mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-03 03:31:05 +06:00
Add TF auto model to the docs + fix sphinx warnings (#5187)
This commit is contained in:
parent
88429c57bc
commit
1262495a91
@ -1,11 +1,15 @@
|
||||
AutoModels
|
||||
-----------
|
||||
|
||||
In many cases, the architecture you want to use can be guessed from the name or the path of the pretrained model you are supplying to the ``from_pretrained`` method.
|
||||
In many cases, the architecture you want to use can be guessed from the name or the path of the pretrained model you
|
||||
are supplying to the ``from_pretrained`` method.
|
||||
|
||||
AutoClasses are here to do this job for you so that you automatically retrieve the relevant model given the name/path to the pretrained weights/config/vocabulary:
|
||||
AutoClasses are here to do this job for you so that you automatically retrieve the relevant model given the name/path
|
||||
to the pretrained weights/config/vocabulary:
|
||||
|
||||
Instantiating one of ``AutoModel``, ``AutoConfig`` and ``AutoTokenizer`` will directly create a class of the relevant architecture (ex: ``model = AutoModel.from_pretrained('bert-base-cased')`` will create a instance of ``BertModel``).
|
||||
Instantiating one of ``AutoModel``, ``AutoConfig`` and ``AutoTokenizer`` will directly create a class of the relevant
|
||||
architecture (ex: ``model = AutoModel.from_pretrained('bert-base-cased')`` will create a instance of
|
||||
:class:`~transformers.BertModel`).
|
||||
|
||||
|
||||
``AutoConfig``
|
||||
@ -63,3 +67,43 @@ Instantiating one of ``AutoModel``, ``AutoConfig`` and ``AutoTokenizer`` will di
|
||||
.. autoclass:: transformers.AutoModelForTokenClassification
|
||||
:members:
|
||||
|
||||
``TFAutoModel``
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: transformers.TFAutoModel
|
||||
:members:
|
||||
|
||||
|
||||
``TFAutoModelForPreTraining``
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: transformers.TFAutoModelForPreTraining
|
||||
:members:
|
||||
|
||||
|
||||
``TFAutoModelWithLMHead``
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: transformers.TFAutoModelWithLMHead
|
||||
:members:
|
||||
|
||||
|
||||
``TFAutoModelForSequenceClassification``
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: transformers.TFAutoModelForSequenceClassification
|
||||
:members:
|
||||
|
||||
|
||||
``TFAutoModelForQuestionAnswering``
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: transformers.TFAutoModelForQuestionAnswering
|
||||
:members:
|
||||
|
||||
|
||||
``TFAutoModelForTokenClassification``
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: transformers.TFAutoModelForTokenClassification
|
||||
:members:
|
||||
|
@ -50,7 +50,7 @@ MobileBertTokenizer
|
||||
|
||||
|
||||
MobileBertTokenizerFast
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: transformers.MobileBertTokenizerFast
|
||||
:members:
|
||||
|
@ -510,14 +510,12 @@ class AlbertModel(AlbertPreTrainedModel):
|
||||
This output is usually *not* a good summary
|
||||
of the semantic content of the input, you're often better with averaging or pooling
|
||||
the sequence of hidden-states for the whole input sequence.
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned
|
||||
when ``output_hidden_states=True`` is passed or when
|
||||
``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -644,14 +642,12 @@ class AlbertForPreTraining(AlbertPreTrainedModel):
|
||||
sop_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
|
||||
Prediction scores of the next sequence prediction (classification) head (scores of True/False
|
||||
continuation before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned
|
||||
when ``output_hidden_states=True`` is passed or when
|
||||
``config.output_hidden_states``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -795,14 +791,12 @@ class AlbertForMaskedLM(AlbertPreTrainedModel):
|
||||
Masked language modeling loss.
|
||||
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned
|
||||
when ``output_hidden_states=True`` is passed or when
|
||||
``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -894,14 +888,12 @@ class AlbertForSequenceClassification(AlbertPreTrainedModel):
|
||||
Classification (or regression if config.num_labels==1) loss.
|
||||
logits ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
|
||||
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned
|
||||
when ``output_hidden_states=True`` is passed or when
|
||||
``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -993,14 +985,12 @@ class AlbertForTokenClassification(AlbertPreTrainedModel):
|
||||
Classification loss.
|
||||
scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`)
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned
|
||||
when ``output_hidden_states=True`` is passed or when
|
||||
``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1103,14 +1093,12 @@ class AlbertForQuestionAnswering(AlbertPreTrainedModel):
|
||||
Span-start scores (before SoftMax).
|
||||
end_scores: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
|
||||
Span-end scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned
|
||||
when ``output_hidden_states=True`` is passed or when
|
||||
``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1214,14 +1202,12 @@ class AlbertForMultipleChoice(AlbertPreTrainedModel):
|
||||
`num_choices` is the second dimension of the input tensors. (see `input_ids` above).
|
||||
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned
|
||||
when ``output_hidden_states=True`` is passed or when
|
||||
``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
@ -933,14 +933,12 @@ class BartForConditionalGeneration(PretrainedBartModel):
|
||||
Masked language modeling loss.
|
||||
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned
|
||||
when ``output_hidden_states=True`` is passed or when
|
||||
``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1080,21 +1078,18 @@ class BartForSequenceClassification(PretrainedBartModel):
|
||||
|
||||
Returns:
|
||||
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BartConfig`) and inputs:
|
||||
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
|
||||
Classification loss (cross entropy)
|
||||
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
|
||||
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned
|
||||
when ``output_hidden_states=True`` is passed or when
|
||||
``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the
|
||||
self-attention
|
||||
heads.
|
||||
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
|
||||
Classification loss (cross entropy)
|
||||
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
|
||||
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1182,17 +1177,12 @@ class BartForQuestionAnswering(PretrainedBartModel):
|
||||
Span-start scores (before SoftMax).
|
||||
end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
|
||||
Span-end scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned
|
||||
when ``output_hidden_states=True`` is passed or when
|
||||
``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
|
@ -691,12 +691,12 @@ class BertModel(BertPreTrainedModel):
|
||||
This output is usually *not* a good summary
|
||||
of the semantic content of the input, you're often better with averaging or pooling
|
||||
the sequence of hidden-states for the whole input sequence.
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -836,12 +836,12 @@ class BertForPreTraining(BertPreTrainedModel):
|
||||
seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
|
||||
Prediction scores of the next sequence prediction (classification) head (scores of True/False
|
||||
continuation before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -946,12 +946,12 @@ class BertLMHeadModel(BertPreTrainedModel):
|
||||
Next token prediction loss.
|
||||
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1058,12 +1058,12 @@ class BertForMaskedLM(BertPreTrainedModel):
|
||||
Masked language modeling loss.
|
||||
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1171,12 +1171,12 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
|
||||
Next sequence prediction (classification) loss.
|
||||
seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
|
||||
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1265,12 +1265,12 @@ class BertForSequenceClassification(BertPreTrainedModel):
|
||||
Classification (or regression if config.num_labels==1) loss.
|
||||
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
|
||||
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or ``config.output_hidden_states``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1366,12 +1366,12 @@ class BertForMultipleChoice(BertPreTrainedModel):
|
||||
`num_choices` is the second dimension of the input tensors. (see `input_ids` above).
|
||||
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or ``config.output_hidden_states``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1476,12 +1476,12 @@ class BertForTokenClassification(BertPreTrainedModel):
|
||||
Classification loss.
|
||||
scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`)
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or ``config.output_hidden_states``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1585,12 +1585,12 @@ class BertForQuestionAnswering(BertPreTrainedModel):
|
||||
Span-start scores (before SoftMax).
|
||||
end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
|
||||
Span-end scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or ``config.output_hidden_states``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
@ -347,13 +347,12 @@ class CTRLModel(CTRLPreTrainedModel):
|
||||
past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`):
|
||||
Contains pre-computed hidden-states (key and values in the attention blocks).
|
||||
Can be used (see `past` input) to speed up sequential decoding.
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned
|
||||
when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -541,13 +540,12 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
|
||||
past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`):
|
||||
Contains pre-computed hidden-states (key and values in the attention blocks).
|
||||
Can be used (see `past` input) to speed up sequential decoding.
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned
|
||||
when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
@ -428,7 +428,7 @@ class DistilBertModel(DistilBertPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -537,7 +537,7 @@ class DistilBertForMaskedLM(DistilBertPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -632,7 +632,7 @@ class DistilBertForSequenceClassification(DistilBertPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -731,7 +731,7 @@ class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -832,7 +832,7 @@ class DistilBertForTokenClassification(DistilBertPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -926,12 +926,12 @@ class DistilBertForMultipleChoice(DistilBertPreTrainedModel):
|
||||
`num_choices` is the second dimension of the input tensors. (see `input_ids` above).
|
||||
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or ``config.output_hidden_states``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
@ -285,7 +285,7 @@ class ElectraModel(ElectraPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -413,7 +413,7 @@ class ElectraForSequenceClassification(ElectraPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -506,13 +506,12 @@ class ElectraForPreTraining(ElectraPreTrainedModel):
|
||||
Total loss of the ELECTRA objective.
|
||||
scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`)
|
||||
Prediction scores of the head (scores for each token before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned
|
||||
when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -623,7 +622,7 @@ class ElectraForMaskedLM(ElectraPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -725,7 +724,7 @@ class ElectraForTokenClassification(ElectraPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -839,7 +838,7 @@ class ElectraForQuestionAnswering(ElectraPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -944,12 +943,12 @@ class ElectraForMultipleChoice(ElectraPreTrainedModel):
|
||||
`num_choices` is the second dimension of the input tensors. (see `input_ids` above).
|
||||
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
@ -143,7 +143,7 @@ class FlaubertModel(XLMModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
@ -588,7 +588,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -711,7 +711,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
@ -600,7 +600,7 @@ class LongformerModel(RobertaModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -734,7 +734,7 @@ class LongformerForMaskedLM(BertPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -837,7 +837,7 @@ class LongformerForSequenceClassification(BertPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -962,10 +962,12 @@ class LongformerForQuestionAnswering(BertPreTrainedModel):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
@ -1086,7 +1088,7 @@ class LongformerForTokenClassification(BertPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1192,7 +1194,7 @@ class LongformerForMultipleChoice(BertPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
@ -774,12 +774,12 @@ class MobileBertModel(MobileBertPreTrainedModel):
|
||||
This output is usually *not* a good summary
|
||||
of the semantic content of the input, you're often better with averaging or pooling
|
||||
the sequence of hidden-states for the whole input sequence.
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -938,12 +938,12 @@ class MobileBertForPreTraining(MobileBertPreTrainedModel):
|
||||
seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
|
||||
Prediction scores of the next sequence prediction (classification) head (scores of True/False
|
||||
continuation before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1052,12 +1052,12 @@ class MobileBertForMaskedLM(MobileBertPreTrainedModel):
|
||||
Masked language modeling loss.
|
||||
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1160,12 +1160,12 @@ class MobileBertForNextSentencePrediction(MobileBertPreTrainedModel):
|
||||
Next sequence prediction (classification) loss.
|
||||
seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
|
||||
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1252,13 +1252,15 @@ class MobileBertForSequenceClassification(MobileBertPreTrainedModel):
|
||||
Classification (or regression if config.num_labels==1) loss.
|
||||
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
|
||||
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
@ -1350,12 +1352,12 @@ class MobileBertForQuestionAnswering(MobileBertPreTrainedModel):
|
||||
Span-start scores (before SoftMax).
|
||||
end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
|
||||
Span-end scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1463,12 +1465,12 @@ class MobileBertForMultipleChoice(MobileBertPreTrainedModel):
|
||||
`num_choices` is the second dimension of the input tensors. (see `input_ids` above).
|
||||
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1573,12 +1575,12 @@ class MobileBertForTokenClassification(MobileBertPreTrainedModel):
|
||||
Classification loss.
|
||||
scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`)
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
@ -525,7 +525,7 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -644,7 +644,7 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
@ -1559,7 +1559,7 @@ class ReformerModel(ReformerPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
all_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
all_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1763,7 +1763,7 @@ class ReformerModelWithLMHead(ReformerPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
all_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
all_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
@ -211,7 +211,7 @@ class RobertaForMaskedLM(BertPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -335,7 +335,7 @@ class RobertaForSequenceClassification(BertPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -432,7 +432,7 @@ class RobertaForMultipleChoice(BertPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -539,7 +539,7 @@ class RobertaForTokenClassification(BertPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -669,7 +669,7 @@ class RobertaForQuestionAnswering(BertPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
@ -915,7 +915,7 @@ class T5Model(T5PreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1053,11 +1053,14 @@ class T5ForConditionalGeneration(T5PreTrainedModel):
|
||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention.
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
|
@ -715,39 +715,39 @@ class TFAlbertModel(TFAlbertPreTrainedModel):
|
||||
@add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
def call(self, inputs, **kwargs):
|
||||
r"""
|
||||
Returns:
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
|
||||
last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
pooler_output (:obj:`tf.Tensor` of shape :obj:`(batch_size, hidden_size)`):
|
||||
Last layer hidden-state of the first token of the sequence (classification token)
|
||||
further processed by a Linear layer and a Tanh activation function. The Linear
|
||||
layer weights are trained from the next sentence prediction (classification)
|
||||
objective during Albert pretraining. This output is usually *not* a good summary
|
||||
of the semantic content of the input, you're often better with averaging or pooling
|
||||
the sequence of hidden-states for the whole input sequence.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
Returns:
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
|
||||
last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
pooler_output (:obj:`tf.Tensor` of shape :obj:`(batch_size, hidden_size)`):
|
||||
Last layer hidden-state of the first token of the sequence (classification token)
|
||||
further processed by a Linear layer and a Tanh activation function. The Linear
|
||||
layer weights are trained from the next sentence prediction (classification)
|
||||
objective during Albert pretraining. This output is usually *not* a good summary
|
||||
of the semantic content of the input, you're often better with averaging or pooling
|
||||
the sequence of hidden-states for the whole input sequence.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
Examples::
|
||||
|
||||
import tensorflow as tf
|
||||
from transformers import AlbertTokenizer, TFAlbertModel
|
||||
import tensorflow as tf
|
||||
from transformers import AlbertTokenizer, TFAlbertModel
|
||||
|
||||
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
|
||||
model = TFAlbertModel.from_pretrained('albert-base-v2')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
|
||||
model = TFAlbertModel.from_pretrained('albert-base-v2')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
"""
|
||||
outputs = self.albert(inputs, **kwargs)
|
||||
@ -780,15 +780,18 @@ class TFAlbertForPreTraining(TFAlbertPreTrainedModel):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
sop_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, 2)`):
|
||||
Prediction scores of the sentence order prediction (classification) head (scores of True/False continuation before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
import tensorflow as tf
|
||||
from transformers import AlbertTokenizer, TFAlbertForPreTraining
|
||||
@ -840,17 +843,17 @@ class TFAlbertForMaskedLM(TFAlbertPreTrainedModel):
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
|
||||
prediction_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -916,17 +919,17 @@ class TFAlbertForSequenceClassification(TFAlbertPreTrainedModel, TFSequenceClass
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
|
||||
logits (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, config.num_labels)`)
|
||||
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1007,17 +1010,17 @@ class TFAlbertForTokenClassification(TFAlbertPreTrainedModel, TFTokenClassificat
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
||||
scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`):
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1106,17 +1109,17 @@ class TFAlbertForQuestionAnswering(TFAlbertPreTrainedModel, TFQuestionAnsweringL
|
||||
Span-start scores (before SoftMax).
|
||||
end_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length,)`):
|
||||
Span-end scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1216,17 +1219,17 @@ class TFAlbertForMultipleChoice(TFAlbertPreTrainedModel, TFMultipleChoiceLoss):
|
||||
`num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above).
|
||||
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
|
@ -274,6 +274,7 @@ class TFAutoModel(object):
|
||||
The `from_pretrained()` method takes care of returning the correct model class instance
|
||||
based on the `model_type` property of the config object, or when it's missing,
|
||||
falling back to using pattern matching on the `pretrained_model_name_or_path` string:
|
||||
|
||||
- `t5`: TFT5Model (T5 model)
|
||||
- `distilbert`: TFDistilBertModel (DistilBERT model)
|
||||
- `roberta`: TFRobertaModel (RoBERTa model)
|
||||
@ -308,6 +309,7 @@ class TFAutoModel(object):
|
||||
Args:
|
||||
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
|
||||
The model class to instantiate is selected based on the configuration class:
|
||||
|
||||
- isInstance of `distilbert` configuration class: TFDistilBertModel (DistilBERT model)
|
||||
- isInstance of `roberta` configuration class: TFRobertaModel (RoBERTa model)
|
||||
- isInstance of `bert` configuration class: TFBertModel (Bert model)
|
||||
@ -341,6 +343,7 @@ class TFAutoModel(object):
|
||||
The `from_pretrained()` method takes care of returning the correct model class instance
|
||||
based on the `model_type` property of the config object, or when it's missing,
|
||||
falling back to using pattern matching on the `pretrained_model_name_or_path` string:
|
||||
|
||||
- `t5`: TFT5Model (T5 model)
|
||||
- `distilbert`: TFDistilBertModel (DistilBERT model)
|
||||
- `roberta`: TFRobertaModel (RoBERTa model)
|
||||
@ -488,6 +491,7 @@ class TFAutoModelForPreTraining(object):
|
||||
The `from_pretrained()` method takes care of returning the correct model class instance
|
||||
based on the `model_type` property of the config object, or when it's missing,
|
||||
falling back to using pattern matching on the `pretrained_model_name_or_path` string:
|
||||
|
||||
- `t5`: :class:`~transformers.TFT5ModelWithLMHead` (T5 model)
|
||||
- `distilbert`: :class:`~transformers.TFDistilBertForMaskedLM` (DistilBERT model)
|
||||
- `albert`: :class:`~transformers.TFAlbertForPreTraining` (ALBERT model)
|
||||
@ -586,6 +590,7 @@ class TFAutoModelWithLMHead(object):
|
||||
The `from_pretrained()` method takes care of returning the correct model class instance
|
||||
based on the `model_type` property of the config object, or when it's missing,
|
||||
falling back to using pattern matching on the `pretrained_model_name_or_path` string:
|
||||
|
||||
- `t5`: TFT5ForConditionalGeneration (T5 model)
|
||||
- `distilbert`: TFDistilBertForMaskedLM (DistilBERT model)
|
||||
- `roberta`: TFRobertaForMaskedLM (RoBERTa model)
|
||||
@ -620,6 +625,7 @@ class TFAutoModelWithLMHead(object):
|
||||
Args:
|
||||
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
|
||||
The model class to instantiate is selected based on the configuration class:
|
||||
|
||||
- isInstance of `distilbert` configuration class: DistilBertModel (DistilBERT model)
|
||||
- isInstance of `roberta` configuration class: RobertaModel (RoBERTa model)
|
||||
- isInstance of `bert` configuration class: BertModel (Bert model)
|
||||
@ -653,6 +659,7 @@ class TFAutoModelWithLMHead(object):
|
||||
The `from_pretrained()` method takes care of returning the correct model class instance
|
||||
based on the `model_type` property of the config object, or when it's missing,
|
||||
falling back to using pattern matching on the `pretrained_model_name_or_path` string:
|
||||
|
||||
- `t5`: TFT5ForConditionalGeneration (T5 model)
|
||||
- `distilbert`: TFDistilBertForMaskedLM (DistilBERT model)
|
||||
- `roberta`: TFRobertaForMaskedLM (RoBERTa model)
|
||||
@ -805,6 +812,7 @@ class TFAutoModelForMultipleChoice:
|
||||
The `from_pretrained()` method takes care of returning the correct model class instance
|
||||
based on the `model_type` property of the config object, or when it's missing,
|
||||
falling back to using pattern matching on the `pretrained_model_name_or_path` string:
|
||||
|
||||
- `albert`: TFRobertaForMultiple (Albert model)
|
||||
- `bert`: TFBertForMultipleChoice (Bert model)
|
||||
|
||||
@ -898,6 +906,7 @@ class TFAutoModelForSequenceClassification(object):
|
||||
The `from_pretrained()` method takes care of returning the correct model class instance
|
||||
based on the `model_type` property of the config object, or when it's missing,
|
||||
falling back to using pattern matching on the `pretrained_model_name_or_path` string:
|
||||
|
||||
- `distilbert`: TFDistilBertForSequenceClassification (DistilBERT model)
|
||||
- `roberta`: TFRobertaForSequenceClassification (RoBERTa model)
|
||||
- `bert`: TFBertForSequenceClassification (Bert model)
|
||||
@ -927,6 +936,7 @@ class TFAutoModelForSequenceClassification(object):
|
||||
Args:
|
||||
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
|
||||
The model class to instantiate is selected based on the configuration class:
|
||||
|
||||
- isInstance of `distilbert` configuration class: DistilBertModel (DistilBERT model)
|
||||
- isInstance of `roberta` configuration class: RobertaModel (RoBERTa model)
|
||||
- isInstance of `bert` configuration class: BertModel (Bert model)
|
||||
@ -958,6 +968,7 @@ class TFAutoModelForSequenceClassification(object):
|
||||
The `from_pretrained()` method takes care of returning the correct model class instance
|
||||
based on the `model_type` property of the config object, or when it's missing,
|
||||
falling back to using pattern matching on the `pretrained_model_name_or_path` string:
|
||||
|
||||
- `distilbert`: TFDistilBertForSequenceClassification (DistilBERT model)
|
||||
- `roberta`: TFRobertaForSequenceClassification (RoBERTa model)
|
||||
- `bert`: TFBertForSequenceClassification (Bert model)
|
||||
@ -1054,6 +1065,7 @@ class TFAutoModelForQuestionAnswering(object):
|
||||
The `from_pretrained()` method takes care of returning the correct model class instance
|
||||
based on the `model_type` property of the config object, or when it's missing,
|
||||
falling back to using pattern matching on the `pretrained_model_name_or_path` string:
|
||||
|
||||
- `distilbert`: TFDistilBertForQuestionAnswering (DistilBERT model)
|
||||
- `albert`: TFAlbertForQuestionAnswering (ALBERT model)
|
||||
- `roberta`: TFRobertaForQuestionAnswering (RoBERTa model)
|
||||
@ -1084,6 +1096,7 @@ class TFAutoModelForQuestionAnswering(object):
|
||||
Args:
|
||||
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
|
||||
The model class to instantiate is selected based on the configuration class:
|
||||
|
||||
- isInstance of `distilbert` configuration class: DistilBertModel (DistilBERT model)
|
||||
- isInstance of `albert` configuration class: AlbertModel (ALBERT model)
|
||||
- isInstance of `roberta` configuration class: RobertaModel (RoBERTa model)
|
||||
@ -1116,6 +1129,7 @@ class TFAutoModelForQuestionAnswering(object):
|
||||
The `from_pretrained()` method takes care of returning the correct model class instance
|
||||
based on the `model_type` property of the config object, or when it's missing,
|
||||
falling back to using pattern matching on the `pretrained_model_name_or_path` string:
|
||||
|
||||
- `distilbert`: TFDistilBertForQuestionAnswering (DistilBERT model)
|
||||
- `albert`: TFAlbertForQuestionAnswering (ALBERT model)
|
||||
- `roberta`: TFRobertaForQuestionAnswering (RoBERTa model)
|
||||
@ -1224,6 +1238,7 @@ class TFAutoModelForTokenClassification:
|
||||
Args:
|
||||
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
|
||||
The model class to instantiate is selected based on the configuration class:
|
||||
|
||||
- isInstance of `bert` configuration class: BertModel (Bert model)
|
||||
- isInstance of `xlnet` configuration class: XLNetModel (XLNet model)
|
||||
- isInstance of `distilbert` configuration class: DistilBertModel (DistilBert model)
|
||||
@ -1254,6 +1269,7 @@ class TFAutoModelForTokenClassification:
|
||||
The `from_pretrained()` method takes care of returning the correct model class instance
|
||||
based on the `model_type` property of the config object, or when it's missing,
|
||||
falling back to using pattern matching on the `pretrained_model_name_or_path` string:
|
||||
|
||||
- `bert`: BertForTokenClassification (Bert model)
|
||||
- `xlnet`: XLNetForTokenClassification (XLNet model)
|
||||
- `distilbert`: DistilBertForTokenClassification (DistilBert model)
|
||||
|
@ -717,17 +717,17 @@ class TFBertModel(TFBertPreTrainedModel):
|
||||
objective during Bert pretraining. This output is usually *not* a good summary
|
||||
of the semantic content of the input, you're often better with averaging or pooling
|
||||
the sequence of hidden-states for the whole input sequence.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
|
||||
Examples::
|
||||
@ -770,17 +770,17 @@ class TFBertForPreTraining(TFBertPreTrainedModel):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
seq_relationship_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, 2)`):
|
||||
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -825,17 +825,17 @@ class TFBertForMaskedLM(TFBertPreTrainedModel):
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
||||
prediction_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -876,17 +876,17 @@ class TFBertForNextSentencePrediction(TFBertPreTrainedModel):
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
||||
seq_relationship_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, 2)`)
|
||||
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -954,17 +954,17 @@ class TFBertForSequenceClassification(TFBertPreTrainedModel, TFSequenceClassific
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
||||
logits (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, config.num_labels)`):
|
||||
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1056,17 +1056,17 @@ class TFBertForMultipleChoice(TFBertPreTrainedModel, TFMultipleChoiceLoss):
|
||||
`num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above).
|
||||
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1189,17 +1189,17 @@ class TFBertForTokenClassification(TFBertPreTrainedModel, TFTokenClassificationL
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
||||
scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`):
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1289,17 +1289,17 @@ class TFBertForQuestionAnswering(TFBertPreTrainedModel, TFQuestionAnsweringLoss)
|
||||
Span-start scores (before SoftMax).
|
||||
end_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length,)`):
|
||||
Span-end scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
|
@ -497,14 +497,14 @@ class TFCTRLModel(TFCTRLPreTrainedModel):
|
||||
Contains pre-computed hidden-states (key and values in the attention blocks).
|
||||
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as input ids as they have already been computed.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)` `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
@ -578,13 +578,13 @@ class TFCTRLLMHeadModel(TFCTRLPreTrainedModel):
|
||||
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as input ids as they have already been computed.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
@ -581,17 +581,17 @@ class TFDistilBertModel(TFDistilBertPreTrainedModel):
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers,DistilBertConfig`) and inputs:
|
||||
last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -654,17 +654,17 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel):
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers,DistilBertConfig`) and inputs:
|
||||
prediction_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -735,17 +735,17 @@ class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel, TFSeque
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers,DistilBertConfig`) and inputs:
|
||||
logits (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, config.num_labels)`):
|
||||
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -822,17 +822,17 @@ class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel, TFTokenCla
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers,DistilBertConfig`) and inputs:
|
||||
scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`):
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -925,17 +925,17 @@ class TFDistilBertForMultipleChoice(TFDistilBertPreTrainedModel, TFMultipleChoic
|
||||
`num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above).
|
||||
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1052,17 +1052,17 @@ class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel, TFQuestionAn
|
||||
Span-start scores (before SoftMax).
|
||||
end_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length,)`):
|
||||
Span-end scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
|
@ -389,17 +389,17 @@ class TFElectraModel(TFElectraPreTrainedModel):
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.ElectraConfig`) and inputs:
|
||||
last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -449,17 +449,17 @@ class TFElectraForPreTraining(TFElectraPreTrainedModel):
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.ElectraConfig`) and inputs:
|
||||
scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`):
|
||||
Prediction scores of the head (scores for each token before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -549,17 +549,17 @@ class TFElectraForMaskedLM(TFElectraPreTrainedModel):
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.ElectraConfig`) and inputs:
|
||||
prediction_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -633,17 +633,17 @@ class TFElectraForTokenClassification(TFElectraPreTrainedModel, TFTokenClassific
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.ElectraConfig`) and inputs:
|
||||
scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`):
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -732,17 +732,17 @@ class TFElectraForQuestionAnswering(TFElectraPreTrainedModel, TFQuestionAnswerin
|
||||
Span-start scores (before SoftMax).
|
||||
end_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length,)`):
|
||||
Span-end scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
|
@ -497,14 +497,14 @@ class TFGPT2Model(TFGPT2PreTrainedModel):
|
||||
Contains pre-computed hidden-states (key and values in the attention blocks).
|
||||
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as input ids as they have already been computed.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)` `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
@ -557,13 +557,13 @@ class TFGPT2LMHeadModel(TFGPT2PreTrainedModel):
|
||||
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as input ids as they have already been computed.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
@ -643,18 +643,17 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
|
||||
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as `input_ids` as they have already been computed.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
|
||||
Examples::
|
||||
|
||||
# For example purposes. Not runnable.
|
||||
|
@ -858,16 +858,17 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel):
|
||||
objective during the original Bert pretraining. This output is usually *not* a good summary
|
||||
of the semantic content of the input, you're often better with averaging or pooling
|
||||
the sequence of hidden-states for the whole input sequence.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
|
||||
Examples::
|
||||
@ -908,16 +909,17 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
seq_relationship_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, 2)`):
|
||||
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -960,16 +962,17 @@ class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel):
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.MobileBertConfig`) and inputs:
|
||||
prediction_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1021,16 +1024,17 @@ class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel):
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.MobileBertConfig`) and inputs:
|
||||
seq_relationship_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, 2)`)
|
||||
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1098,16 +1102,17 @@ class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSeque
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.MobileBertConfig`) and inputs:
|
||||
logits (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, config.num_labels)`):
|
||||
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1198,16 +1203,17 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn
|
||||
Span-start scores (before SoftMax).
|
||||
end_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length,)`):
|
||||
Span-end scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1305,16 +1311,17 @@ class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoic
|
||||
`num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above).
|
||||
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1439,16 +1446,17 @@ class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenCla
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.MobileBertConfig`) and inputs:
|
||||
scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`):
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` or ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
|
@ -455,14 +455,14 @@ class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel):
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.OpenAIGPTConfig`) and inputs:
|
||||
last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the last layer of the model.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)` `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
@ -504,13 +504,13 @@ class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel):
|
||||
prediction_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
@ -587,13 +587,13 @@ class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel):
|
||||
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as input ids as they have already been computed.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
@ -207,17 +207,17 @@ class TFRobertaModel(TFRobertaPreTrainedModel):
|
||||
objective during Bert pretraining. This output is usually *not* a good summary
|
||||
of the semantic content of the input, you're often better with averaging or pooling
|
||||
the sequence of hidden-states for the whole input sequence.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -284,17 +284,17 @@ class TFRobertaForMaskedLM(TFRobertaPreTrainedModel):
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs:
|
||||
prediction_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -375,17 +375,17 @@ class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel, TFSequenceCla
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs:
|
||||
logits (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, config.num_labels)`):
|
||||
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -474,17 +474,17 @@ class TFRobertaForMultipleChoice(TFRobertaPreTrainedModel, TFMultipleChoiceLoss)
|
||||
`num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above).
|
||||
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -600,17 +600,17 @@ class TFRobertaForTokenClassification(TFRobertaPreTrainedModel, TFTokenClassific
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs:
|
||||
scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`):
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -699,17 +699,17 @@ class TFRobertaForQuestionAnswering(TFRobertaPreTrainedModel, TFQuestionAnswerin
|
||||
Span-start scores (before SoftMax).
|
||||
end_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length,)`):
|
||||
Span-end scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
|
@ -915,13 +915,13 @@ class TFT5Model(TFT5PreTrainedModel):
|
||||
Can be used to speed up sequential decoding (see `decoder_past_key_value_states` input).
|
||||
Note that when using `decoder_past_key_value_states`, the model only outputs the last `hidden-state` of the sequence of shape :obj:`(batch_size, 1, config.vocab_size)`.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
@ -1055,15 +1055,16 @@ class TFT5ForConditionalGeneration(TFT5PreTrainedModel):
|
||||
Can be used to speed up sequential decoding (see `decoder_past_key_value_states` input).
|
||||
Note that when using `decoder_past_key_value_states`, the model only outputs the last `prediction_score` of the sequence of shape :obj:`(batch_size, 1, config.vocab_size)`.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
|
@ -733,13 +733,13 @@ class TFTransfoXLModel(TFTransfoXLPreTrainedModel):
|
||||
Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as input ids as they have already been computed.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
@ -832,13 +832,13 @@ class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel):
|
||||
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as input ids as they have already been computed.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
@ -711,13 +711,13 @@ class TFXLMWithLMHeadModel(TFXLMPreTrainedModel):
|
||||
prediction_scores (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
@ -785,13 +785,13 @@ class TFXLMForSequenceClassification(TFXLMPreTrainedModel, TFSequenceClassificat
|
||||
logits (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, config.num_labels)`):
|
||||
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
@ -886,17 +886,17 @@ class TFXLMForMultipleChoice(TFXLMPreTrainedModel, TFMultipleChoiceLoss):
|
||||
`num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above).
|
||||
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1023,17 +1023,17 @@ class TFXLMForTokenClassification(TFXLMPreTrainedModel, TFTokenClassificationLos
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
||||
scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`):
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1125,13 +1125,13 @@ class TFXLMForQuestionAnsweringSimple(TFXLMPreTrainedModel, TFQuestionAnsweringL
|
||||
end_scores (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length,)`):
|
||||
Span-end scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
@ -927,13 +927,13 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel):
|
||||
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as input ids as they have already been computed.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
@ -1019,13 +1019,13 @@ class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel, TFSequenceClassif
|
||||
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as input ids as they have already been computed.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
@ -1127,17 +1127,17 @@ class TFXLNetForMultipleChoice(TFXLNetPreTrainedModel, TFMultipleChoiceLoss):
|
||||
`num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above).
|
||||
|
||||
Classification scores (before SoftMax).
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when
|
||||
``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -1274,13 +1274,13 @@ class TFXLNetForTokenClassification(TFXLNetPreTrainedModel, TFTokenClassificatio
|
||||
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as input ids as they have already been computed.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
@ -1384,13 +1384,13 @@ class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel, TFQuestionAnswer
|
||||
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as input ids as they have already been computed.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for the output of the embeddings + one for the output of each layer)
|
||||
tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`:
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
@ -772,7 +772,7 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -978,7 +978,7 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
@ -419,7 +419,7 @@ class XLMModel(XLMPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -666,7 +666,7 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -755,7 +755,7 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -861,7 +861,7 @@ class XLMForQuestionAnsweringSimple(XLMPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -999,7 +999,7 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1095,7 +1095,7 @@ class XLMForTokenClassification(XLMPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
@ -779,7 +779,7 @@ class XLNetModel(XLNetPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1081,7 +1081,7 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1202,7 +1202,7 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1310,7 +1310,7 @@ class XLNetForTokenClassification(XLNetPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1425,7 +1425,7 @@ class XLNetForMultipleChoice(XLNetPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1552,7 +1552,7 @@ class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
@ -1698,7 +1698,7 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
|
||||
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user