (`seq_length` and `width`), so
|
||||
# we broadcast among the first dimensions, which is typically just
|
||||
# the batch size.
|
||||
position_broadcast_shape = []
|
||||
for _ in range(num_dims - 2):
|
||||
position_broadcast_shape.append(1)
|
||||
position_broadcast_shape.extend([seq_length, width])
|
||||
position_embeddings = tf.reshape(position_embeddings,
|
||||
position_broadcast_shape)
|
||||
output += position_embeddings
|
||||
|
||||
output = layer_norm_and_dropout(output, dropout_prob)
|
||||
return output
|
||||
|
||||
|
||||
def create_attention_mask_from_input_mask(from_tensor, to_mask):
|
||||
"""Create 3D attention mask from a 2D tensor mask.
|
||||
|
||||
Args:
|
||||
from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
|
||||
to_mask: int32 Tensor of shape [batch_size, to_seq_length].
|
||||
|
||||
Returns:
|
||||
float Tensor of shape [batch_size, from_seq_length, to_seq_length].
|
||||
"""
|
||||
from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
|
||||
batch_size = from_shape[0]
|
||||
from_seq_length = from_shape[1]
|
||||
|
||||
to_shape = get_shape_list(to_mask, expected_rank=2)
|
||||
to_seq_length = to_shape[1]
|
||||
|
||||
to_mask = tf.cast(
|
||||
tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32)
|
||||
|
||||
# We don't assume that `from_tensor` is a mask (although it could be). We
|
||||
# don't actually care if we attend *from* padding tokens (only *to* padding)
|
||||
# tokens so we create a tensor of all ones.
|
||||
#
|
||||
# `broadcast_ones` = [batch_size, from_seq_length, 1]
|
||||
broadcast_ones = tf.ones(
|
||||
shape=[batch_size, from_seq_length, 1], dtype=tf.float32)
|
||||
|
||||
# Here we broadcast along two dimensions to create the mask.
|
||||
mask = broadcast_ones * to_mask
|
||||
|
||||
return mask
|
||||
|
||||
|
||||
def attention_layer(from_tensor,
|
||||
to_tensor,
|
||||
attention_mask=None,
|
||||
num_attention_heads=1,
|
||||
size_per_head=512,
|
||||
query_act=None,
|
||||
key_act=None,
|
||||
value_act=None,
|
||||
attention_probs_dropout_prob=0.0,
|
||||
initializer_range=0.02,
|
||||
do_return_2d_tensor=False,
|
||||
batch_size=None,
|
||||
from_seq_length=None,
|
||||
to_seq_length=None):
|
||||
"""Performs multi-headed attention from `from_tensor` to `to_tensor`.
|
||||
|
||||
This is an implementation of multi-headed attention based on "Attention
|
||||
is all you Need". If `from_tensor` and `to_tensor` are the same, then
|
||||
this is self-attention. Each timestep in `from_tensor` attends to the
|
||||
corresponding sequence in `to_tensor`, and returns a fixed-with vector.
|
||||
|
||||
This function first projects `from_tensor` into a "query" tensor and
|
||||
`to_tensor` into "key" and "value" tensors. These are (effectively) a list
|
||||
of tensors of length `num_attention_heads`, where each tensor is of shape
|
||||
[batch_size, seq_length, size_per_head].
|
||||
|
||||
Then, the query and key tensors are dot-producted and scaled. These are
|
||||
softmaxed to obtain attention probabilities. The value tensors are then
|
||||
interpolated by these probabilities, then concatenated back to a single
|
||||
tensor and returned.
|
||||
|
||||
In practice, the multi-headed attention are done with transposes and
|
||||
reshapes rather than actual separate tensors.
|
||||
|
||||
Args:
|
||||
from_tensor: float Tensor of shape [batch_size, from_seq_length,
|
||||
from_width].
|
||||
to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width].
|
||||
attention_mask: (optional) int32 Tensor of shape [batch_size,
|
||||
from_seq_length, to_seq_length]. The values should be 1 or 0. The
|
||||
attention scores will effectively be set to -infinity for any positions in
|
||||
the mask that are 0, and will be unchaged for positions that are 1.
|
||||
num_attention_heads: int. Number of attention heads.
|
||||
size_per_head: int. Size of each attention head.
|
||||
query_act: (optional) Activation function for the query transform.
|
||||
key_act: (optional) Activation function for the key transform.
|
||||
value_act: (optional) Activation function for the value transform.
|
||||
attention_probs_dropout_prob:
|
||||
initializer_range: float. Range of the weight initializer.
|
||||
do_return_2d_tensor: bool. If True, the output will be of shape [batch_size
|
||||
* from_seq_length, num_attention_heads * size_per_head]. If False, the
|
||||
output will be of shape [batch_size, from_seq_length, num_attention_heads
|
||||
* size_per_head].
|
||||
batch_size: (Optional) int. If the input is 2D, this might be the batch size
|
||||
of the 3D version of the `from_tensor` and `to_tensor`.
|
||||
from_seq_length: (Optional) If the input is 2D, this might be the seq length
|
||||
of the 3D version of the `from_tensor`.
|
||||
to_seq_length: (Optional) If the input is 2D, this might be the seq length
|
||||
of the 3D version of the `to_tensor`.
|
||||
|
||||
Returns:
|
||||
float Tensor of shape [batch_size, from_seq_length,
|
||||
num_attention_heads * size_per_head]. (If `do_return_2d_tensor` is
|
||||
true, this will be of shape [batch_size * from_seq_length,
|
||||
num_attention_heads * size_per_head]).
|
||||
|
||||
Raises:
|
||||
ValueError: Any of the arguments or tensor shapes are invalid.
|
||||
"""
|
||||
|
||||
def transpose_for_scores(input_tensor, batch_size, num_attention_heads,
|
||||
seq_length, width):
|
||||
output_tensor = tf.reshape(
|
||||
input_tensor, [batch_size, seq_length, num_attention_heads, width])
|
||||
|
||||
output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3])
|
||||
return output_tensor
|
||||
|
||||
from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
|
||||
to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])
|
||||
|
||||
if len(from_shape) != len(to_shape):
|
||||
raise ValueError(
|
||||
"The rank of `from_tensor` must match the rank of `to_tensor`.")
|
||||
|
||||
if len(from_shape) == 3:
|
||||
batch_size = from_shape[0]
|
||||
from_seq_length = from_shape[1]
|
||||
to_seq_length = to_shape[1]
|
||||
elif len(from_shape) == 2:
|
||||
if (batch_size is None or from_seq_length is None or to_seq_length is None):
|
||||
raise ValueError(
|
||||
"When passing in rank 2 tensors to attention_layer, the values "
|
||||
"for `batch_size`, `from_seq_length`, and `to_seq_length` "
|
||||
"must all be specified.")
|
||||
|
||||
# Scalar dimensions referenced here:
|
||||
# B = batch size (number of sequences)
|
||||
# F = `from_tensor` sequence length
|
||||
# T = `to_tensor` sequence length
|
||||
# N = `num_attention_heads`
|
||||
# H = `size_per_head`
|
||||
|
||||
from_tensor_2d = reshape_to_matrix(from_tensor)
|
||||
to_tensor_2d = reshape_to_matrix(to_tensor)
|
||||
|
||||
# `query_layer` = [B*F, N*H]
|
||||
query_layer = tf.layers.dense(
|
||||
from_tensor_2d,
|
||||
num_attention_heads * size_per_head,
|
||||
activation=query_act,
|
||||
name="query",
|
||||
kernel_initializer=create_initializer(initializer_range))
|
||||
|
||||
# `key_layer` = [B*T, N*H]
|
||||
key_layer = tf.layers.dense(
|
||||
to_tensor_2d,
|
||||
num_attention_heads * size_per_head,
|
||||
activation=key_act,
|
||||
name="key",
|
||||
kernel_initializer=create_initializer(initializer_range))
|
||||
|
||||
# `value_layer` = [B*T, N*H]
|
||||
value_layer = tf.layers.dense(
|
||||
to_tensor_2d,
|
||||
num_attention_heads * size_per_head,
|
||||
activation=value_act,
|
||||
name="value",
|
||||
kernel_initializer=create_initializer(initializer_range))
|
||||
|
||||
# `query_layer` = [B, N, F, H]
|
||||
query_layer = transpose_for_scores(query_layer, batch_size,
|
||||
num_attention_heads, from_seq_length,
|
||||
size_per_head)
|
||||
|
||||
# `key_layer` = [B, N, T, H]
|
||||
key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads,
|
||||
to_seq_length, size_per_head)
|
||||
|
||||
# Take the dot product between "query" and "key" to get the raw
|
||||
# attention scores.
|
||||
# `attention_scores` = [B, N, F, T]
|
||||
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
|
||||
attention_scores = tf.multiply(attention_scores,
|
||||
1.0 / math.sqrt(float(size_per_head)))
|
||||
|
||||
if attention_mask is not None:
|
||||
# `attention_mask` = [B, 1, F, T]
|
||||
attention_mask = tf.expand_dims(attention_mask, axis=[1])
|
||||
|
||||
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||||
# masked positions, this operation will create a tensor which is 0.0 for
|
||||
# positions we want to attend and -10000.0 for masked positions.
|
||||
adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0
|
||||
|
||||
# Since we are adding it to the raw scores before the softmax, this is
|
||||
# effectively the same as removing these entirely.
|
||||
attention_scores += adder
|
||||
|
||||
# Normalize the attention scores to probabilities.
|
||||
# `attention_probs` = [B, N, F, T]
|
||||
attention_probs = tf.nn.softmax(attention_scores)
|
||||
|
||||
# This is actually dropping out entire tokens to attend to, which might
|
||||
# seem a bit unusual, but is taken from the original Transformer paper.
|
||||
attention_probs = dropout(attention_probs, attention_probs_dropout_prob)
|
||||
|
||||
# `value_layer` = [B, T, N, H]
|
||||
value_layer = tf.reshape(
|
||||
value_layer,
|
||||
[batch_size, to_seq_length, num_attention_heads, size_per_head])
|
||||
|
||||
# `value_layer` = [B, N, T, H]
|
||||
value_layer = tf.transpose(value_layer, [0, 2, 1, 3])
|
||||
|
||||
# `context_layer` = [B, N, F, H]
|
||||
context_layer = tf.matmul(attention_probs, value_layer)
|
||||
|
||||
# `context_layer` = [B, F, N, H]
|
||||
context_layer = tf.transpose(context_layer, [0, 2, 1, 3])
|
||||
|
||||
if do_return_2d_tensor:
|
||||
# `context_layer` = [B*F, N*V]
|
||||
context_layer = tf.reshape(
|
||||
context_layer,
|
||||
[batch_size * from_seq_length, num_attention_heads * size_per_head])
|
||||
else:
|
||||
# `context_layer` = [B, F, N*V]
|
||||
context_layer = tf.reshape(
|
||||
context_layer,
|
||||
[batch_size, from_seq_length, num_attention_heads * size_per_head])
|
||||
|
||||
return context_layer
|
||||
|
||||
|
||||
def transformer_model(input_tensor,
|
||||
attention_mask=None,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=12,
|
||||
intermediate_size=3072,
|
||||
intermediate_act_fn=gelu,
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
initializer_range=0.02,
|
||||
do_return_all_layers=False):
|
||||
"""Multi-headed, multi-layer Transformer from "Attention is All You Need".
|
||||
|
||||
This is almost an exact implementation of the original Transformer encoder.
|
||||
|
||||
See the original paper:
|
||||
https://arxiv.org/abs/1706.03762
|
||||
|
||||
Also see:
|
||||
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py
|
||||
|
||||
Args:
|
||||
input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size].
|
||||
attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length,
|
||||
seq_length], with 1 for positions that can be attended to and 0 in
|
||||
positions that should not be.
|
||||
hidden_size: int. Hidden size of the Transformer.
|
||||
num_hidden_layers: int. Number of layers (blocks) in the Transformer.
|
||||
num_attention_heads: int. Number of attention heads in the Transformer.
|
||||
intermediate_size: int. The size of the "intermediate" (a.k.a., feed
|
||||
forward) layer.
|
||||
intermediate_act_fn: function. The non-linear activation function to apply
|
||||
to the output of the intermediate/feed-forward layer.
|
||||
hidden_dropout_prob: float. Dropout probability for the hidden layers.
|
||||
attention_probs_dropout_prob: float. Dropout probability of the attention
|
||||
probabilities.
|
||||
initializer_range: float. Range of the initializer (stddev of truncated
|
||||
normal).
|
||||
do_return_all_layers: Whether to also return all layers or just the final
|
||||
layer.
|
||||
|
||||
Returns:
|
||||
float Tensor of shape [batch_size, seq_length, hidden_size], the final
|
||||
hidden layer of the Transformer.
|
||||
|
||||
Raises:
|
||||
ValueError: A Tensor shape or parameter is invalid.
|
||||
"""
|
||||
if hidden_size % num_attention_heads != 0:
|
||||
raise ValueError(
|
||||
"The hidden size (%d) is not a multiple of the number of attention "
|
||||
"heads (%d)" % (hidden_size, num_attention_heads))
|
||||
|
||||
attention_head_size = int(hidden_size / num_attention_heads)
|
||||
input_shape = get_shape_list(input_tensor, expected_rank=3)
|
||||
batch_size = input_shape[0]
|
||||
seq_length = input_shape[1]
|
||||
input_width = input_shape[2]
|
||||
|
||||
# The Transformer performs sum residuals on all layers so the input needs
|
||||
# to be the same as the hidden size.
|
||||
if input_width != hidden_size:
|
||||
raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %
|
||||
(input_width, hidden_size))
|
||||
|
||||
# We keep the representation as a 2D tensor to avoid re-shaping it back and
|
||||
# forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on
|
||||
# the GPU/CPU but may not be free on the TPU, so we want to minimize them to
|
||||
# help the optimizer.
|
||||
prev_output = reshape_to_matrix(input_tensor)
|
||||
|
||||
all_layer_outputs = []
|
||||
for layer_idx in range(num_hidden_layers):
|
||||
with tf.variable_scope("layer_%d" % layer_idx):
|
||||
layer_input = prev_output
|
||||
|
||||
with tf.variable_scope("attention"):
|
||||
attention_heads = []
|
||||
with tf.variable_scope("self"):
|
||||
attention_head = attention_layer(
|
||||
from_tensor=layer_input,
|
||||
to_tensor=layer_input,
|
||||
attention_mask=attention_mask,
|
||||
num_attention_heads=num_attention_heads,
|
||||
size_per_head=attention_head_size,
|
||||
attention_probs_dropout_prob=attention_probs_dropout_prob,
|
||||
initializer_range=initializer_range,
|
||||
do_return_2d_tensor=True,
|
||||
batch_size=batch_size,
|
||||
from_seq_length=seq_length,
|
||||
to_seq_length=seq_length)
|
||||
attention_heads.append(attention_head)
|
||||
|
||||
attention_output = None
|
||||
if len(attention_heads) == 1:
|
||||
attention_output = attention_heads[0]
|
||||
else:
|
||||
# In the case where we have other sequences, we just concatenate
|
||||
# them to the self-attention head before the projection.
|
||||
attention_output = tf.concat(attention_heads, axis=-1)
|
||||
|
||||
# Run a linear projection of `hidden_size` then add a residual
|
||||
# with `layer_input`.
|
||||
with tf.variable_scope("output"):
|
||||
attention_output = tf.layers.dense(
|
||||
attention_output,
|
||||
hidden_size,
|
||||
kernel_initializer=create_initializer(initializer_range))
|
||||
attention_output = dropout(attention_output, hidden_dropout_prob)
|
||||
attention_output = layer_norm(attention_output + layer_input)
|
||||
|
||||
# The activation is only applied to the "intermediate" hidden layer.
|
||||
with tf.variable_scope("intermediate"):
|
||||
intermediate_output = tf.layers.dense(
|
||||
attention_output,
|
||||
intermediate_size,
|
||||
activation=intermediate_act_fn,
|
||||
kernel_initializer=create_initializer(initializer_range))
|
||||
|
||||
# Down-project back to `hidden_size` then add the residual.
|
||||
with tf.variable_scope("output"):
|
||||
layer_output = tf.layers.dense(
|
||||
intermediate_output,
|
||||
hidden_size,
|
||||
kernel_initializer=create_initializer(initializer_range))
|
||||
layer_output = dropout(layer_output, hidden_dropout_prob)
|
||||
layer_output = layer_norm(layer_output + attention_output)
|
||||
prev_output = layer_output
|
||||
all_layer_outputs.append(layer_output)
|
||||
|
||||
if do_return_all_layers:
|
||||
final_outputs = []
|
||||
for layer_output in all_layer_outputs:
|
||||
final_output = reshape_from_matrix(layer_output, input_shape)
|
||||
final_outputs.append(final_output)
|
||||
return final_outputs
|
||||
else:
|
||||
final_output = reshape_from_matrix(prev_output, input_shape)
|
||||
return final_output
|
||||
|
||||
|
||||
def get_shape_list(tensor, expected_rank=None, name=None):
|
||||
"""Returns a list of the shape of tensor, preferring static dimensions.
|
||||
|
||||
Args:
|
||||
tensor: A tf.Tensor object to find the shape of.
|
||||
expected_rank: (optional) int. The expected rank of `tensor`. If this is
|
||||
specified and the `tensor` has a different rank, and exception will be
|
||||
thrown.
|
||||
name: Optional name of the tensor for the error message.
|
||||
|
||||
Returns:
|
||||
A list of dimensions of the shape of tensor. All static dimensions will
|
||||
be returned as python integers, and dynamic dimensions will be returned
|
||||
as tf.Tensor scalars.
|
||||
"""
|
||||
if name is None:
|
||||
name = tensor.name
|
||||
|
||||
if expected_rank is not None:
|
||||
assert_rank(tensor, expected_rank, name)
|
||||
|
||||
shape = tensor.shape.as_list()
|
||||
|
||||
non_static_indexes = []
|
||||
for (index, dim) in enumerate(shape):
|
||||
if dim is None:
|
||||
non_static_indexes.append(index)
|
||||
|
||||
if not non_static_indexes:
|
||||
return shape
|
||||
|
||||
dyn_shape = tf.shape(tensor)
|
||||
for index in non_static_indexes:
|
||||
shape[index] = dyn_shape[index]
|
||||
return shape
|
||||
|
||||
|
||||
def reshape_to_matrix(input_tensor):
|
||||
"""Reshapes a >= rank 2 tensor to a rank 2 tensor (i.e., a matrix)."""
|
||||
ndims = input_tensor.shape.ndims
|
||||
if ndims < 2:
|
||||
raise ValueError("Input tensor must have at least rank 2. Shape = %s" %
|
||||
(input_tensor.shape))
|
||||
if ndims == 2:
|
||||
return input_tensor
|
||||
|
||||
width = input_tensor.shape[-1]
|
||||
output_tensor = tf.reshape(input_tensor, [-1, width])
|
||||
return output_tensor
|
||||
|
||||
|
||||
def reshape_from_matrix(output_tensor, orig_shape_list):
|
||||
"""Reshapes a rank 2 tensor back to its original rank >= 2 tensor."""
|
||||
if len(orig_shape_list) == 2:
|
||||
return output_tensor
|
||||
|
||||
output_shape = get_shape_list(output_tensor)
|
||||
|
||||
orig_dims = orig_shape_list[0:-1]
|
||||
width = output_shape[-1]
|
||||
|
||||
return tf.reshape(output_tensor, orig_dims + [width])
|
||||
|
||||
|
||||
def assert_rank(tensor, expected_rank, name=None):
|
||||
"""Raises an exception if the tensor rank is not of the expected rank.
|
||||
|
||||
Args:
|
||||
tensor: A tf.Tensor to check the rank of.
|
||||
expected_rank: Python integer or list of integers, expected rank.
|
||||
name: Optional name of the tensor for the error message.
|
||||
|
||||
Raises:
|
||||
ValueError: If the expected shape doesn"t match the actual shape.
|
||||
"""
|
||||
if name is None:
|
||||
name = tensor.name
|
||||
|
||||
expected_rank_dict = {}
|
||||
if isinstance(expected_rank, six.integer_types):
|
||||
expected_rank_dict[expected_rank] = True
|
||||
else:
|
||||
for x in expected_rank:
|
||||
expected_rank_dict[x] = True
|
||||
|
||||
actual_rank = tensor.shape.ndims
|
||||
if actual_rank not in expected_rank_dict:
|
||||
scope_name = tf.get_variable_scope().name
|
||||
raise ValueError(
|
||||
"For the tensor `%s` in scope `%s`, the actual rank "
|
||||
"`%d` (shape = %s) is not equal to the expected rank `%s`" %
|
||||
(name, scope_name, actual_rank, str(tensor.shape), str(expected_rank)))
|
276
modeling_test.py
Normal file
276
modeling_test.py
Normal file
@ -0,0 +1,276 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
import json
|
||||
import random
|
||||
import re
|
||||
|
||||
import modeling
|
||||
import six
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
class BertModelTest(tf.test.TestCase):
|
||||
|
||||
class BertModelTester(object):
|
||||
|
||||
def __init__(self,
|
||||
parent,
|
||||
batch_size=13,
|
||||
seq_length=7,
|
||||
is_training=True,
|
||||
use_input_mask=True,
|
||||
use_token_type_ids=True,
|
||||
vocab_size=99,
|
||||
hidden_size=32,
|
||||
num_hidden_layers=5,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=37,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=16,
|
||||
initializer_range=0.02,
|
||||
scope=None):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.seq_length = seq_length
|
||||
self.is_training = is_training
|
||||
self.use_input_mask = use_input_mask
|
||||
self.use_token_type_ids = use_token_type_ids
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.initializer_range = initializer_range
|
||||
self.scope = scope
|
||||
|
||||
def create_model(self):
|
||||
input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length],
|
||||
self.vocab_size)
|
||||
|
||||
input_mask = None
|
||||
if self.use_input_mask:
|
||||
input_mask = BertModelTest.ids_tensor(
|
||||
[self.batch_size, self.seq_length], vocab_size=2)
|
||||
|
||||
token_type_ids = None
|
||||
if self.use_token_type_ids:
|
||||
token_type_ids = BertModelTest.ids_tensor(
|
||||
[self.batch_size, self.seq_length], self.type_vocab_size)
|
||||
|
||||
config = modeling.BertConfig(
|
||||
vocab_size=self.vocab_size,
|
||||
hidden_size=self.hidden_size,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
intermediate_size=self.intermediate_size,
|
||||
hidden_act=self.hidden_act,
|
||||
hidden_dropout_prob=self.hidden_dropout_prob,
|
||||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
type_vocab_size=self.type_vocab_size,
|
||||
initializer_range=self.initializer_range)
|
||||
|
||||
model = modeling.BertModel(
|
||||
config=config,
|
||||
is_training=self.is_training,
|
||||
input_ids=input_ids,
|
||||
input_mask=input_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
scope=self.scope)
|
||||
|
||||
outputs = {
|
||||
"embedding_output": model.get_embedding_output(),
|
||||
"sequence_output": model.get_sequence_output(),
|
||||
"pooled_output": model.get_pooled_output(),
|
||||
"all_encoder_layers": model.get_all_encoder_layers(),
|
||||
}
|
||||
return outputs
|
||||
|
||||
def check_output(self, result):
|
||||
self.parent.assertAllEqual(
|
||||
result["embedding_output"].shape,
|
||||
[self.batch_size, self.seq_length, self.hidden_size])
|
||||
|
||||
self.parent.assertAllEqual(
|
||||
result["sequence_output"].shape,
|
||||
[self.batch_size, self.seq_length, self.hidden_size])
|
||||
|
||||
self.parent.assertAllEqual(result["pooled_output"].shape,
|
||||
[self.batch_size, self.hidden_size])
|
||||
|
||||
def test_default(self):
|
||||
self.run_tester(BertModelTest.BertModelTester(self))
|
||||
|
||||
def test_config_to_json_string(self):
|
||||
config = modeling.BertConfig(vocab_size=99, hidden_size=37)
|
||||
obj = json.loads(config.to_json_string())
|
||||
self.assertEqual(obj["vocab_size"], 99)
|
||||
self.assertEqual(obj["hidden_size"], 37)
|
||||
|
||||
def run_tester(self, tester):
|
||||
with self.test_session() as sess:
|
||||
ops = tester.create_model()
|
||||
init_op = tf.group(tf.global_variables_initializer(),
|
||||
tf.local_variables_initializer())
|
||||
sess.run(init_op)
|
||||
output_result = sess.run(ops)
|
||||
tester.check_output(output_result)
|
||||
|
||||
self.assert_all_tensors_reachable(sess, [init_op, ops])
|
||||
|
||||
@classmethod
|
||||
def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
|
||||
"""Creates a random int32 tensor of the shape within the vocab size."""
|
||||
if rng is None:
|
||||
rng = random.Random()
|
||||
|
||||
total_dims = 1
|
||||
for dim in shape:
|
||||
total_dims *= dim
|
||||
|
||||
values = []
|
||||
for _ in range(total_dims):
|
||||
values.append(rng.randint(0, vocab_size - 1))
|
||||
|
||||
return tf.constant(value=values, dtype=tf.int32, shape=shape, name=name)
|
||||
|
||||
def assert_all_tensors_reachable(self, sess, outputs):
|
||||
"""Checks that all the tensors in the graph are reachable from outputs."""
|
||||
graph = sess.graph
|
||||
|
||||
ignore_strings = [
|
||||
"^.*/dilation_rate$",
|
||||
"^.*/Tensordot/concat$",
|
||||
"^.*/Tensordot/concat/axis$",
|
||||
"^testing/.*$",
|
||||
]
|
||||
|
||||
ignore_regexes = [re.compile(x) for x in ignore_strings]
|
||||
|
||||
unreachable = self.get_unreachable_ops(graph, outputs)
|
||||
filtered_unreachable = []
|
||||
for x in unreachable:
|
||||
do_ignore = False
|
||||
for r in ignore_regexes:
|
||||
m = r.match(x.name)
|
||||
if m is not None:
|
||||
do_ignore = True
|
||||
if do_ignore:
|
||||
continue
|
||||
filtered_unreachable.append(x)
|
||||
unreachable = filtered_unreachable
|
||||
|
||||
self.assertEqual(
|
||||
len(unreachable), 0, "The following ops are unreachable: %s" %
|
||||
(" ".join([x.name for x in unreachable])))
|
||||
|
||||
@classmethod
|
||||
def get_unreachable_ops(cls, graph, outputs):
|
||||
"""Finds all of the tensors in graph that are unreachable from outputs."""
|
||||
outputs = cls.flatten_recursive(outputs)
|
||||
output_to_op = collections.defaultdict(list)
|
||||
op_to_all = collections.defaultdict(list)
|
||||
assign_out_to_in = collections.defaultdict(list)
|
||||
|
||||
for op in graph.get_operations():
|
||||
for x in op.inputs:
|
||||
op_to_all[op.name].append(x.name)
|
||||
for y in op.outputs:
|
||||
output_to_op[y.name].append(op.name)
|
||||
op_to_all[op.name].append(y.name)
|
||||
if str(op.type) == "Assign":
|
||||
for y in op.outputs:
|
||||
for x in op.inputs:
|
||||
assign_out_to_in[y.name].append(x.name)
|
||||
|
||||
assign_groups = collections.defaultdict(list)
|
||||
for out_name in assign_out_to_in.keys():
|
||||
name_group = assign_out_to_in[out_name]
|
||||
for n1 in name_group:
|
||||
assign_groups[n1].append(out_name)
|
||||
for n2 in name_group:
|
||||
if n1 != n2:
|
||||
assign_groups[n1].append(n2)
|
||||
|
||||
seen_tensors = {}
|
||||
stack = [x.name for x in outputs]
|
||||
while stack:
|
||||
name = stack.pop()
|
||||
if name in seen_tensors:
|
||||
continue
|
||||
seen_tensors[name] = True
|
||||
|
||||
if name in output_to_op:
|
||||
for op_name in output_to_op[name]:
|
||||
if op_name in op_to_all:
|
||||
for input_name in op_to_all[op_name]:
|
||||
if input_name not in stack:
|
||||
stack.append(input_name)
|
||||
|
||||
expanded_names = []
|
||||
if name in assign_groups:
|
||||
for assign_name in assign_groups[name]:
|
||||
expanded_names.append(assign_name)
|
||||
|
||||
for expanded_name in expanded_names:
|
||||
if expanded_name not in stack:
|
||||
stack.append(expanded_name)
|
||||
|
||||
unreachable_ops = []
|
||||
for op in graph.get_operations():
|
||||
is_unreachable = False
|
||||
all_names = [x.name for x in op.inputs] + [x.name for x in op.outputs]
|
||||
for name in all_names:
|
||||
if name not in seen_tensors:
|
||||
is_unreachable = True
|
||||
if is_unreachable:
|
||||
unreachable_ops.append(op)
|
||||
return unreachable_ops
|
||||
|
||||
@classmethod
|
||||
def flatten_recursive(cls, item):
|
||||
"""Flattens (potentially nested) a tuple/dictionary/list to a list."""
|
||||
output = []
|
||||
if isinstance(item, list):
|
||||
output.extend(item)
|
||||
elif isinstance(item, tuple):
|
||||
output.extend(list(item))
|
||||
elif isinstance(item, dict):
|
||||
for (_, v) in six.iteritems(item):
|
||||
output.append(v)
|
||||
else:
|
||||
return [item]
|
||||
|
||||
flat_output = []
|
||||
for x in output:
|
||||
flat_output.extend(cls.flatten_recursive(x))
|
||||
return flat_output
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
tf.test.main()
|
171
optimization.py
Normal file
171
optimization.py
Normal file
@ -0,0 +1,171 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Functions and classes related to optimization (weight updates)."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import re
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu):
|
||||
"""Creates an optimizer training op."""
|
||||
global_step = tf.train.get_or_create_global_step()
|
||||
|
||||
learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32)
|
||||
|
||||
# Implements linear decay of the learning rate.
|
||||
learning_rate = tf.train.polynomial_decay(
|
||||
learning_rate,
|
||||
global_step,
|
||||
num_train_steps,
|
||||
end_learning_rate=0.0,
|
||||
power=1.0,
|
||||
cycle=False)
|
||||
|
||||
# Implements linear warmup. I.e., if global_step < num_warmup_steps, the
|
||||
# learning rate will be `global_step/num_warmup_steps * init_lr`.
|
||||
if num_warmup_steps:
|
||||
global_steps_int = tf.cast(global_step, tf.int32)
|
||||
warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32)
|
||||
|
||||
global_steps_float = tf.cast(global_steps_int, tf.float32)
|
||||
warmup_steps_float = tf.cast(warmup_steps_int, tf.float32)
|
||||
|
||||
warmup_percent_done = global_steps_float / warmup_steps_float
|
||||
warmup_learning_rate = init_lr * warmup_percent_done
|
||||
|
||||
is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32)
|
||||
learning_rate = (
|
||||
(1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate)
|
||||
|
||||
# It is recommended that you use this optimizer for fine tuning, since this
|
||||
# is how the model was trained (note that the Adam m/v variables are NOT
|
||||
# loaded from init_checkpoint.)
|
||||
optimizer = AdamWeightDecayOptimizer(
|
||||
learning_rate=learning_rate,
|
||||
weight_decay_rate=0.01,
|
||||
beta_1=0.9,
|
||||
beta_2=0.999,
|
||||
epsilon=1e-6,
|
||||
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
|
||||
|
||||
if use_tpu:
|
||||
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
|
||||
|
||||
tvars = tf.trainable_variables()
|
||||
grads = tf.gradients(loss, tvars)
|
||||
|
||||
# This is how the model was pre-trained.
|
||||
(grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
|
||||
|
||||
train_op = optimizer.apply_gradients(
|
||||
zip(grads, tvars), global_step=global_step)
|
||||
|
||||
new_global_step = global_step + 1
|
||||
train_op = tf.group(train_op, [global_step.assign(new_global_step)])
|
||||
return train_op
|
||||
|
||||
|
||||
class AdamWeightDecayOptimizer(tf.train.Optimizer):
|
||||
"""A basic Adam optimizer that includes "correct" L2 weight decay."""
|
||||
|
||||
def __init__(self,
|
||||
learning_rate,
|
||||
weight_decay_rate=0.0,
|
||||
beta_1=0.9,
|
||||
beta_2=0.999,
|
||||
epsilon=1e-6,
|
||||
exclude_from_weight_decay=None,
|
||||
name="AdamWeightDecayOptimizer"):
|
||||
"""Constructs a AdamWeightDecayOptimizer."""
|
||||
super(AdamWeightDecayOptimizer, self).__init__(False, name)
|
||||
|
||||
self.learning_rate = learning_rate
|
||||
self.weight_decay_rate = weight_decay_rate
|
||||
self.beta_1 = beta_1
|
||||
self.beta_2 = beta_2
|
||||
self.epsilon = epsilon
|
||||
self.exclude_from_weight_decay = exclude_from_weight_decay
|
||||
|
||||
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
|
||||
"""See base class."""
|
||||
assignments = []
|
||||
for (grad, param) in grads_and_vars:
|
||||
if grad is None or param is None:
|
||||
continue
|
||||
|
||||
param_name = self._get_variable_name(param.name)
|
||||
|
||||
m = tf.get_variable(
|
||||
name=param_name + "/adam_m",
|
||||
shape=param.shape.as_list(),
|
||||
dtype=tf.float32,
|
||||
trainable=False,
|
||||
initializer=tf.zeros_initializer())
|
||||
v = tf.get_variable(
|
||||
name=param_name + "/adam_v",
|
||||
shape=param.shape.as_list(),
|
||||
dtype=tf.float32,
|
||||
trainable=False,
|
||||
initializer=tf.zeros_initializer())
|
||||
|
||||
# Standard Adam update.
|
||||
next_m = (
|
||||
tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
|
||||
next_v = (
|
||||
tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
|
||||
tf.square(grad)))
|
||||
|
||||
update = next_m / (tf.sqrt(next_v) + self.epsilon)
|
||||
|
||||
# Just adding the square of the weights to the loss function is *not*
|
||||
# the correct way of using L2 regularization/weight decay with Adam,
|
||||
# since that will interact with the m and v parameters in strange ways.
|
||||
#
|
||||
# Instead we want ot decay the weights in a manner that doesn't interact
|
||||
# with the m/v parameters. This is equivalent to adding the square
|
||||
# of the weights to the loss with plain (non-momentum) SGD.
|
||||
if self._do_use_weight_decay(param_name):
|
||||
update += self.weight_decay_rate * param
|
||||
|
||||
update_with_lr = self.learning_rate * update
|
||||
|
||||
next_param = param - update_with_lr
|
||||
|
||||
assignments.extend(
|
||||
[param.assign(next_param),
|
||||
m.assign(next_m),
|
||||
v.assign(next_v)])
|
||||
return tf.group(*assignments, name=name)
|
||||
|
||||
def _do_use_weight_decay(self, param_name):
|
||||
"""Whether to use L2 weight decay for `param_name`."""
|
||||
if not self.weight_decay_rate:
|
||||
return False
|
||||
if self.exclude_from_weight_decay:
|
||||
for r in self.exclude_from_weight_decay:
|
||||
if re.search(r, param_name) is not None:
|
||||
return False
|
||||
return True
|
||||
|
||||
def _get_variable_name(self, param_name):
|
||||
"""Get the variable name from the tensor name."""
|
||||
m = re.match("^(.*):\\d+$", param_name)
|
||||
if m is not None:
|
||||
param_name = m.group(1)
|
||||
return param_name
|
48
optimization_test.py
Normal file
48
optimization_test.py
Normal file
@ -0,0 +1,48 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import optimization
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
class OptimizationTest(tf.test.TestCase):
|
||||
|
||||
def test_adam(self):
|
||||
with self.test_session() as sess:
|
||||
w = tf.get_variable(
|
||||
"w",
|
||||
shape=[3],
|
||||
initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
|
||||
x = tf.constant([0.4, 0.2, -0.5])
|
||||
loss = tf.reduce_mean(tf.square(x - w))
|
||||
tvars = tf.trainable_variables()
|
||||
grads = tf.gradients(loss, tvars)
|
||||
global_step = tf.train.get_or_create_global_step()
|
||||
optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
|
||||
train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
|
||||
init_op = tf.group(tf.global_variables_initializer(),
|
||||
tf.local_variables_initializer())
|
||||
sess.run(init_op)
|
||||
for _ in range(100):
|
||||
sess.run(train_op)
|
||||
w_np = sess.run(w)
|
||||
self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
tf.test.main()
|
700
run_classifier.py
Normal file
700
run_classifier.py
Normal file
@ -0,0 +1,700 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""BERT finetuning runner."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import csv
|
||||
import os
|
||||
import modeling
|
||||
import optimization
|
||||
import tokenization
|
||||
import tensorflow as tf
|
||||
|
||||
flags = tf.flags
|
||||
|
||||
FLAGS = flags.FLAGS
|
||||
|
||||
## Required parameters
|
||||
flags.DEFINE_string(
|
||||
"data_dir", None,
|
||||
"The input data dir. Should contain the .tsv files (or other data files) "
|
||||
"for the task.")
|
||||
|
||||
flags.DEFINE_string(
|
||||
"bert_config_file", None,
|
||||
"The config json file corresponding to the pre-trained BERT model. "
|
||||
"This specifies the model architecture.")
|
||||
|
||||
flags.DEFINE_string("task_name", None, "The name of the task to train.")
|
||||
|
||||
flags.DEFINE_string("vocab_file", None,
|
||||
"The vocabulary file that the BERT model was trained on.")
|
||||
|
||||
flags.DEFINE_string(
|
||||
"output_dir", None,
|
||||
"The output directory where the model checkpoints will be written.")
|
||||
|
||||
## Other parameters
|
||||
|
||||
flags.DEFINE_string(
|
||||
"init_checkpoint", None,
|
||||
"Initial checkpoint (usually from a pre-trained BERT model).")
|
||||
|
||||
flags.DEFINE_bool(
|
||||
"do_lower_case", True,
|
||||
"Whether to lower case the input text. Should be True for uncased "
|
||||
"models and False for cased models.")
|
||||
|
||||
flags.DEFINE_integer(
|
||||
"max_seq_length", 128,
|
||||
"The maximum total input sequence length after WordPiece tokenization. "
|
||||
"Sequences longer than this will be truncated, and sequences shorter "
|
||||
"than this will be padded.")
|
||||
|
||||
flags.DEFINE_bool("do_train", False, "Whether to run training.")
|
||||
|
||||
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
|
||||
|
||||
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
|
||||
|
||||
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
|
||||
|
||||
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
|
||||
|
||||
flags.DEFINE_float("num_train_epochs", 3.0,
|
||||
"Total number of training epochs to perform.")
|
||||
|
||||
flags.DEFINE_float(
|
||||
"warmup_proportion", 0.1,
|
||||
"Proportion of training to perform linear learning rate warmup for. "
|
||||
"E.g., 0.1 = 10% of training.")
|
||||
|
||||
flags.DEFINE_integer("save_checkpoints_steps", 1000,
|
||||
"How often to save the model checkpoint.")
|
||||
|
||||
flags.DEFINE_integer("iterations_per_loop", 1000,
|
||||
"How many steps to make in each estimator call.")
|
||||
|
||||
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
|
||||
|
||||
tf.flags.DEFINE_string(
|
||||
"tpu_name", None,
|
||||
"The Cloud TPU to use for training. This should be either the name "
|
||||
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
|
||||
"url.")
|
||||
|
||||
tf.flags.DEFINE_string(
|
||||
"tpu_zone", None,
|
||||
"[Optional] GCE zone where the Cloud TPU is located in. If not "
|
||||
"specified, we will attempt to automatically detect the GCE project from "
|
||||
"metadata.")
|
||||
|
||||
tf.flags.DEFINE_string(
|
||||
"gcp_project", None,
|
||||
"[Optional] Project name for the Cloud TPU-enabled project. If not "
|
||||
"specified, we will attempt to automatically detect the GCE project from "
|
||||
"metadata.")
|
||||
|
||||
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
|
||||
|
||||
flags.DEFINE_integer(
|
||||
"num_tpu_cores", 8,
|
||||
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
|
||||
|
||||
|
||||
class InputExample(object):
|
||||
"""A single training/test example for simple sequence classification."""
|
||||
|
||||
def __init__(self, guid, text_a, text_b=None, label=None):
|
||||
"""Constructs a InputExample.
|
||||
|
||||
Args:
|
||||
guid: Unique id for the example.
|
||||
text_a: string. The untokenized text of the first sequence. For single
|
||||
sequence tasks, only this sequence must be specified.
|
||||
text_b: (Optional) string. The untokenized text of the second sequence.
|
||||
Only must be specified for sequence pair tasks.
|
||||
label: (Optional) string. The label of the example. This should be
|
||||
specified for train and dev examples, but not for test examples.
|
||||
"""
|
||||
self.guid = guid
|
||||
self.text_a = text_a
|
||||
self.text_b = text_b
|
||||
self.label = label
|
||||
|
||||
|
||||
class InputFeatures(object):
|
||||
"""A single set of features of data."""
|
||||
|
||||
def __init__(self, input_ids, input_mask, segment_ids, label_id):
|
||||
self.input_ids = input_ids
|
||||
self.input_mask = input_mask
|
||||
self.segment_ids = segment_ids
|
||||
self.label_id = label_id
|
||||
|
||||
|
||||
class DataProcessor(object):
|
||||
"""Base class for data converters for sequence classification data sets."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""Gets a collection of `InputExample`s for the train set."""
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""Gets a collection of `InputExample`s for the dev set."""
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_labels(self):
|
||||
"""Gets the list of labels for this data set."""
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def _read_tsv(cls, input_file, quotechar=None):
|
||||
"""Reads a tab separated value file."""
|
||||
with tf.gfile.Open(input_file, "r") as f:
|
||||
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
|
||||
lines = []
|
||||
for line in reader:
|
||||
lines.append(line)
|
||||
return lines
|
||||
|
||||
|
||||
class MnliProcessor(DataProcessor):
|
||||
"""Processor for the MultiNLI data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
|
||||
"dev_matched")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["contradiction", "entailment", "neutral"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0]))
|
||||
text_a = tokenization.convert_to_unicode(line[8])
|
||||
text_b = tokenization.convert_to_unicode(line[9])
|
||||
label = tokenization.convert_to_unicode(line[-1])
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class MrpcProcessor(DataProcessor):
|
||||
"""Processor for the MRPC data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
print("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["0", "1"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
if i == 0:
|
||||
continue
|
||||
guid = "%s-%s" % (set_type, i)
|
||||
text_a = tokenization.convert_to_unicode(line[3])
|
||||
text_b = tokenization.convert_to_unicode(line[4])
|
||||
label = tokenization.convert_to_unicode(line[0])
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
class ColaProcessor(DataProcessor):
|
||||
"""Processor for the CoLA data set (GLUE version)."""
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(
|
||||
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||||
|
||||
def get_labels(self):
|
||||
"""See base class."""
|
||||
return ["0", "1"]
|
||||
|
||||
def _create_examples(self, lines, set_type):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for (i, line) in enumerate(lines):
|
||||
guid = "%s-%s" % (set_type, i)
|
||||
text_a = tokenization.convert_to_unicode(line[3])
|
||||
label = tokenization.convert_to_unicode(line[1])
|
||||
examples.append(
|
||||
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
|
||||
return examples
|
||||
|
||||
|
||||
def convert_examples_to_features(examples, label_list, max_seq_length,
|
||||
tokenizer):
|
||||
"""Loads a data file into a list of `InputBatch`s."""
|
||||
|
||||
label_map = {}
|
||||
for (i, label) in enumerate(label_list):
|
||||
label_map[label] = i
|
||||
|
||||
features = []
|
||||
for (ex_index, example) in enumerate(examples):
|
||||
tokens_a = tokenizer.tokenize(example.text_a)
|
||||
|
||||
tokens_b = None
|
||||
if example.text_b:
|
||||
tokens_b = tokenizer.tokenize(example.text_b)
|
||||
|
||||
if tokens_b:
|
||||
# Modifies `tokens_a` and `tokens_b` in place so that the total
|
||||
# length is less than the specified length.
|
||||
# Account for [CLS], [SEP], [SEP] with "- 3"
|
||||
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
|
||||
else:
|
||||
# Account for [CLS] and [SEP] with "- 2"
|
||||
if len(tokens_a) > max_seq_length - 2:
|
||||
tokens_a = tokens_a[0:(max_seq_length - 2)]
|
||||
|
||||
# The convention in BERT is:
|
||||
# (a) For sequence pairs:
|
||||
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
|
||||
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
|
||||
# (b) For single sequences:
|
||||
# tokens: [CLS] the dog is hairy . [SEP]
|
||||
# type_ids: 0 0 0 0 0 0 0
|
||||
#
|
||||
# Where "type_ids" are used to indicate whether this is the first
|
||||
# sequence or the second sequence. The embedding vectors for `type=0` and
|
||||
# `type=1` were learned during pre-training and are added to the wordpiece
|
||||
# embedding vector (and position vector). This is not *strictly* necessary
|
||||
# since the [SEP] token unambigiously separates the sequences, but it makes
|
||||
# it easier for the model to learn the concept of sequences.
|
||||
#
|
||||
# For classification tasks, the first vector (corresponding to [CLS]) is
|
||||
# used as as the "sentence vector". Note that this only makes sense because
|
||||
# the entire model is fine-tuned.
|
||||
tokens = []
|
||||
segment_ids = []
|
||||
tokens.append("[CLS]")
|
||||
segment_ids.append(0)
|
||||
for token in tokens_a:
|
||||
tokens.append(token)
|
||||
segment_ids.append(0)
|
||||
tokens.append("[SEP]")
|
||||
segment_ids.append(0)
|
||||
|
||||
if tokens_b:
|
||||
for token in tokens_b:
|
||||
tokens.append(token)
|
||||
segment_ids.append(1)
|
||||
tokens.append("[SEP]")
|
||||
segment_ids.append(1)
|
||||
|
||||
input_ids = tokenizer.convert_tokens_to_ids(tokens)
|
||||
|
||||
# The mask has 1 for real tokens and 0 for padding tokens. Only real
|
||||
# tokens are attended to.
|
||||
input_mask = [1] * len(input_ids)
|
||||
|
||||
# Zero-pad up to the sequence length.
|
||||
while len(input_ids) < max_seq_length:
|
||||
input_ids.append(0)
|
||||
input_mask.append(0)
|
||||
segment_ids.append(0)
|
||||
|
||||
assert len(input_ids) == max_seq_length
|
||||
assert len(input_mask) == max_seq_length
|
||||
assert len(segment_ids) == max_seq_length
|
||||
|
||||
label_id = label_map[example.label]
|
||||
if ex_index < 5:
|
||||
tf.logging.info("*** Example ***")
|
||||
tf.logging.info("guid: %s" % (example.guid))
|
||||
tf.logging.info("tokens: %s" % " ".join(
|
||||
[tokenization.printable_text(x) for x in tokens]))
|
||||
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
|
||||
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
|
||||
tf.logging.info(
|
||||
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
|
||||
tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
|
||||
|
||||
features.append(
|
||||
InputFeatures(
|
||||
input_ids=input_ids,
|
||||
input_mask=input_mask,
|
||||
segment_ids=segment_ids,
|
||||
label_id=label_id))
|
||||
return features
|
||||
|
||||
|
||||
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
|
||||
"""Truncates a sequence pair in place to the maximum length."""
|
||||
|
||||
# This is a simple heuristic which will always truncate the longer sequence
|
||||
# one token at a time. This makes more sense than truncating an equal percent
|
||||
# of tokens from each, since if one sequence is very short then each token
|
||||
# that's truncated likely contains more information than a longer sequence.
|
||||
while True:
|
||||
total_length = len(tokens_a) + len(tokens_b)
|
||||
if total_length <= max_length:
|
||||
break
|
||||
if len(tokens_a) > len(tokens_b):
|
||||
tokens_a.pop()
|
||||
else:
|
||||
tokens_b.pop()
|
||||
|
||||
|
||||
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
|
||||
labels, num_labels, use_one_hot_embeddings):
|
||||
"""Creates a classification model."""
|
||||
model = modeling.BertModel(
|
||||
config=bert_config,
|
||||
is_training=is_training,
|
||||
input_ids=input_ids,
|
||||
input_mask=input_mask,
|
||||
token_type_ids=segment_ids,
|
||||
use_one_hot_embeddings=use_one_hot_embeddings)
|
||||
|
||||
# In the demo, we are doing a simple classification task on the entire
|
||||
# segment.
|
||||
#
|
||||
# If you want to use the token-level output, use model.get_sequence_output()
|
||||
# instead.
|
||||
output_layer = model.get_pooled_output()
|
||||
|
||||
hidden_size = output_layer.shape[-1].value
|
||||
|
||||
output_weights = tf.get_variable(
|
||||
"output_weights", [num_labels, hidden_size],
|
||||
initializer=tf.truncated_normal_initializer(stddev=0.02))
|
||||
|
||||
output_bias = tf.get_variable(
|
||||
"output_bias", [num_labels], initializer=tf.zeros_initializer())
|
||||
|
||||
with tf.variable_scope("loss"):
|
||||
if is_training:
|
||||
# I.e., 0.1 dropout
|
||||
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
|
||||
|
||||
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
|
||||
logits = tf.nn.bias_add(logits, output_bias)
|
||||
log_probs = tf.nn.log_softmax(logits, axis=-1)
|
||||
|
||||
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
|
||||
|
||||
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
|
||||
loss = tf.reduce_mean(per_example_loss)
|
||||
|
||||
return (loss, per_example_loss, logits)
|
||||
|
||||
|
||||
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
|
||||
num_train_steps, num_warmup_steps, use_tpu,
|
||||
use_one_hot_embeddings):
|
||||
"""Returns `model_fn` closure for TPUEstimator."""
|
||||
|
||||
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
|
||||
"""The `model_fn` for TPUEstimator."""
|
||||
|
||||
tf.logging.info("*** Features ***")
|
||||
for name in sorted(features.keys()):
|
||||
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
|
||||
|
||||
input_ids = features["input_ids"]
|
||||
input_mask = features["input_mask"]
|
||||
segment_ids = features["segment_ids"]
|
||||
label_ids = features["label_ids"]
|
||||
|
||||
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
|
||||
|
||||
(total_loss, per_example_loss, logits) = create_model(
|
||||
bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
|
||||
num_labels, use_one_hot_embeddings)
|
||||
|
||||
tvars = tf.trainable_variables()
|
||||
|
||||
scaffold_fn = None
|
||||
if init_checkpoint:
|
||||
(assignment_map,
|
||||
initialized_variable_names) = modeling.get_assigment_map_from_checkpoint(
|
||||
tvars, init_checkpoint)
|
||||
if use_tpu:
|
||||
|
||||
def tpu_scaffold():
|
||||
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
|
||||
return tf.train.Scaffold()
|
||||
|
||||
scaffold_fn = tpu_scaffold
|
||||
else:
|
||||
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
|
||||
|
||||
tf.logging.info("**** Trainable Variables ****")
|
||||
for var in tvars:
|
||||
init_string = ""
|
||||
if var.name in initialized_variable_names:
|
||||
init_string = ", *INIT_FROM_CKPT*"
|
||||
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
|
||||
init_string)
|
||||
|
||||
output_spec = None
|
||||
if mode == tf.estimator.ModeKeys.TRAIN:
|
||||
|
||||
train_op = optimization.create_optimizer(
|
||||
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
|
||||
|
||||
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
|
||||
mode=mode,
|
||||
loss=total_loss,
|
||||
train_op=train_op,
|
||||
scaffold_fn=scaffold_fn)
|
||||
elif mode == tf.estimator.ModeKeys.EVAL:
|
||||
|
||||
def metric_fn(per_example_loss, label_ids, logits):
|
||||
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
|
||||
accuracy = tf.metrics.accuracy(label_ids, predictions)
|
||||
loss = tf.metrics.mean(per_example_loss)
|
||||
return {
|
||||
"eval_accuracy": accuracy,
|
||||
"eval_loss": loss,
|
||||
}
|
||||
|
||||
eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
|
||||
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
|
||||
mode=mode,
|
||||
loss=total_loss,
|
||||
eval_metrics=eval_metrics,
|
||||
scaffold_fn=scaffold_fn)
|
||||
else:
|
||||
raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))
|
||||
|
||||
return output_spec
|
||||
|
||||
return model_fn
|
||||
|
||||
|
||||
def input_fn_builder(features, seq_length, is_training, drop_remainder):
|
||||
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
|
||||
|
||||
all_input_ids = []
|
||||
all_input_mask = []
|
||||
all_segment_ids = []
|
||||
all_label_ids = []
|
||||
|
||||
for feature in features:
|
||||
all_input_ids.append(feature.input_ids)
|
||||
all_input_mask.append(feature.input_mask)
|
||||
all_segment_ids.append(feature.segment_ids)
|
||||
all_label_ids.append(feature.label_id)
|
||||
|
||||
def input_fn(params):
|
||||
"""The actual input function."""
|
||||
batch_size = params["batch_size"]
|
||||
|
||||
num_examples = len(features)
|
||||
|
||||
# This is for demo purposes and does NOT scale to large data sets. We do
|
||||
# not use Dataset.from_generator() because that uses tf.py_func which is
|
||||
# not TPU compatible. The right way to load data is with TFRecordReader.
|
||||
d = tf.data.Dataset.from_tensor_slices({
|
||||
"input_ids":
|
||||
tf.constant(
|
||||
all_input_ids, shape=[num_examples, seq_length],
|
||||
dtype=tf.int32),
|
||||
"input_mask":
|
||||
tf.constant(
|
||||
all_input_mask,
|
||||
shape=[num_examples, seq_length],
|
||||
dtype=tf.int32),
|
||||
"segment_ids":
|
||||
tf.constant(
|
||||
all_segment_ids,
|
||||
shape=[num_examples, seq_length],
|
||||
dtype=tf.int32),
|
||||
"label_ids":
|
||||
tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32),
|
||||
})
|
||||
|
||||
if is_training:
|
||||
d = d.repeat()
|
||||
d = d.shuffle(buffer_size=100)
|
||||
|
||||
d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)
|
||||
return d
|
||||
|
||||
return input_fn
|
||||
|
||||
|
||||
def main(_):
|
||||
tf.logging.set_verbosity(tf.logging.INFO)
|
||||
|
||||
processors = {
|
||||
"cola": ColaProcessor,
|
||||
"mnli": MnliProcessor,
|
||||
"mrpc": MrpcProcessor,
|
||||
}
|
||||
|
||||
if not FLAGS.do_train and not FLAGS.do_eval:
|
||||
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
|
||||
|
||||
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
|
||||
|
||||
if FLAGS.max_seq_length > bert_config.max_position_embeddings:
|
||||
raise ValueError(
|
||||
"Cannot use sequence length %d because the BERT model "
|
||||
"was only trained up to sequence length %d" %
|
||||
(FLAGS.max_seq_length, bert_config.max_position_embeddings))
|
||||
|
||||
tf.gfile.MakeDirs(FLAGS.output_dir)
|
||||
|
||||
task_name = FLAGS.task_name.lower()
|
||||
|
||||
if task_name not in processors:
|
||||
raise ValueError("Task not found: %s" % (task_name))
|
||||
|
||||
processor = processors[task_name]()
|
||||
|
||||
label_list = processor.get_labels()
|
||||
|
||||
tokenizer = tokenization.FullTokenizer(
|
||||
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
|
||||
|
||||
tpu_cluster_resolver = None
|
||||
if FLAGS.use_tpu and FLAGS.tpu_name:
|
||||
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
|
||||
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
|
||||
|
||||
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
|
||||
run_config = tf.contrib.tpu.RunConfig(
|
||||
cluster=tpu_cluster_resolver,
|
||||
master=FLAGS.master,
|
||||
model_dir=FLAGS.output_dir,
|
||||
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
|
||||
tpu_config=tf.contrib.tpu.TPUConfig(
|
||||
iterations_per_loop=FLAGS.iterations_per_loop,
|
||||
num_shards=FLAGS.num_tpu_cores,
|
||||
per_host_input_for_training=is_per_host))
|
||||
|
||||
train_examples = None
|
||||
num_train_steps = None
|
||||
num_warmup_steps = None
|
||||
if FLAGS.do_train:
|
||||
train_examples = processor.get_train_examples(FLAGS.data_dir)
|
||||
num_train_steps = int(
|
||||
len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
|
||||
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
|
||||
|
||||
model_fn = model_fn_builder(
|
||||
bert_config=bert_config,
|
||||
num_labels=len(label_list),
|
||||
init_checkpoint=FLAGS.init_checkpoint,
|
||||
learning_rate=FLAGS.learning_rate,
|
||||
num_train_steps=num_train_steps,
|
||||
num_warmup_steps=num_warmup_steps,
|
||||
use_tpu=FLAGS.use_tpu,
|
||||
use_one_hot_embeddings=FLAGS.use_tpu)
|
||||
|
||||
# If TPU is not available, this will fall back to normal Estimator on CPU
|
||||
# or GPU.
|
||||
estimator = tf.contrib.tpu.TPUEstimator(
|
||||
use_tpu=FLAGS.use_tpu,
|
||||
model_fn=model_fn,
|
||||
config=run_config,
|
||||
train_batch_size=FLAGS.train_batch_size,
|
||||
eval_batch_size=FLAGS.eval_batch_size)
|
||||
|
||||
if FLAGS.do_train:
|
||||
train_features = convert_examples_to_features(
|
||||
train_examples, label_list, FLAGS.max_seq_length, tokenizer)
|
||||
tf.logging.info("***** Running training *****")
|
||||
tf.logging.info(" Num examples = %d", len(train_examples))
|
||||
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
|
||||
tf.logging.info(" Num steps = %d", num_train_steps)
|
||||
train_input_fn = input_fn_builder(
|
||||
features=train_features,
|
||||
seq_length=FLAGS.max_seq_length,
|
||||
is_training=True,
|
||||
drop_remainder=True)
|
||||
estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
|
||||
|
||||
if FLAGS.do_eval:
|
||||
eval_examples = processor.get_dev_examples(FLAGS.data_dir)
|
||||
eval_features = convert_examples_to_features(
|
||||
eval_examples, label_list, FLAGS.max_seq_length, tokenizer)
|
||||
|
||||
tf.logging.info("***** Running evaluation *****")
|
||||
tf.logging.info(" Num examples = %d", len(eval_examples))
|
||||
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
|
||||
|
||||
# This tells the estimator to run through the entire set.
|
||||
eval_steps = None
|
||||
# However, if running eval on the TPU, you will need to specify the
|
||||
# number of steps.
|
||||
if FLAGS.use_tpu:
|
||||
# Eval will be slightly WRONG on the TPU because it will truncate
|
||||
# the last batch.
|
||||
eval_steps = int(len(eval_examples) / FLAGS.eval_batch_size)
|
||||
|
||||
eval_drop_remainder = True if FLAGS.use_tpu else False
|
||||
eval_input_fn = input_fn_builder(
|
||||
features=eval_features,
|
||||
seq_length=FLAGS.max_seq_length,
|
||||
is_training=False,
|
||||
drop_remainder=eval_drop_remainder)
|
||||
|
||||
result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)
|
||||
|
||||
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
|
||||
with tf.gfile.GFile(output_eval_file, "w") as writer:
|
||||
tf.logging.info("***** Eval results *****")
|
||||
for key in sorted(result.keys()):
|
||||
tf.logging.info(" %s = %s", key, str(result[key]))
|
||||
writer.write("%s = %s\n" % (key, str(result[key])))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
flags.mark_flag_as_required("data_dir")
|
||||
flags.mark_flag_as_required("task_name")
|
||||
flags.mark_flag_as_required("vocab_file")
|
||||
flags.mark_flag_as_required("bert_config_file")
|
||||
flags.mark_flag_as_required("output_dir")
|
||||
tf.app.run()
|
494
run_pretraining.py
Normal file
494
run_pretraining.py
Normal file
@ -0,0 +1,494 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Run masked LM/next sentence masked_lm pre-training for BERT."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import modeling
|
||||
import optimization
|
||||
import tensorflow as tf
|
||||
|
||||
flags = tf.flags
|
||||
|
||||
FLAGS = flags.FLAGS
|
||||
|
||||
## Required parameters
|
||||
flags.DEFINE_string(
|
||||
"bert_config_file", None,
|
||||
"The config json file corresponding to the pre-trained BERT model. "
|
||||
"This specifies the model architecture.")
|
||||
|
||||
flags.DEFINE_string(
|
||||
"input_file", None,
|
||||
"Input TF example files (can be a glob or comma separated).")
|
||||
|
||||
flags.DEFINE_string(
|
||||
"output_dir", None,
|
||||
"The output directory where the model checkpoints will be written.")
|
||||
|
||||
## Other parameters
|
||||
flags.DEFINE_string(
|
||||
"init_checkpoint", None,
|
||||
"Initial checkpoint (usually from a pre-trained BERT model).")
|
||||
|
||||
flags.DEFINE_integer(
|
||||
"max_seq_length", 128,
|
||||
"The maximum total input sequence length after WordPiece tokenization. "
|
||||
"Sequences longer than this will be truncated, and sequences shorter "
|
||||
"than this will be padded. Must match data generation.")
|
||||
|
||||
flags.DEFINE_integer(
|
||||
"max_predictions_per_seq", 20,
|
||||
"Maximum number of masked LM predictions per sequence. "
|
||||
"Must match data generation.")
|
||||
|
||||
flags.DEFINE_bool("do_train", False, "Whether to run training.")
|
||||
|
||||
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
|
||||
|
||||
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
|
||||
|
||||
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
|
||||
|
||||
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
|
||||
|
||||
flags.DEFINE_integer("num_train_steps", 100000, "Number of training steps.")
|
||||
|
||||
flags.DEFINE_integer("num_warmup_steps", 10000, "Number of warmup steps.")
|
||||
|
||||
flags.DEFINE_integer("save_checkpoints_steps", 1000,
|
||||
"How often to save the model checkpoint.")
|
||||
|
||||
flags.DEFINE_integer("iterations_per_loop", 1000,
|
||||
"How many steps to make in each estimator call.")
|
||||
|
||||
flags.DEFINE_integer("max_eval_steps", 100, "Maximum number of eval steps.")
|
||||
|
||||
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
|
||||
|
||||
tf.flags.DEFINE_string(
|
||||
"tpu_name", None,
|
||||
"The Cloud TPU to use for training. This should be either the name "
|
||||
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
|
||||
"url.")
|
||||
|
||||
tf.flags.DEFINE_string(
|
||||
"tpu_zone", None,
|
||||
"[Optional] GCE zone where the Cloud TPU is located in. If not "
|
||||
"specified, we will attempt to automatically detect the GCE project from "
|
||||
"metadata.")
|
||||
|
||||
tf.flags.DEFINE_string(
|
||||
"gcp_project", None,
|
||||
"[Optional] Project name for the Cloud TPU-enabled project. If not "
|
||||
"specified, we will attempt to automatically detect the GCE project from "
|
||||
"metadata.")
|
||||
|
||||
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
|
||||
|
||||
flags.DEFINE_integer(
|
||||
"num_tpu_cores", 8,
|
||||
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
|
||||
|
||||
|
||||
def model_fn_builder(bert_config, init_checkpoint, learning_rate,
|
||||
num_train_steps, num_warmup_steps, use_tpu,
|
||||
use_one_hot_embeddings):
|
||||
"""Returns `model_fn` closure for TPUEstimator."""
|
||||
|
||||
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
|
||||
"""The `model_fn` for TPUEstimator."""
|
||||
|
||||
tf.logging.info("*** Features ***")
|
||||
for name in sorted(features.keys()):
|
||||
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
|
||||
|
||||
input_ids = features["input_ids"]
|
||||
input_mask = features["input_mask"]
|
||||
segment_ids = features["segment_ids"]
|
||||
masked_lm_positions = features["masked_lm_positions"]
|
||||
masked_lm_ids = features["masked_lm_ids"]
|
||||
masked_lm_weights = features["masked_lm_weights"]
|
||||
next_sentence_labels = features["next_sentence_labels"]
|
||||
|
||||
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
|
||||
|
||||
model = modeling.BertModel(
|
||||
config=bert_config,
|
||||
is_training=is_training,
|
||||
input_ids=input_ids,
|
||||
input_mask=input_mask,
|
||||
token_type_ids=segment_ids,
|
||||
use_one_hot_embeddings=use_one_hot_embeddings)
|
||||
|
||||
(masked_lm_loss,
|
||||
masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
|
||||
bert_config, model.get_sequence_output(), model.get_embedding_table(),
|
||||
masked_lm_positions, masked_lm_ids, masked_lm_weights)
|
||||
|
||||
(next_sentence_loss, next_sentence_example_loss,
|
||||
next_sentence_log_probs) = get_next_sentence_output(
|
||||
bert_config, model.get_pooled_output(), next_sentence_labels)
|
||||
|
||||
total_loss = masked_lm_loss + next_sentence_loss
|
||||
|
||||
tvars = tf.trainable_variables()
|
||||
|
||||
initialized_variable_names = {}
|
||||
scaffold_fn = None
|
||||
if init_checkpoint:
|
||||
(assignment_map,
|
||||
initialized_variable_names) = modeling.get_assigment_map_from_checkpoint(
|
||||
tvars, init_checkpoint)
|
||||
if use_tpu:
|
||||
|
||||
def tpu_scaffold():
|
||||
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
|
||||
return tf.train.Scaffold()
|
||||
|
||||
scaffold_fn = tpu_scaffold
|
||||
else:
|
||||
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
|
||||
|
||||
tf.logging.info("**** Trainable Variables ****")
|
||||
for var in tvars:
|
||||
init_string = ""
|
||||
if var.name in initialized_variable_names:
|
||||
init_string = ", *INIT_FROM_CKPT*"
|
||||
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
|
||||
init_string)
|
||||
|
||||
output_spec = None
|
||||
if mode == tf.estimator.ModeKeys.TRAIN:
|
||||
train_op = optimization.create_optimizer(
|
||||
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
|
||||
|
||||
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
|
||||
mode=mode,
|
||||
loss=total_loss,
|
||||
train_op=train_op,
|
||||
scaffold_fn=scaffold_fn)
|
||||
elif mode == tf.estimator.ModeKeys.EVAL:
|
||||
|
||||
def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
|
||||
masked_lm_weights, next_sentence_example_loss,
|
||||
next_sentence_log_probs, next_sentence_labels):
|
||||
"""Computes the loss and accuracy of the model."""
|
||||
masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
|
||||
[-1, masked_lm_log_probs.shape[-1]])
|
||||
masked_lm_predictions = tf.argmax(
|
||||
masked_lm_log_probs, axis=-1, output_type=tf.int32)
|
||||
masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
|
||||
masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
|
||||
masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
|
||||
masked_lm_accuracy = tf.metrics.accuracy(
|
||||
labels=masked_lm_ids,
|
||||
predictions=masked_lm_predictions,
|
||||
weights=masked_lm_weights)
|
||||
masked_lm_mean_loss = tf.metrics.mean(
|
||||
values=masked_lm_example_loss, weights=masked_lm_weights)
|
||||
|
||||
next_sentence_log_probs = tf.reshape(
|
||||
next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
|
||||
next_sentence_predictions = tf.argmax(
|
||||
next_sentence_log_probs, axis=-1, output_type=tf.int32)
|
||||
next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
|
||||
next_sentence_accuracy = tf.metrics.accuracy(
|
||||
labels=next_sentence_labels, predictions=next_sentence_predictions)
|
||||
next_sentence_mean_loss = tf.metrics.mean(
|
||||
values=next_sentence_example_loss)
|
||||
|
||||
return {
|
||||
"masked_lm_accuracy": masked_lm_accuracy,
|
||||
"masked_lm_loss": masked_lm_mean_loss,
|
||||
"next_sentence_accuracy": next_sentence_accuracy,
|
||||
"next_sentence_loss": next_sentence_mean_loss,
|
||||
}
|
||||
|
||||
eval_metrics = (metric_fn, [
|
||||
masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
|
||||
masked_lm_weights, next_sentence_example_loss,
|
||||
next_sentence_log_probs, next_sentence_labels
|
||||
])
|
||||
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
|
||||
mode=mode,
|
||||
loss=total_loss,
|
||||
eval_metrics=eval_metrics,
|
||||
scaffold_fn=scaffold_fn)
|
||||
else:
|
||||
raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))
|
||||
|
||||
return output_spec
|
||||
|
||||
return model_fn
|
||||
|
||||
|
||||
def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
|
||||
label_ids, label_weights):
|
||||
"""Get loss and log probs for the masked LM."""
|
||||
input_tensor = gather_indexes(input_tensor, positions)
|
||||
|
||||
with tf.variable_scope("cls/predictions"):
|
||||
# We apply one more non-linear transformation before the output layer.
|
||||
# This matrix is not used after pre-training.
|
||||
with tf.variable_scope("transform"):
|
||||
input_tensor = tf.layers.dense(
|
||||
input_tensor,
|
||||
units=bert_config.hidden_size,
|
||||
activation=modeling.get_activation(bert_config.hidden_act),
|
||||
kernel_initializer=modeling.create_initializer(
|
||||
bert_config.initializer_range))
|
||||
input_tensor = modeling.layer_norm(input_tensor)
|
||||
|
||||
# The output weights are the same as the input embeddings, but there is
|
||||
# an output-only bias for each token.
|
||||
output_bias = tf.get_variable(
|
||||
"output_bias",
|
||||
shape=[bert_config.vocab_size],
|
||||
initializer=tf.zeros_initializer())
|
||||
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
|
||||
logits = tf.nn.bias_add(logits, output_bias)
|
||||
log_probs = tf.nn.log_softmax(logits, axis=-1)
|
||||
|
||||
label_ids = tf.reshape(label_ids, [-1])
|
||||
label_weights = tf.reshape(label_weights, [-1])
|
||||
|
||||
one_hot_labels = tf.one_hot(
|
||||
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
|
||||
|
||||
# The `positions` tensor might be zero-padded (if the sequence is too
|
||||
# short to have the maximum number of predictions). The `label_weights`
|
||||
# tensor has a value of 1.0 for every real prediction and 0.0 for the
|
||||
# padding predictions.
|
||||
per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
|
||||
numerator = tf.reduce_sum(label_weights * per_example_loss)
|
||||
denominator = tf.reduce_sum(label_weights) + 1e-5
|
||||
loss = numerator / denominator
|
||||
|
||||
return (loss, per_example_loss, log_probs)
|
||||
|
||||
|
||||
def get_next_sentence_output(bert_config, input_tensor, labels):
|
||||
"""Get loss and log probs for the next sentence prediction."""
|
||||
|
||||
# Simple binary classification. Note that 0 is "next sentence" and 1 is
|
||||
# "random sentence". This weight matrix is not used after pre-training.
|
||||
with tf.variable_scope("cls/seq_relationship"):
|
||||
output_weights = tf.get_variable(
|
||||
"output_weights",
|
||||
shape=[2, bert_config.hidden_size],
|
||||
initializer=modeling.create_initializer(bert_config.initializer_range))
|
||||
output_bias = tf.get_variable(
|
||||
"output_bias", shape=[2], initializer=tf.zeros_initializer())
|
||||
|
||||
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
|
||||
logits = tf.nn.bias_add(logits, output_bias)
|
||||
log_probs = tf.nn.log_softmax(logits, axis=-1)
|
||||
labels = tf.reshape(labels, [-1])
|
||||
one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
|
||||
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
|
||||
loss = tf.reduce_mean(per_example_loss)
|
||||
return (loss, per_example_loss, log_probs)
|
||||
|
||||
|
||||
def gather_indexes(sequence_tensor, positions):
|
||||
"""Gathers the vectors at the specific positions over a minibatch."""
|
||||
sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3)
|
||||
batch_size = sequence_shape[0]
|
||||
seq_length = sequence_shape[1]
|
||||
width = sequence_shape[2]
|
||||
|
||||
flat_offsets = tf.reshape(
|
||||
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
|
||||
flat_positions = tf.reshape(positions + flat_offsets, [-1])
|
||||
flat_sequence_tensor = tf.reshape(sequence_tensor,
|
||||
[batch_size * seq_length, width])
|
||||
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
|
||||
return output_tensor
|
||||
|
||||
|
||||
def input_fn_builder(input_files,
|
||||
max_seq_length,
|
||||
max_predictions_per_seq,
|
||||
is_training,
|
||||
num_cpu_threads=4):
|
||||
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
|
||||
|
||||
def input_fn(params):
|
||||
"""The actual input function."""
|
||||
batch_size = params["batch_size"]
|
||||
|
||||
name_to_features = {
|
||||
"input_ids":
|
||||
tf.FixedLenFeature([max_seq_length], tf.int64),
|
||||
"input_mask":
|
||||
tf.FixedLenFeature([max_seq_length], tf.int64),
|
||||
"segment_ids":
|
||||
tf.FixedLenFeature([max_seq_length], tf.int64),
|
||||
"masked_lm_positions":
|
||||
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
|
||||
"masked_lm_ids":
|
||||
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
|
||||
"masked_lm_weights":
|
||||
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
|
||||
"next_sentence_labels":
|
||||
tf.FixedLenFeature([1], tf.int64),
|
||||
}
|
||||
|
||||
# For training, we want a lot of parallel reading and shuffling.
|
||||
# For eval, we want no shuffling and parallel reading doesn't matter.
|
||||
if is_training:
|
||||
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
|
||||
d = d.repeat()
|
||||
d = d.shuffle(buffer_size=len(input_files))
|
||||
|
||||
# `cycle_length` is the number of parallel files that get read.
|
||||
cycle_length = min(num_cpu_threads, len(input_files))
|
||||
|
||||
# `sloppy` mode means that the interleaving is not exact. This adds
|
||||
# even more randomness to the training pipeline.
|
||||
d = d.apply(
|
||||
tf.contrib.data.parallel_interleave(
|
||||
tf.data.TFRecordDataset,
|
||||
sloppy=is_training,
|
||||
cycle_length=cycle_length))
|
||||
d = d.shuffle(buffer_size=100)
|
||||
else:
|
||||
d = tf.data.TFRecordDataset(input_files)
|
||||
# Since we evaluate for a fixed number of steps we don't want to encounter
|
||||
# out-of-range exceptions.
|
||||
d = d.repeat()
|
||||
|
||||
# We must `drop_remainder` on training because the TPU requires fixed
|
||||
# size dimensions. For eval, we assume we are evaling on the CPU or GPU
|
||||
# and we *don"t* want to drop the remainder, otherwise we wont cover
|
||||
# every sample.
|
||||
d = d.apply(
|
||||
tf.contrib.data.map_and_batch(
|
||||
lambda record: _decode_record(record, name_to_features),
|
||||
batch_size=batch_size,
|
||||
num_parallel_batches=num_cpu_threads,
|
||||
drop_remainder=True))
|
||||
return d
|
||||
|
||||
return input_fn
|
||||
|
||||
|
||||
def _decode_record(record, name_to_features):
|
||||
"""Decodes a record to a TensorFlow example."""
|
||||
example = tf.parse_single_example(record, name_to_features)
|
||||
|
||||
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
|
||||
# So cast all int64 to int32.
|
||||
for name in list(example.keys()):
|
||||
t = example[name]
|
||||
if t.dtype == tf.int64:
|
||||
t = tf.to_int32(t)
|
||||
example[name] = t
|
||||
|
||||
return example
|
||||
|
||||
|
||||
def main(_):
|
||||
tf.logging.set_verbosity(tf.logging.INFO)
|
||||
|
||||
if not FLAGS.do_train and not FLAGS.do_eval:
|
||||
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
|
||||
|
||||
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
|
||||
|
||||
tf.gfile.MakeDirs(FLAGS.output_dir)
|
||||
|
||||
input_files = []
|
||||
for input_pattern in FLAGS.input_file.split(","):
|
||||
input_files.extend(tf.gfile.Glob(input_pattern))
|
||||
|
||||
tf.logging.info("*** Input Files ***")
|
||||
for input_file in input_files:
|
||||
tf.logging.info(" %s" % input_file)
|
||||
|
||||
tpu_cluster_resolver = None
|
||||
if FLAGS.use_tpu and FLAGS.tpu_name:
|
||||
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
|
||||
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
|
||||
|
||||
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
|
||||
run_config = tf.contrib.tpu.RunConfig(
|
||||
cluster=tpu_cluster_resolver,
|
||||
master=FLAGS.master,
|
||||
model_dir=FLAGS.output_dir,
|
||||
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
|
||||
tpu_config=tf.contrib.tpu.TPUConfig(
|
||||
iterations_per_loop=FLAGS.iterations_per_loop,
|
||||
num_shards=FLAGS.num_tpu_cores,
|
||||
per_host_input_for_training=is_per_host))
|
||||
|
||||
model_fn = model_fn_builder(
|
||||
bert_config=bert_config,
|
||||
init_checkpoint=FLAGS.init_checkpoint,
|
||||
learning_rate=FLAGS.learning_rate,
|
||||
num_train_steps=FLAGS.num_train_steps,
|
||||
num_warmup_steps=FLAGS.num_warmup_steps,
|
||||
use_tpu=FLAGS.use_tpu,
|
||||
use_one_hot_embeddings=FLAGS.use_tpu)
|
||||
|
||||
# If TPU is not available, this will fall back to normal Estimator on CPU
|
||||
# or GPU.
|
||||
estimator = tf.contrib.tpu.TPUEstimator(
|
||||
use_tpu=FLAGS.use_tpu,
|
||||
model_fn=model_fn,
|
||||
config=run_config,
|
||||
train_batch_size=FLAGS.train_batch_size,
|
||||
eval_batch_size=FLAGS.eval_batch_size)
|
||||
|
||||
if FLAGS.do_train:
|
||||
tf.logging.info("***** Running training *****")
|
||||
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
|
||||
train_input_fn = input_fn_builder(
|
||||
input_files=input_files,
|
||||
max_seq_length=FLAGS.max_seq_length,
|
||||
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
|
||||
is_training=True)
|
||||
estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)
|
||||
|
||||
if FLAGS.do_eval:
|
||||
tf.logging.info("***** Running evaluation *****")
|
||||
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
|
||||
|
||||
eval_input_fn = input_fn_builder(
|
||||
input_files=input_files,
|
||||
max_seq_length=FLAGS.max_seq_length,
|
||||
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
|
||||
is_training=False)
|
||||
|
||||
result = estimator.evaluate(
|
||||
input_fn=eval_input_fn, steps=FLAGS.max_eval_steps)
|
||||
|
||||
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
|
||||
with tf.gfile.GFile(output_eval_file, "w") as writer:
|
||||
tf.logging.info("***** Eval results *****")
|
||||
for key in sorted(result.keys()):
|
||||
tf.logging.info(" %s = %s", key, str(result[key]))
|
||||
writer.write("%s = %s\n" % (key, str(result[key])))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
flags.mark_flag_as_required("input_file")
|
||||
flags.mark_flag_as_required("bert_config_file")
|
||||
flags.mark_flag_as_required("output_dir")
|
||||
tf.app.run()
|
1120
run_squad.py
Normal file
1120
run_squad.py
Normal file
File diff suppressed because it is too large
Load Diff
33
sample_text.txt
Normal file
33
sample_text.txt
Normal file
@ -0,0 +1,33 @@
|
||||
This text is included to make sure Unicode is handled properly: 力加勝北区ᴵᴺᵀᵃছজটডণত
|
||||
Text should be one-sentence-per-line, with empty lines between documents.
|
||||
This sample text is public domain and was randomly selected from Project Guttenberg.
|
||||
|
||||
The rain had only ceased with the gray streaks of morning at Blazing Star, and the settlement awoke to a moral sense of cleanliness, and the finding of forgotten knives, tin cups, and smaller camp utensils, where the heavy showers had washed away the debris and dust heaps before the cabin doors.
|
||||
Indeed, it was recorded in Blazing Star that a fortunate early riser had once picked up on the highway a solid chunk of gold quartz which the rain had freed from its incumbering soil, and washed into immediate and glittering popularity.
|
||||
Possibly this may have been the reason why early risers in that locality, during the rainy season, adopted a thoughtful habit of body, and seldom lifted their eyes to the rifted or india-ink washed skies above them.
|
||||
"Cass" Beard had risen early that morning, but not with a view to discovery.
|
||||
A leak in his cabin roof,--quite consistent with his careless, improvident habits,--had roused him at 4 A. M., with a flooded "bunk" and wet blankets.
|
||||
The chips from his wood pile refused to kindle a fire to dry his bed-clothes, and he had recourse to a more provident neighbor's to supply the deficiency.
|
||||
This was nearly opposite.
|
||||
Mr. Cassius crossed the highway, and stopped suddenly.
|
||||
Something glittered in the nearest red pool before him.
|
||||
Gold, surely!
|
||||
But, wonderful to relate, not an irregular, shapeless fragment of crude ore, fresh from Nature's crucible, but a bit of jeweler's handicraft in the form of a plain gold ring.
|
||||
Looking at it more attentively, he saw that it bore the inscription, "May to Cass."
|
||||
Like most of his fellow gold-seekers, Cass was superstitious.
|
||||
|
||||
The fountain of classic wisdom, Hypatia herself.
|
||||
As the ancient sage--the name is unimportant to a monk--pumped water nightly that he might study by day, so I, the guardian of cloaks and parasols, at the sacred doors of her lecture-room, imbibe celestial knowledge.
|
||||
From my youth I felt in me a soul above the matter-entangled herd.
|
||||
She revealed to me the glorious fact, that I am a spark of Divinity itself.
|
||||
A fallen star, I am, sir!' continued he, pensively, stroking his lean stomach--'a fallen star!--fallen, if the dignity of philosophy will allow of the simile, among the hogs of the lower world--indeed, even into the hog-bucket itself. Well, after all, I will show you the way to the Archbishop's.
|
||||
There is a philosophic pleasure in opening one's treasures to the modest young.
|
||||
Perhaps you will assist me by carrying this basket of fruit?' And the little man jumped up, put his basket on Philammon's head, and trotted off up a neighbouring street.
|
||||
Philammon followed, half contemptuous, half wondering at what this philosophy might be, which could feed the self-conceit of anything so abject as his ragged little apish guide;
|
||||
but the novel roar and whirl of the street, the perpetual stream of busy faces, the line of curricles, palanquins, laden asses, camels, elephants, which met and passed him, and squeezed him up steps and into doorways, as they threaded their way through the great Moon-gate into the ample street beyond, drove everything from his mind but wondering curiosity, and a vague, helpless dread of that great living wilderness, more terrible than any dead wilderness of sand which he had left behind.
|
||||
Already he longed for the repose, the silence of the Laura--for faces which knew him and smiled upon him; but it was too late to turn back now.
|
||||
His guide held on for more than a mile up the great main street, crossed in the centre of the city, at right angles, by one equally magnificent, at each end of which, miles away, appeared, dim and distant over the heads of the living stream of passengers, the yellow sand-hills of the desert;
|
||||
while at the end of the vista in front of them gleamed the blue harbour, through a network of countless masts.
|
||||
At last they reached the quay at the opposite end of the street;
|
||||
and there burst on Philammon's astonished eyes a vast semicircle of blue sea, ringed with palaces and towers.
|
||||
He stopped involuntarily; and his little guide stopped also, and looked askance at the young monk, to watch the effect which that grand panorama should produce on him.
|
292
tokenization.py
Normal file
292
tokenization.py
Normal file
@ -0,0 +1,292 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tokenization classes."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
import unicodedata
|
||||
import six
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def convert_to_unicode(text):
|
||||
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
|
||||
if six.PY3:
|
||||
if isinstance(text, str):
|
||||
return text
|
||||
elif isinstance(text, bytes):
|
||||
return text.decode("utf-8", "ignore")
|
||||
else:
|
||||
raise ValueError("Unsupported string type: %s" % (type(text)))
|
||||
elif six.PY2:
|
||||
if isinstance(text, str):
|
||||
return text.decode("utf-8", "ignore")
|
||||
elif isinstance(text, unicode):
|
||||
return text
|
||||
else:
|
||||
raise ValueError("Unsupported string type: %s" % (type(text)))
|
||||
else:
|
||||
raise ValueError("Not running on Python2 or Python 3?")
|
||||
|
||||
|
||||
def printable_text(text):
|
||||
"""Returns text encoded in a way suitable for print or `tf.logging`."""
|
||||
|
||||
# These functions want `str` for both Python2 and Python3, but in one case
|
||||
# it's a Unicode string and in the other it's a byte string.
|
||||
if six.PY3:
|
||||
if isinstance(text, str):
|
||||
return text
|
||||
elif isinstance(text, bytes):
|
||||
return text.decode("utf-8", "ignore")
|
||||
else:
|
||||
raise ValueError("Unsupported string type: %s" % (type(text)))
|
||||
elif six.PY2:
|
||||
if isinstance(text, str):
|
||||
return text
|
||||
elif isinstance(text, unicode):
|
||||
return text.encode("utf-8")
|
||||
else:
|
||||
raise ValueError("Unsupported string type: %s" % (type(text)))
|
||||
else:
|
||||
raise ValueError("Not running on Python2 or Python 3?")
|
||||
|
||||
|
||||
def load_vocab(vocab_file):
|
||||
"""Loads a vocabulary file into a dictionary."""
|
||||
vocab = collections.OrderedDict()
|
||||
index = 0
|
||||
with tf.gfile.GFile(vocab_file, "r") as reader:
|
||||
while True:
|
||||
token = convert_to_unicode(reader.readline())
|
||||
if not token:
|
||||
break
|
||||
token = token.strip()
|
||||
vocab[token] = index
|
||||
index += 1
|
||||
return vocab
|
||||
|
||||
|
||||
def convert_tokens_to_ids(vocab, tokens):
|
||||
"""Converts a sequence of tokens into ids using the vocab."""
|
||||
ids = []
|
||||
for token in tokens:
|
||||
ids.append(vocab[token])
|
||||
return ids
|
||||
|
||||
|
||||
def whitespace_tokenize(text):
|
||||
"""Runs basic whitespace cleaning and splitting on a peice of text."""
|
||||
text = text.strip()
|
||||
if not text:
|
||||
return []
|
||||
tokens = text.split()
|
||||
return tokens
|
||||
|
||||
|
||||
class FullTokenizer(object):
|
||||
"""Runs end-to-end tokenziation."""
|
||||
|
||||
def __init__(self, vocab_file, do_lower_case=True):
|
||||
self.vocab = load_vocab(vocab_file)
|
||||
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
|
||||
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
|
||||
|
||||
def tokenize(self, text):
|
||||
split_tokens = []
|
||||
for token in self.basic_tokenizer.tokenize(text):
|
||||
for sub_token in self.wordpiece_tokenizer.tokenize(token):
|
||||
split_tokens.append(sub_token)
|
||||
|
||||
return split_tokens
|
||||
|
||||
def convert_tokens_to_ids(self, tokens):
|
||||
return convert_tokens_to_ids(self.vocab, tokens)
|
||||
|
||||
|
||||
class BasicTokenizer(object):
|
||||
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
|
||||
|
||||
def __init__(self, do_lower_case=True):
|
||||
"""Constructs a BasicTokenizer.
|
||||
|
||||
Args:
|
||||
do_lower_case: Whether to lower case the input.
|
||||
"""
|
||||
self.do_lower_case = do_lower_case
|
||||
|
||||
def tokenize(self, text):
|
||||
"""Tokenizes a piece of text."""
|
||||
text = convert_to_unicode(text)
|
||||
text = self._clean_text(text)
|
||||
orig_tokens = whitespace_tokenize(text)
|
||||
split_tokens = []
|
||||
for token in orig_tokens:
|
||||
if self.do_lower_case:
|
||||
token = token.lower()
|
||||
token = self._run_strip_accents(token)
|
||||
split_tokens.extend(self._run_split_on_punc(token))
|
||||
|
||||
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
||||
return output_tokens
|
||||
|
||||
def _run_strip_accents(self, text):
|
||||
"""Strips accents from a piece of text."""
|
||||
text = unicodedata.normalize("NFD", text)
|
||||
output = []
|
||||
for char in text:
|
||||
cat = unicodedata.category(char)
|
||||
if cat == "Mn":
|
||||
continue
|
||||
output.append(char)
|
||||
return "".join(output)
|
||||
|
||||
def _run_split_on_punc(self, text):
|
||||
"""Splits punctuation on a piece of text."""
|
||||
chars = list(text)
|
||||
i = 0
|
||||
start_new_word = True
|
||||
output = []
|
||||
while i < len(chars):
|
||||
char = chars[i]
|
||||
if _is_punctuation(char):
|
||||
output.append([char])
|
||||
start_new_word = True
|
||||
else:
|
||||
if start_new_word:
|
||||
output.append([])
|
||||
start_new_word = False
|
||||
output[-1].append(char)
|
||||
i += 1
|
||||
|
||||
return ["".join(x) for x in output]
|
||||
|
||||
def _clean_text(self, text):
|
||||
"""Performs invalid character removal and whitespace cleanup on text."""
|
||||
output = []
|
||||
for char in text:
|
||||
cp = ord(char)
|
||||
if cp == 0 or cp == 0xfffd or _is_control(char):
|
||||
continue
|
||||
if _is_whitespace(char):
|
||||
output.append(" ")
|
||||
else:
|
||||
output.append(char)
|
||||
return "".join(output)
|
||||
|
||||
|
||||
class WordpieceTokenizer(object):
|
||||
"""Runs WordPiece tokenziation."""
|
||||
|
||||
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
|
||||
self.vocab = vocab
|
||||
self.unk_token = unk_token
|
||||
self.max_input_chars_per_word = max_input_chars_per_word
|
||||
|
||||
def tokenize(self, text):
|
||||
"""Tokenizes a piece of text into its word pieces.
|
||||
|
||||
This uses a greedy longest-match-first algorithm to perform tokenization
|
||||
using the given vocabulary.
|
||||
|
||||
For example:
|
||||
input = "unaffable"
|
||||
output = ["un", "##aff", "##able"]
|
||||
|
||||
Args:
|
||||
text: A single token or whitespace separated tokens. This should have
|
||||
already been passed through `BasicTokenizer.
|
||||
|
||||
Returns:
|
||||
A list of wordpiece tokens.
|
||||
"""
|
||||
|
||||
text = convert_to_unicode(text)
|
||||
|
||||
output_tokens = []
|
||||
for token in whitespace_tokenize(text):
|
||||
chars = list(token)
|
||||
if len(chars) > self.max_input_chars_per_word:
|
||||
output_tokens.append(self.unk_token)
|
||||
continue
|
||||
|
||||
is_bad = False
|
||||
start = 0
|
||||
sub_tokens = []
|
||||
while start < len(chars):
|
||||
end = len(chars)
|
||||
cur_substr = None
|
||||
while start < end:
|
||||
substr = "".join(chars[start:end])
|
||||
if start > 0:
|
||||
substr = "##" + substr
|
||||
if substr in self.vocab:
|
||||
cur_substr = substr
|
||||
break
|
||||
end -= 1
|
||||
if cur_substr is None:
|
||||
is_bad = True
|
||||
break
|
||||
sub_tokens.append(cur_substr)
|
||||
start = end
|
||||
|
||||
if is_bad:
|
||||
output_tokens.append(self.unk_token)
|
||||
else:
|
||||
output_tokens.extend(sub_tokens)
|
||||
return output_tokens
|
||||
|
||||
|
||||
def _is_whitespace(char):
|
||||
"""Checks whether `chars` is a whitespace character."""
|
||||
# \t, \n, and \r are technically contorl characters but we treat them
|
||||
# as whitespace since they are generally considered as such.
|
||||
if char == " " or char == "\t" or char == "\n" or char == "\r":
|
||||
return True
|
||||
cat = unicodedata.category(char)
|
||||
if cat == "Zs":
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def _is_control(char):
|
||||
"""Checks whether `chars` is a control character."""
|
||||
# These are technically control characters but we count them as whitespace
|
||||
# characters.
|
||||
if char == "\t" or char == "\n" or char == "\r":
|
||||
return False
|
||||
cat = unicodedata.category(char)
|
||||
if cat.startswith("C"):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def _is_punctuation(char):
|
||||
"""Checks whether `chars` is a punctuation character."""
|
||||
cp = ord(char)
|
||||
# We treat all non-letter/number ASCII as punctuation.
|
||||
# Characters such as "^", "$", and "`" are not in the Unicode
|
||||
# Punctuation class but we treat them as punctuation anyways, for
|
||||
# consistency.
|
||||
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
|
||||
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
|
||||
return True
|
||||
cat = unicodedata.category(char)
|
||||
if cat.startswith("P"):
|
||||
return True
|
||||
return False
|
125
tokenization_test.py
Normal file
125
tokenization_test.py
Normal file
@ -0,0 +1,125 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import tempfile
|
||||
|
||||
import tokenization
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
class TokenizationTest(tf.test.TestCase):
|
||||
|
||||
def test_full_tokenizer(self):
|
||||
vocab_tokens = [
|
||||
"[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
|
||||
"##ing", ","
|
||||
]
|
||||
with tempfile.NamedTemporaryFile(delete=False) as vocab_writer:
|
||||
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
|
||||
|
||||
vocab_file = vocab_writer.name
|
||||
|
||||
tokenizer = tokenization.FullTokenizer(vocab_file)
|
||||
os.unlink(vocab_file)
|
||||
|
||||
tokens = tokenizer.tokenize(u"UNwant\u00E9d,running")
|
||||
self.assertAllEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
|
||||
|
||||
self.assertAllEqual(
|
||||
tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])
|
||||
|
||||
def test_basic_tokenizer_lower(self):
|
||||
tokenizer = tokenization.BasicTokenizer(do_lower_case=True)
|
||||
|
||||
self.assertAllEqual(
|
||||
tokenizer.tokenize(u" \tHeLLo!how \n Are yoU? "),
|
||||
["hello", "!", "how", "are", "you", "?"])
|
||||
self.assertAllEqual(tokenizer.tokenize(u"H\u00E9llo"), ["hello"])
|
||||
|
||||
def test_basic_tokenizer_no_lower(self):
|
||||
tokenizer = tokenization.BasicTokenizer(do_lower_case=False)
|
||||
|
||||
self.assertAllEqual(
|
||||
tokenizer.tokenize(u" \tHeLLo!how \n Are yoU? "),
|
||||
["HeLLo", "!", "how", "Are", "yoU", "?"])
|
||||
|
||||
def test_wordpiece_tokenizer(self):
|
||||
vocab_tokens = [
|
||||
"[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
|
||||
"##ing"
|
||||
]
|
||||
|
||||
vocab = {}
|
||||
for (i, token) in enumerate(vocab_tokens):
|
||||
vocab[token] = i
|
||||
tokenizer = tokenization.WordpieceTokenizer(vocab=vocab)
|
||||
|
||||
self.assertAllEqual(tokenizer.tokenize(""), [])
|
||||
|
||||
self.assertAllEqual(
|
||||
tokenizer.tokenize("unwanted running"),
|
||||
["un", "##want", "##ed", "runn", "##ing"])
|
||||
|
||||
self.assertAllEqual(
|
||||
tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])
|
||||
|
||||
def test_convert_tokens_to_ids(self):
|
||||
vocab_tokens = [
|
||||
"[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
|
||||
"##ing"
|
||||
]
|
||||
|
||||
vocab = {}
|
||||
for (i, token) in enumerate(vocab_tokens):
|
||||
vocab[token] = i
|
||||
|
||||
self.assertAllEqual(
|
||||
tokenization.convert_tokens_to_ids(
|
||||
vocab, ["un", "##want", "##ed", "runn", "##ing"]), [7, 4, 5, 8, 9])
|
||||
|
||||
def test_is_whitespace(self):
|
||||
self.assertTrue(tokenization._is_whitespace(u" "))
|
||||
self.assertTrue(tokenization._is_whitespace(u"\t"))
|
||||
self.assertTrue(tokenization._is_whitespace(u"\r"))
|
||||
self.assertTrue(tokenization._is_whitespace(u"\n"))
|
||||
self.assertTrue(tokenization._is_whitespace(u"\u00A0"))
|
||||
|
||||
self.assertFalse(tokenization._is_whitespace(u"A"))
|
||||
self.assertFalse(tokenization._is_whitespace(u"-"))
|
||||
|
||||
def test_is_control(self):
|
||||
self.assertTrue(tokenization._is_control(u"\u0005"))
|
||||
|
||||
self.assertFalse(tokenization._is_control(u"A"))
|
||||
self.assertFalse(tokenization._is_control(u" "))
|
||||
self.assertFalse(tokenization._is_control(u"\t"))
|
||||
self.assertFalse(tokenization._is_control(u"\r"))
|
||||
|
||||
def test_is_punctuation(self):
|
||||
self.assertTrue(tokenization._is_punctuation(u"-"))
|
||||
self.assertTrue(tokenization._is_punctuation(u"$"))
|
||||
self.assertTrue(tokenization._is_punctuation(u"`"))
|
||||
self.assertTrue(tokenization._is_punctuation(u"."))
|
||||
|
||||
self.assertFalse(tokenization._is_punctuation(u"A"))
|
||||
self.assertFalse(tokenization._is_punctuation(u" "))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
tf.test.main()
|
Loading…
Reference in New Issue
Block a user