fix: Fixed raising TypeError instead of ValueError for invalid type (#32111)

* Raised TypeError instead of ValueError for invalid types.

* Updated formatting using ruff.

* Retrieved few changes.

* Retrieved few changes.

* Updated tests accordingly.
This commit is contained in:
Sai-Suraj-27 2024-07-22 22:16:17 +05:30 committed by GitHub
parent d1ec36b94f
commit 12b6880c81
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
58 changed files with 111 additions and 113 deletions

View File

@ -59,7 +59,7 @@ class GroupedBatchSampler(BatchSampler):
def __init__(self, sampler, group_ids, batch_size): def __init__(self, sampler, group_ids, batch_size):
if not isinstance(sampler, Sampler): if not isinstance(sampler, Sampler):
raise ValueError( raise TypeError(
"sampler should be an instance of torch.utils.data.Sampler, but got sampler={}".format(sampler) "sampler should be an instance of torch.utils.data.Sampler, but got sampler={}".format(sampler)
) )
self.sampler = sampler self.sampler = sampler

View File

@ -48,7 +48,7 @@ def convert_to_float(value):
if isinstance(value, int): if isinstance(value, int):
return float(value) return float(value)
if not isinstance(value, str): if not isinstance(value, str):
raise ValueError("Argument value is not a string. Can't parse it as float") raise TypeError("Argument value is not a string. Can't parse it as float")
sanitized = value sanitized = value
try: try:
@ -158,7 +158,7 @@ def _respect_conditions(table, row, conditions):
cmp_value = _normalize_for_match(cmp_value) cmp_value = _normalize_for_match(cmp_value)
if not isinstance(table_value, type(cmp_value)): if not isinstance(table_value, type(cmp_value)):
raise ValueError("Type difference {} != {}".format(type(table_value), type(cmp_value))) raise TypeError("Type difference {} != {}".format(type(table_value), type(cmp_value)))
if not _compare(cond.operator, table_value, cmp_value): if not _compare(cond.operator, table_value, cmp_value):
return False return False

View File

@ -107,7 +107,7 @@ class AgentImage(AgentType, ImageType):
elif isinstance(value, np.ndarray): elif isinstance(value, np.ndarray):
self._tensor = torch.tensor(value) self._tensor = torch.tensor(value)
else: else:
raise ValueError(f"Unsupported type for {self.__class__.__name__}: {type(value)}") raise TypeError(f"Unsupported type for {self.__class__.__name__}: {type(value)}")
def _ipython_display_(self, include=None, exclude=None): def _ipython_display_(self, include=None, exclude=None):
""" """

View File

@ -1004,7 +1004,7 @@ class PretrainedConfig(PushToHubMixin):
elif isinstance(old_v, float): elif isinstance(old_v, float):
v = float(v) v = float(v)
elif not isinstance(old_v, str): elif not isinstance(old_v, str):
raise ValueError( raise TypeError(
f"You can only update int, float, bool or string values in the config, got {v} for key {k}" f"You can only update int, float, bool or string values in the config, got {v} for key {k}"
) )

View File

@ -47,11 +47,11 @@ class XnliProcessor(DataProcessor):
text_b = line[1] text_b = line[1]
label = "contradiction" if line[2] == "contradictory" else line[2] label = "contradiction" if line[2] == "contradictory" else line[2]
if not isinstance(text_a, str): if not isinstance(text_a, str):
raise ValueError(f"Training input {text_a} is not a string") raise TypeError(f"Training input {text_a} is not a string")
if not isinstance(text_b, str): if not isinstance(text_b, str):
raise ValueError(f"Training input {text_b} is not a string") raise TypeError(f"Training input {text_b} is not a string")
if not isinstance(label, str): if not isinstance(label, str):
raise ValueError(f"Training label {label} is not a string") raise TypeError(f"Training label {label} is not a string")
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples return examples
@ -70,11 +70,11 @@ class XnliProcessor(DataProcessor):
text_b = line[7] text_b = line[7]
label = line[1] label = line[1]
if not isinstance(text_a, str): if not isinstance(text_a, str):
raise ValueError(f"Training input {text_a} is not a string") raise TypeError(f"Training input {text_a} is not a string")
if not isinstance(text_b, str): if not isinstance(text_b, str):
raise ValueError(f"Training input {text_b} is not a string") raise TypeError(f"Training input {text_b} is not a string")
if not isinstance(label, str): if not isinstance(label, str):
raise ValueError(f"Training label {label} is not a string") raise TypeError(f"Training label {label} is not a string")
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples return examples

View File

@ -156,7 +156,7 @@ class PhrasalConstraint(Constraint):
def does_advance(self, token_id: int): def does_advance(self, token_id: int):
if not isinstance(token_id, int): if not isinstance(token_id, int):
raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}") raise TypeError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}")
if self.completed: if self.completed:
return False return False
@ -165,7 +165,7 @@ class PhrasalConstraint(Constraint):
def update(self, token_id: int): def update(self, token_id: int):
if not isinstance(token_id, int): if not isinstance(token_id, int):
raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}") raise TypeError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}")
stepped = False stepped = False
completed = False completed = False
@ -300,7 +300,7 @@ class DisjunctiveConstraint(Constraint):
def does_advance(self, token_id: int): def does_advance(self, token_id: int):
if not isinstance(token_id, int): if not isinstance(token_id, int):
raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}") raise TypeError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}")
next_tokens = self.trie.next_tokens(self.current_seq) next_tokens = self.trie.next_tokens(self.current_seq)
@ -308,7 +308,7 @@ class DisjunctiveConstraint(Constraint):
def update(self, token_id: int): def update(self, token_id: int):
if not isinstance(token_id, int): if not isinstance(token_id, int):
raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}") raise TypeError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}")
stepped = False stepped = False
completed = False completed = False
@ -432,7 +432,7 @@ class ConstraintListState:
def add(self, token_id: int): def add(self, token_id: int):
if not isinstance(token_id, int): if not isinstance(token_id, int):
raise ValueError(f"`token_id` should be an `int`, but is `{token_id}`.") raise TypeError(f"`token_id` should be an `int`, but is `{token_id}`.")
complete, stepped = False, False complete, stepped = False, False

View File

@ -4281,7 +4281,7 @@ def _split(data, full_batch_size: int, split_size: int = None):
for i in range(0, full_batch_size, split_size) for i in range(0, full_batch_size, split_size)
] ]
else: else:
raise ValueError(f"Unexpected attribute type: {type(data)}") raise TypeError(f"Unexpected attribute type: {type(data)}")
def _split_model_inputs( def _split_model_inputs(
@ -4388,7 +4388,7 @@ def stack_model_outputs(model_outputs: List[ModelOutput]) -> ModelOutput:
# If the elements are integers or floats, return a tensor # If the elements are integers or floats, return a tensor
return torch.tensor(data) return torch.tensor(data)
else: else:
raise ValueError(f"Unexpected attribute type: {type(data[0])}") raise TypeError(f"Unexpected attribute type: {type(data[0])}")
# Use a dictionary comprehension to gather attributes from all objects and concatenate them # Use a dictionary comprehension to gather attributes from all objects and concatenate them
concatenated_data = { concatenated_data = {

View File

@ -544,7 +544,7 @@ class ImageProcessingMixin(PushToHubMixin):
response.raise_for_status() response.raise_for_status()
return Image.open(BytesIO(response.content)) return Image.open(BytesIO(response.content))
else: else:
raise ValueError(f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}") raise TypeError(f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}")
ImageProcessingMixin.push_to_hub = copy_func(ImageProcessingMixin.push_to_hub) ImageProcessingMixin.push_to_hub = copy_func(ImageProcessingMixin.push_to_hub)

View File

@ -75,7 +75,7 @@ def to_channel_dimension_format(
`np.ndarray`: The image with the channel dimension set to `channel_dim`. `np.ndarray`: The image with the channel dimension set to `channel_dim`.
""" """
if not isinstance(image, np.ndarray): if not isinstance(image, np.ndarray):
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}") raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")
if input_channel_dim is None: if input_channel_dim is None:
input_channel_dim = infer_channel_dimension_format(image) input_channel_dim = infer_channel_dimension_format(image)
@ -121,7 +121,7 @@ def rescale(
`np.ndarray`: The rescaled image. `np.ndarray`: The rescaled image.
""" """
if not isinstance(image, np.ndarray): if not isinstance(image, np.ndarray):
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}") raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")
rescaled_image = image * scale rescaled_image = image * scale
if data_format is not None: if data_format is not None:
@ -453,7 +453,7 @@ def center_crop(
return_numpy = True if return_numpy is None else return_numpy return_numpy = True if return_numpy is None else return_numpy
if not isinstance(image, np.ndarray): if not isinstance(image, np.ndarray):
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}") raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")
if not isinstance(size, Iterable) or len(size) != 2: if not isinstance(size, Iterable) or len(size) != 2:
raise ValueError("size must have 2 elements representing the height and width of the output image") raise ValueError("size must have 2 elements representing the height and width of the output image")

View File

@ -377,7 +377,7 @@ def load_image(image: Union[str, "PIL.Image.Image"], timeout: Optional[float] =
elif isinstance(image, PIL.Image.Image): elif isinstance(image, PIL.Image.Image):
image = image image = image
else: else:
raise ValueError( raise TypeError(
"Incorrect format used for image. Should be an url linking to an image, a base64 string, a local path, or a PIL image." "Incorrect format used for image. Should be an url linking to an image, a base64 string, a local path, or a PIL image."
) )
image = PIL.ImageOps.exif_transpose(image) image = PIL.ImageOps.exif_transpose(image)

View File

@ -199,7 +199,7 @@ def get_modules_to_fuse(model, quantization_config):
The quantization configuration to use. The quantization configuration to use.
""" """
if not isinstance(model, PreTrainedModel): if not isinstance(model, PreTrainedModel):
raise ValueError(f"The model should be an instance of `PreTrainedModel`, got {model.__class__.__name__}") raise TypeError(f"The model should be an instance of `PreTrainedModel`, got {model.__class__.__name__}")
# Always default to `quantization_config.modules_to_fuse` # Always default to `quantization_config.modules_to_fuse`
if quantization_config.modules_to_fuse is not None: if quantization_config.modules_to_fuse is not None:

View File

@ -262,9 +262,7 @@ class PeftAdapterMixin:
raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.") raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.")
if not isinstance(adapter_config, PeftConfig): if not isinstance(adapter_config, PeftConfig):
raise ValueError( raise TypeError(f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead.")
f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead."
)
# Retrieve the name or path of the model, one could also use self.config._name_or_path # Retrieve the name or path of the model, one could also use self.config._name_or_path
# but to be consistent with what we do in PEFT: https://github.com/huggingface/peft/blob/6e783780ca9df3a623992cc4d1d665001232eae0/src/peft/mapping.py#L100 # but to be consistent with what we do in PEFT: https://github.com/huggingface/peft/blob/6e783780ca9df3a623992cc4d1d665001232eae0/src/peft/mapping.py#L100

View File

@ -1209,7 +1209,7 @@ class TFPreTrainedModel(keras.Model, TFModelUtilsMixin, TFGenerationMixin, PushT
def __init__(self, config, *inputs, **kwargs): def __init__(self, config, *inputs, **kwargs):
super().__init__(*inputs, **kwargs) super().__init__(*inputs, **kwargs)
if not isinstance(config, PretrainedConfig): if not isinstance(config, PretrainedConfig):
raise ValueError( raise TypeError(
f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class " f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
"`PretrainedConfig`. To create a model from a pretrained model use " "`PretrainedConfig`. To create a model from a pretrained model use "
f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`" f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"

View File

@ -1418,13 +1418,13 @@ class AlignModel(AlignPreTrainedModel):
super().__init__(config) super().__init__(config)
if not isinstance(config.text_config, AlignTextConfig): if not isinstance(config.text_config, AlignTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type AlignTextConfig but is of type" "config.text_config is expected to be of type AlignTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.vision_config, AlignVisionConfig): if not isinstance(config.vision_config, AlignVisionConfig):
raise ValueError( raise TypeError(
"config.vision_config is expected to be of type AlignVisionConfig but is of type" "config.vision_config is expected to be of type AlignVisionConfig but is of type"
f" {type(config.vision_config)}." f" {type(config.vision_config)}."
) )

View File

@ -1466,12 +1466,12 @@ class AltCLIPModel(AltCLIPPreTrainedModel):
super().__init__(config) super().__init__(config)
if not isinstance(config.vision_config, AltCLIPVisionConfig): if not isinstance(config.vision_config, AltCLIPVisionConfig):
raise ValueError( raise TypeError(
"config.vision_config is expected to be of type AltCLIPVisionConfig but is of type" "config.vision_config is expected to be of type AltCLIPVisionConfig but is of type"
f" {type(config.vision_config)}." f" {type(config.vision_config)}."
) )
if not isinstance(config.text_config, AltCLIPTextConfig): if not isinstance(config.text_config, AltCLIPTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type AltCLIPTextConfig but is of type" "config.text_config is expected to be of type AltCLIPTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )

View File

@ -211,7 +211,7 @@ class BarkProcessor(ProcessorMixin):
raise ValueError(f"Voice preset unrecognized, missing {key} as a key.") raise ValueError(f"Voice preset unrecognized, missing {key} as a key.")
if not isinstance(voice_preset[key], np.ndarray): if not isinstance(voice_preset[key], np.ndarray):
raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.") raise TypeError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")
if len(voice_preset[key].shape) != self.preset_shape[key]: if len(voice_preset[key].shape) != self.preset_shape[key]:
raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.") raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")

View File

@ -755,13 +755,13 @@ class BlipModel(BlipPreTrainedModel):
super().__init__(config) super().__init__(config)
if not isinstance(config.text_config, BlipTextConfig): if not isinstance(config.text_config, BlipTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type BlipTextConfig but is of type" "config.text_config is expected to be of type BlipTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.vision_config, BlipVisionConfig): if not isinstance(config.vision_config, BlipVisionConfig):
raise ValueError( raise TypeError(
"config.vision_config is expected to be of type BlipVisionConfig but is of type" "config.vision_config is expected to be of type BlipVisionConfig but is of type"
f" {type(config.vision_config)}." f" {type(config.vision_config)}."
) )

View File

@ -794,13 +794,13 @@ class TFBlipMainLayer(keras.layers.Layer):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
if not isinstance(config.text_config, BlipTextConfig): if not isinstance(config.text_config, BlipTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type BlipTextConfig but is of type" "config.text_config is expected to be of type BlipTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.vision_config, BlipVisionConfig): if not isinstance(config.vision_config, BlipVisionConfig):
raise ValueError( raise TypeError(
"config.vision_config is expected to be of type BlipVisionConfig but is of type" "config.vision_config is expected to be of type BlipVisionConfig but is of type"
f" {type(config.vision_config)}." f" {type(config.vision_config)}."
) )

View File

@ -113,7 +113,7 @@ class ChameleonProcessor(ProcessorMixin):
if isinstance(text, str): if isinstance(text, str):
text = [text] text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str): elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings") raise TypeError("Invalid input text. Please provide a string, or a list of strings")
# Replace the image token with the expanded image token sequence # Replace the image token with the expanded image token sequence
prompt_strings = [] prompt_strings = []

View File

@ -1341,13 +1341,13 @@ class ChineseCLIPModel(ChineseCLIPPreTrainedModel):
super().__init__(config) super().__init__(config)
if not isinstance(config.text_config, ChineseCLIPTextConfig): if not isinstance(config.text_config, ChineseCLIPTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type ChineseCLIPTextConfig but is of type" "config.text_config is expected to be of type ChineseCLIPTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.vision_config, ChineseCLIPVisionConfig): if not isinstance(config.vision_config, ChineseCLIPVisionConfig):
raise ValueError( raise TypeError(
"config.vision_config is expected to be of type ChineseCLIPVisionConfig but is of type" "config.vision_config is expected to be of type ChineseCLIPVisionConfig but is of type"
f" {type(config.vision_config)}." f" {type(config.vision_config)}."
) )

View File

@ -1928,13 +1928,13 @@ class ClapModel(ClapPreTrainedModel):
super().__init__(config) super().__init__(config)
if not isinstance(config.text_config, ClapTextConfig): if not isinstance(config.text_config, ClapTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type ClapTextConfig but is of type" "config.text_config is expected to be of type ClapTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.audio_config, ClapAudioConfig): if not isinstance(config.audio_config, ClapAudioConfig):
raise ValueError( raise TypeError(
"config.audio_config is expected to be of type ClapAudioConfig but is of type" "config.audio_config is expected to be of type ClapAudioConfig but is of type"
f" {type(config.audio_config)}." f" {type(config.audio_config)}."
) )

View File

@ -1119,13 +1119,13 @@ class CLIPModel(CLIPPreTrainedModel):
super().__init__(config) super().__init__(config)
if not isinstance(config.text_config, CLIPTextConfig): if not isinstance(config.text_config, CLIPTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type CLIPTextConfig but is of type" "config.text_config is expected to be of type CLIPTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.vision_config, CLIPVisionConfig): if not isinstance(config.vision_config, CLIPVisionConfig):
raise ValueError( raise TypeError(
"config.vision_config is expected to be of type CLIPVisionConfig but is of type" "config.vision_config is expected to be of type CLIPVisionConfig but is of type"
f" {type(config.vision_config)}." f" {type(config.vision_config)}."
) )

View File

@ -825,13 +825,13 @@ class TFCLIPMainLayer(keras.layers.Layer):
super().__init__(**kwargs) super().__init__(**kwargs)
if not isinstance(config.text_config, CLIPTextConfig): if not isinstance(config.text_config, CLIPTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type CLIPTextConfig but is of type" "config.text_config is expected to be of type CLIPTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.vision_config, CLIPVisionConfig): if not isinstance(config.vision_config, CLIPVisionConfig):
raise ValueError( raise TypeError(
"config.vision_config is expected to be of type CLIPVisionConfig but is of type" "config.vision_config is expected to be of type CLIPVisionConfig but is of type"
f" {type(config.vision_config)}." f" {type(config.vision_config)}."
) )

View File

@ -924,13 +924,13 @@ class CLIPSegModel(CLIPSegPreTrainedModel):
super().__init__(config) super().__init__(config)
if not isinstance(config.text_config, CLIPSegTextConfig): if not isinstance(config.text_config, CLIPSegTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type CLIPSegTextConfig but is of type" "config.text_config is expected to be of type CLIPSegTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.vision_config, CLIPSegVisionConfig): if not isinstance(config.vision_config, CLIPSegVisionConfig):
raise ValueError( raise TypeError(
"config.vision_config is expected to be of type CLIPSegVisionConfig but is of type" "config.vision_config is expected to be of type CLIPSegVisionConfig but is of type"
f" {type(config.vision_config)}." f" {type(config.vision_config)}."
) )

View File

@ -1513,19 +1513,19 @@ class ClvpModelForConditionalGeneration(ClvpPreTrainedModel):
super().__init__(config) super().__init__(config)
if not isinstance(config.text_config, ClvpEncoderConfig): if not isinstance(config.text_config, ClvpEncoderConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type `ClvpEncoderConfig` but is of type" "config.text_config is expected to be of type `ClvpEncoderConfig` but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.speech_config, ClvpEncoderConfig): if not isinstance(config.speech_config, ClvpEncoderConfig):
raise ValueError( raise TypeError(
"config.speech_config is expected to be of type `ClvpEncoderConfig` but is of type" "config.speech_config is expected to be of type `ClvpEncoderConfig` but is of type"
f" {type(config.speech_config)}." f" {type(config.speech_config)}."
) )
if not isinstance(config.decoder_config, ClvpDecoderConfig): if not isinstance(config.decoder_config, ClvpDecoderConfig):
raise ValueError( raise TypeError(
"config.decoder_config is expected to be of type `ClvpDecoderConfig` but is of type" "config.decoder_config is expected to be of type `ClvpDecoderConfig` but is of type"
f" {type(config.decoder_config)}." f" {type(config.decoder_config)}."
) )

View File

@ -518,4 +518,4 @@ def convert_to_unicode(text):
elif isinstance(text, bytes): elif isinstance(text, bytes):
return text.decode("utf-8", "ignore") return text.decode("utf-8", "ignore")
else: else:
raise ValueError(f"Unsupported string type: {type(text)}") raise TypeError(f"Unsupported string type: {type(text)}")

View File

@ -298,7 +298,7 @@ class DepthAnythingNeck(nn.Module):
List of hidden states from the backbone. List of hidden states from the backbone.
""" """
if not isinstance(hidden_states, (tuple, list)): if not isinstance(hidden_states, (tuple, list)):
raise ValueError("hidden_states should be a tuple or list of tensors") raise TypeError("hidden_states should be a tuple or list of tensors")
if len(hidden_states) != len(self.config.neck_hidden_sizes): if len(hidden_states) != len(self.config.neck_hidden_sizes):
raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.") raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.")

View File

@ -1002,7 +1002,7 @@ class DPTNeck(nn.Module):
List of hidden states from the backbone. List of hidden states from the backbone.
""" """
if not isinstance(hidden_states, (tuple, list)): if not isinstance(hidden_states, (tuple, list)):
raise ValueError("hidden_states should be a tuple or list of tensors") raise TypeError("hidden_states should be a tuple or list of tensors")
if len(hidden_states) != len(self.config.neck_hidden_sizes): if len(hidden_states) != len(self.config.neck_hidden_sizes):
raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.") raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.")

View File

@ -32,7 +32,7 @@ def _fetch_dims(tree: Union[dict, list, tuple, torch.Tensor]) -> List[Tuple[int,
elif isinstance(tree, torch.Tensor): elif isinstance(tree, torch.Tensor):
shapes.append(tree.shape) shapes.append(tree.shape)
else: else:
raise ValueError("Not supported") raise TypeError("Not supported")
return shapes return shapes
@ -302,7 +302,7 @@ def chunk_layer(
else: else:
out[i : i + chunk_size] = output_chunk out[i : i + chunk_size] = output_chunk
else: else:
raise ValueError("Not supported") raise TypeError("Not supported")
i += chunk_size i += chunk_size

View File

@ -394,7 +394,7 @@ def map_structure_with_atom_order(in_list: list, first_call: bool = True) -> lis
elif isinstance(in_list[i], str): elif isinstance(in_list[i], str):
in_list[i] = atom_order[in_list[i]] in_list[i] = atom_order[in_list[i]]
else: else:
raise ValueError("Unexpected type when mapping nested lists!") raise TypeError("Unexpected type when mapping nested lists!")
return in_list return in_list

View File

@ -134,7 +134,7 @@ def tree_map(fn, tree, leaf_type):
return fn(tree) return fn(tree)
else: else:
print(type(tree)) print(type(tree))
raise ValueError("Not supported") raise TypeError("Not supported")
tensor_tree_map = partial(tree_map, leaf_type=torch.Tensor) tensor_tree_map = partial(tree_map, leaf_type=torch.Tensor)

View File

@ -1181,19 +1181,19 @@ class FlavaModel(FlavaPreTrainedModel):
super().__init__(config) super().__init__(config)
if not isinstance(config.text_config, FlavaTextConfig): if not isinstance(config.text_config, FlavaTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type FlavaTextConfig but is of type" "config.text_config is expected to be of type FlavaTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.image_config, FlavaImageConfig): if not isinstance(config.image_config, FlavaImageConfig):
raise ValueError( raise TypeError(
"config.image_config is expected to be of type FlavaImageConfig but is of type" "config.image_config is expected to be of type FlavaImageConfig but is of type"
f" {type(config.image_config)}." f" {type(config.image_config)}."
) )
if not isinstance(config.multimodal_config, FlavaMultimodalConfig): if not isinstance(config.multimodal_config, FlavaMultimodalConfig):
raise ValueError( raise TypeError(
"config.multimodal_config is expected to be of type FlavaMultimodalConfig but " "config.multimodal_config is expected to be of type FlavaMultimodalConfig but "
+ f"is of type {type(config.multimodal_config)}." + f"is of type {type(config.multimodal_config)}."
) )

View File

@ -1302,13 +1302,13 @@ class GroupViTModel(GroupViTPreTrainedModel):
super().__init__(config) super().__init__(config)
if not isinstance(config.text_config, GroupViTTextConfig): if not isinstance(config.text_config, GroupViTTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type GroupViTTextConfig but is of type" "config.text_config is expected to be of type GroupViTTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.vision_config, GroupViTVisionConfig): if not isinstance(config.vision_config, GroupViTVisionConfig):
raise ValueError( raise TypeError(
"config.vision_config is expected to be of type GroupViTVisionConfig but is of type" "config.vision_config is expected to be of type GroupViTVisionConfig but is of type"
f" {type(config.vision_config)}." f" {type(config.vision_config)}."
) )

View File

@ -1443,13 +1443,13 @@ class TFGroupViTMainLayer(keras.layers.Layer):
super().__init__(**kwargs) super().__init__(**kwargs)
if not isinstance(config.text_config, GroupViTTextConfig): if not isinstance(config.text_config, GroupViTTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type GroupViTTextConfig but is of type" "config.text_config is expected to be of type GroupViTTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.vision_config, GroupViTVisionConfig): if not isinstance(config.vision_config, GroupViTVisionConfig):
raise ValueError( raise TypeError(
"config.vision_config is expected to be of type GroupViTVisionConfig but is of type" "config.vision_config is expected to be of type GroupViTVisionConfig but is of type"
f" {type(config.vision_config)}." f" {type(config.vision_config)}."
) )

View File

@ -513,7 +513,7 @@ class LlavaNextImageProcessor(BaseImageProcessor):
List[np.array]: A list of NumPy arrays containing the processed image patches. List[np.array]: A list of NumPy arrays containing the processed image patches.
""" """
if not isinstance(grid_pinpoints, list): if not isinstance(grid_pinpoints, list):
raise ValueError("grid_pinpoints must be a list of possible resolutions.") raise TypeError("grid_pinpoints must be a list of possible resolutions.")
possible_resolutions = grid_pinpoints possible_resolutions = grid_pinpoints

View File

@ -60,12 +60,12 @@ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
tuple: The shape of the image patch grid in the format (width, height). tuple: The shape of the image patch grid in the format (width, height).
""" """
if not isinstance(grid_pinpoints, list): if not isinstance(grid_pinpoints, list):
raise ValueError("grid_pinpoints should be a list of tuples or lists") raise TypeError("grid_pinpoints should be a list of tuples or lists")
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
if not isinstance(image_size, (list, tuple)): if not isinstance(image_size, (list, tuple)):
if not isinstance(image_size, (torch.Tensor, np.ndarray)): if not isinstance(image_size, (torch.Tensor, np.ndarray)):
raise ValueError( raise TypeError(
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor" f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
) )
image_size = image_size.tolist() image_size = image_size.tolist()
@ -91,12 +91,12 @@ def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
int: the number of patches int: the number of patches
""" """
if not isinstance(grid_pinpoints, list): if not isinstance(grid_pinpoints, list):
raise ValueError("grid_pinpoints should be a list of tuples or lists") raise TypeError("grid_pinpoints should be a list of tuples or lists")
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
if not isinstance(image_size, (list, tuple)): if not isinstance(image_size, (list, tuple)):
if not isinstance(image_size, (torch.Tensor, np.ndarray)): if not isinstance(image_size, (torch.Tensor, np.ndarray)):
raise ValueError(f"image_size invalid type {type(image_size)} with value {image_size}") raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
image_size = image_size.tolist() image_size = image_size.tolist()
best_resolution = select_best_resolution(image_size, grid_pinpoints) best_resolution = select_best_resolution(image_size, grid_pinpoints)

View File

@ -66,12 +66,12 @@ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
tuple: The shape of the image patch grid in the format (width, height). tuple: The shape of the image patch grid in the format (width, height).
""" """
if not isinstance(grid_pinpoints, list): if not isinstance(grid_pinpoints, list):
raise ValueError("grid_pinpoints should be a list of tuples or lists") raise TypeError("grid_pinpoints should be a list of tuples or lists")
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
if not isinstance(image_size, (list, tuple)): if not isinstance(image_size, (list, tuple)):
if not isinstance(image_size, (torch.Tensor, np.ndarray)): if not isinstance(image_size, (torch.Tensor, np.ndarray)):
raise ValueError( raise TypeError(
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor" f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
) )
image_size = image_size.tolist() image_size = image_size.tolist()
@ -97,12 +97,12 @@ def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
int: the number of patches int: the number of patches
""" """
if not isinstance(grid_pinpoints, list): if not isinstance(grid_pinpoints, list):
raise ValueError("grid_pinpoints should be a list of tuples or lists") raise TypeError("grid_pinpoints should be a list of tuples or lists")
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
if not isinstance(image_size, (list, tuple)): if not isinstance(image_size, (list, tuple)):
if not isinstance(image_size, (torch.Tensor, np.ndarray)): if not isinstance(image_size, (torch.Tensor, np.ndarray)):
raise ValueError(f"image_size invalid type {type(image_size)} with value {image_size}") raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
image_size = image_size.tolist() image_size = image_size.tolist()
best_resolution = select_best_resolution(image_size, grid_pinpoints) best_resolution = select_best_resolution(image_size, grid_pinpoints)

View File

@ -889,7 +889,7 @@ class LukeTokenizer(PreTrainedTokenizer):
def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]): def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]):
if not isinstance(entity_spans, list): if not isinstance(entity_spans, list):
raise ValueError("entity_spans should be given as a list") raise TypeError("entity_spans should be given as a list")
elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple): elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple):
raise ValueError( raise ValueError(
"entity_spans should be given as a list of tuples containing the start and end character indices" "entity_spans should be given as a list of tuples containing the start and end character indices"

View File

@ -721,7 +721,7 @@ class MLukeTokenizer(PreTrainedTokenizer):
# Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._check_entity_input_format # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._check_entity_input_format
def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]): def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]):
if not isinstance(entity_spans, list): if not isinstance(entity_spans, list):
raise ValueError("entity_spans should be given as a list") raise TypeError("entity_spans should be given as a list")
elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple): elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple):
raise ValueError( raise ValueError(
"entity_spans should be given as a list of tuples containing the start and end character indices" "entity_spans should be given as a list of tuples containing the start and end character indices"

View File

@ -1015,13 +1015,13 @@ class Owlv2Model(Owlv2PreTrainedModel):
super().__init__(config) super().__init__(config)
if not isinstance(config.text_config, Owlv2TextConfig): if not isinstance(config.text_config, Owlv2TextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type Owlv2TextConfig but is of type" "config.text_config is expected to be of type Owlv2TextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.vision_config, Owlv2VisionConfig): if not isinstance(config.vision_config, Owlv2VisionConfig):
raise ValueError( raise TypeError(
"config.vision_config is expected to be of type Owlv2VisionConfig but is of type" "config.vision_config is expected to be of type Owlv2VisionConfig but is of type"
f" {type(config.vision_config)}." f" {type(config.vision_config)}."
) )

View File

@ -998,13 +998,13 @@ class OwlViTModel(OwlViTPreTrainedModel):
super().__init__(config) super().__init__(config)
if not isinstance(config.text_config, OwlViTTextConfig): if not isinstance(config.text_config, OwlViTTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type OwlViTTextConfig but is of type" "config.text_config is expected to be of type OwlViTTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.vision_config, OwlViTVisionConfig): if not isinstance(config.vision_config, OwlViTVisionConfig):
raise ValueError( raise TypeError(
"config.vision_config is expected to be of type OwlViTVisionConfig but is of type" "config.vision_config is expected to be of type OwlViTVisionConfig but is of type"
f" {type(config.vision_config)}." f" {type(config.vision_config)}."
) )

View File

@ -204,7 +204,7 @@ class HFIndexBase(Index):
def _check_dataset_format(self, with_index: bool): def _check_dataset_format(self, with_index: bool):
if not isinstance(self.dataset, Dataset): if not isinstance(self.dataset, Dataset):
raise ValueError(f"Dataset should be a datasets.Dataset object, but got {type(self.dataset)}") raise TypeError(f"Dataset should be a datasets.Dataset object, but got {type(self.dataset)}")
if len({"title", "text", "embeddings"} - set(self.dataset.column_names)) > 0: if len({"title", "text", "embeddings"} - set(self.dataset.column_names)) > 0:
raise ValueError( raise ValueError(
"Dataset should be a dataset with the following columns: " "Dataset should be a dataset with the following columns: "

View File

@ -1202,13 +1202,13 @@ class SiglipModel(SiglipPreTrainedModel):
super().__init__(config) super().__init__(config)
if not isinstance(config.text_config, SiglipTextConfig): if not isinstance(config.text_config, SiglipTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type SiglipTextConfig but is of type" "config.text_config is expected to be of type SiglipTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.vision_config, SiglipVisionConfig): if not isinstance(config.vision_config, SiglipVisionConfig):
raise ValueError( raise TypeError(
"config.vision_config is expected to be of type SiglipVisionConfig but is of type" "config.vision_config is expected to be of type SiglipVisionConfig but is of type"
f" {type(config.vision_config)}." f" {type(config.vision_config)}."
) )

View File

@ -135,7 +135,7 @@ class UdopConfig(PretrainedConfig):
self.patch_size = patch_size self.patch_size = patch_size
self.num_channels = num_channels self.num_channels = num_channels
if not isinstance(relative_bias_args, list): if not isinstance(relative_bias_args, list):
raise ValueError("`relative_bias_args` should be a list of dictionaries.") raise TypeError("`relative_bias_args` should be a list of dictionaries.")
self.relative_bias_args = relative_bias_args self.relative_bias_args = relative_bias_args
act_info = self.feed_forward_proj.split("-") act_info = self.feed_forward_proj.split("-")

View File

@ -92,7 +92,7 @@ class Wav2Vec2ProcessorWithLM(ProcessorMixin):
super().__init__(feature_extractor, tokenizer) super().__init__(feature_extractor, tokenizer)
if not isinstance(decoder, BeamSearchDecoderCTC): if not isinstance(decoder, BeamSearchDecoderCTC):
raise ValueError(f"`decoder` has to be of type {BeamSearchDecoderCTC.__class__}, but is {type(decoder)}") raise TypeError(f"`decoder` has to be of type {BeamSearchDecoderCTC.__class__}, but is {type(decoder)}")
if feature_extractor.__class__.__name__ not in ["Wav2Vec2FeatureExtractor", "SeamlessM4TFeatureExtractor"]: if feature_extractor.__class__.__name__ not in ["Wav2Vec2FeatureExtractor", "SeamlessM4TFeatureExtractor"]:
raise ValueError( raise ValueError(

View File

@ -1242,13 +1242,13 @@ class XCLIPModel(XCLIPPreTrainedModel):
super().__init__(config) super().__init__(config)
if not isinstance(config.text_config, XCLIPTextConfig): if not isinstance(config.text_config, XCLIPTextConfig):
raise ValueError( raise TypeError(
"config.text_config is expected to be of type XCLIPTextConfig but is of type" "config.text_config is expected to be of type XCLIPTextConfig but is of type"
f" {type(config.text_config)}." f" {type(config.text_config)}."
) )
if not isinstance(config.vision_config, XCLIPVisionConfig): if not isinstance(config.vision_config, XCLIPVisionConfig):
raise ValueError( raise TypeError(
"config.vision_config is expected to be of type XCLIPVisionConfig but is of type" "config.vision_config is expected to be of type XCLIPVisionConfig but is of type"
f" {type(config.vision_config)}." f" {type(config.vision_config)}."
) )

View File

@ -334,7 +334,7 @@ class ZoeDepthNeck(nn.Module):
List of hidden states from the backbone. List of hidden states from the backbone.
""" """
if not isinstance(hidden_states, (tuple, list)): if not isinstance(hidden_states, (tuple, list)):
raise ValueError("hidden_states should be a tuple or list of tensors") raise TypeError("hidden_states should be a tuple or list of tensors")
if len(hidden_states) != len(self.config.neck_hidden_sizes): if len(hidden_states) != len(self.config.neck_hidden_sizes):
raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.") raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.")

View File

@ -190,7 +190,7 @@ class AudioClassificationPipeline(Pipeline):
).numpy() ).numpy()
if not isinstance(inputs, np.ndarray): if not isinstance(inputs, np.ndarray):
raise ValueError("We expect a numpy ndarray as input") raise TypeError("We expect a numpy ndarray as input")
if len(inputs.shape) != 1: if len(inputs.shape) != 1:
raise ValueError("We expect a single channel audio input for AudioClassificationPipeline") raise ValueError("We expect a single channel audio input for AudioClassificationPipeline")

View File

@ -406,7 +406,7 @@ class AutomaticSpeechRecognitionPipeline(ChunkPipeline):
# of the original length in the stride so we can cut properly. # of the original length in the stride so we can cut properly.
stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio))) stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio)))
if not isinstance(inputs, np.ndarray): if not isinstance(inputs, np.ndarray):
raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`") raise TypeError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
if len(inputs.shape) != 1: if len(inputs.shape) != 1:
raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline") raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")

View File

@ -114,7 +114,7 @@ class ZeroShotAudioClassificationPipeline(Pipeline):
audio = ffmpeg_read(audio, self.feature_extractor.sampling_rate) audio = ffmpeg_read(audio, self.feature_extractor.sampling_rate)
if not isinstance(audio, np.ndarray): if not isinstance(audio, np.ndarray):
raise ValueError("We expect a numpy ndarray as input") raise TypeError("We expect a numpy ndarray as input")
if len(audio.shape) != 1: if len(audio.shape) != 1:
raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline") raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline")

View File

@ -356,7 +356,7 @@ class ProcessorMixin(PushToHubMixin):
proper_class = getattr(transformers_module, class_name) proper_class = getattr(transformers_module, class_name)
if not isinstance(arg, proper_class): if not isinstance(arg, proper_class):
raise ValueError( raise TypeError(
f"Received a {type(arg).__name__} for argument {attribute_name}, but a {class_name} was expected." f"Received a {type(arg).__name__} for argument {attribute_name}, but a {class_name} was expected."
) )

View File

@ -474,7 +474,7 @@ class PreTrainedTokenizer(PreTrainedTokenizerBase):
# Always raise an error if string because users should define the behavior # Always raise an error if string because users should define the behavior
for index, token in value.items(): for index, token in value.items():
if not isinstance(token, (str, AddedToken)) or not isinstance(index, int): if not isinstance(token, (str, AddedToken)) or not isinstance(index, int):
raise ValueError( raise TypeError(
f"The provided `added_tokens_decoder` has an element of type {index.__class__, token.__class__}, should be a dict of {int, Union[AddedToken, str]}" f"The provided `added_tokens_decoder` has an element of type {index.__class__, token.__class__}, should be a dict of {int, Union[AddedToken, str]}"
) )

View File

@ -405,7 +405,7 @@ class BitsAndBytesConfig(QuantizationConfigMixin):
@load_in_4bit.setter @load_in_4bit.setter
def load_in_4bit(self, value: bool): def load_in_4bit(self, value: bool):
if not isinstance(value, bool): if not isinstance(value, bool):
raise ValueError("load_in_4bit must be a boolean") raise TypeError("load_in_4bit must be a boolean")
if self.load_in_8bit and value: if self.load_in_8bit and value:
raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
@ -418,7 +418,7 @@ class BitsAndBytesConfig(QuantizationConfigMixin):
@load_in_8bit.setter @load_in_8bit.setter
def load_in_8bit(self, value: bool): def load_in_8bit(self, value: bool):
if not isinstance(value, bool): if not isinstance(value, bool):
raise ValueError("load_in_8bit must be a boolean") raise TypeError("load_in_8bit must be a boolean")
if self.load_in_4bit and value: if self.load_in_4bit and value:
raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
@ -429,30 +429,30 @@ class BitsAndBytesConfig(QuantizationConfigMixin):
Safety checker that arguments are correct - also replaces some NoneType arguments with their default values. Safety checker that arguments are correct - also replaces some NoneType arguments with their default values.
""" """
if not isinstance(self.load_in_4bit, bool): if not isinstance(self.load_in_4bit, bool):
raise ValueError("load_in_4bit must be a boolean") raise TypeError("load_in_4bit must be a boolean")
if not isinstance(self.load_in_8bit, bool): if not isinstance(self.load_in_8bit, bool):
raise ValueError("load_in_8bit must be a boolean") raise TypeError("load_in_8bit must be a boolean")
if not isinstance(self.llm_int8_threshold, float): if not isinstance(self.llm_int8_threshold, float):
raise ValueError("llm_int8_threshold must be a float") raise TypeError("llm_int8_threshold must be a float")
if self.llm_int8_skip_modules is not None and not isinstance(self.llm_int8_skip_modules, list): if self.llm_int8_skip_modules is not None and not isinstance(self.llm_int8_skip_modules, list):
raise ValueError("llm_int8_skip_modules must be a list of strings") raise TypeError("llm_int8_skip_modules must be a list of strings")
if not isinstance(self.llm_int8_enable_fp32_cpu_offload, bool): if not isinstance(self.llm_int8_enable_fp32_cpu_offload, bool):
raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean") raise TypeError("llm_int8_enable_fp32_cpu_offload must be a boolean")
if not isinstance(self.llm_int8_has_fp16_weight, bool): if not isinstance(self.llm_int8_has_fp16_weight, bool):
raise ValueError("llm_int8_has_fp16_weight must be a boolean") raise TypeError("llm_int8_has_fp16_weight must be a boolean")
if self.bnb_4bit_compute_dtype is not None and not isinstance(self.bnb_4bit_compute_dtype, torch.dtype): if self.bnb_4bit_compute_dtype is not None and not isinstance(self.bnb_4bit_compute_dtype, torch.dtype):
raise ValueError("bnb_4bit_compute_dtype must be torch.dtype") raise TypeError("bnb_4bit_compute_dtype must be torch.dtype")
if not isinstance(self.bnb_4bit_quant_type, str): if not isinstance(self.bnb_4bit_quant_type, str):
raise ValueError("bnb_4bit_quant_type must be a string") raise TypeError("bnb_4bit_quant_type must be a string")
if not isinstance(self.bnb_4bit_use_double_quant, bool): if not isinstance(self.bnb_4bit_use_double_quant, bool):
raise ValueError("bnb_4bit_use_double_quant must be a boolean") raise TypeError("bnb_4bit_use_double_quant must be a boolean")
if self.load_in_4bit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse( if self.load_in_4bit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse(
"0.39.0" "0.39.0"
@ -957,13 +957,13 @@ class AqlmConfig(QuantizationConfigMixin):
Safety checker that arguments are correct - also replaces some NoneType arguments with their default values. Safety checker that arguments are correct - also replaces some NoneType arguments with their default values.
""" """
if not isinstance(self.in_group_size, int): if not isinstance(self.in_group_size, int):
raise ValueError("in_group_size must be a float") raise TypeError("in_group_size must be a float")
if not isinstance(self.out_group_size, int): if not isinstance(self.out_group_size, int):
raise ValueError("out_group_size must be a float") raise TypeError("out_group_size must be a float")
if not isinstance(self.num_codebooks, int): if not isinstance(self.num_codebooks, int):
raise ValueError("num_codebooks must be a float") raise TypeError("num_codebooks must be a float")
if not isinstance(self.nbits_per_codebook, int): if not isinstance(self.nbits_per_codebook, int):
raise ValueError("nbits_per_codebook must be a float") raise TypeError("nbits_per_codebook must be a float")
if self.linear_weights_not_to_quantize is not None and not isinstance( if self.linear_weights_not_to_quantize is not None and not isinstance(
self.linear_weights_not_to_quantize, list self.linear_weights_not_to_quantize, list

View File

@ -60,7 +60,7 @@ def output_type(output):
elif isinstance(output, (torch.Tensor, AgentAudio)): elif isinstance(output, (torch.Tensor, AgentAudio)):
return "audio" return "audio"
else: else:
raise ValueError(f"Invalid output: {output}") raise TypeError(f"Invalid output: {output}")
@is_agent_test @is_agent_test

View File

@ -188,7 +188,7 @@ class LukeTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
with self.assertRaises(ValueError): with self.assertRaises(ValueError):
tokenizer(sentence, entities=tuple(entities), entity_spans=spans) tokenizer(sentence, entities=tuple(entities), entity_spans=spans)
with self.assertRaises(ValueError): with self.assertRaises(TypeError):
tokenizer(sentence, entities=entities, entity_spans=tuple(spans)) tokenizer(sentence, entities=entities, entity_spans=tuple(spans))
with self.assertRaises(ValueError): with self.assertRaises(ValueError):

View File

@ -151,7 +151,7 @@ class MLukeTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
with self.assertRaises(ValueError): with self.assertRaises(ValueError):
tokenizer(sentence, entities=tuple(entities), entity_spans=spans) tokenizer(sentence, entities=tuple(entities), entity_spans=spans)
with self.assertRaises(ValueError): with self.assertRaises(TypeError):
tokenizer(sentence, entities=entities, entity_spans=tuple(spans)) tokenizer(sentence, entities=entities, entity_spans=tuple(spans))
with self.assertRaises(ValueError): with self.assertRaises(ValueError):

View File

@ -171,7 +171,7 @@ class FeatureExtractionPipelineTests(unittest.TestCase):
elif isinstance(input_, float): elif isinstance(input_, float):
return 0 return 0
else: else:
raise ValueError("We expect lists of floats, nothing else") raise TypeError("We expect lists of floats, nothing else")
return shape return shape
def get_test_pipeline(self, model, tokenizer, processor, torch_dtype="float32"): def get_test_pipeline(self, model, tokenizer, processor, torch_dtype="float32"):

View File

@ -145,7 +145,7 @@ class PipelineTesterMixin:
if not isinstance(model_architectures, tuple): if not isinstance(model_architectures, tuple):
model_architectures = (model_architectures,) model_architectures = (model_architectures,)
if not isinstance(model_architectures, tuple): if not isinstance(model_architectures, tuple):
raise ValueError(f"`model_architectures` must be a tuple. Got {type(model_architectures)} instead.") raise TypeError(f"`model_architectures` must be a tuple. Got {type(model_architectures)} instead.")
for model_architecture in model_architectures: for model_architecture in model_architectures:
model_arch_name = model_architecture.__name__ model_arch_name = model_architecture.__name__