mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
add Qwen2-VL image processor fast (#35733)
* add qwen2_vl image processor fast * add device to ImagesKwargs * remove automatic fix copies * fix fast_is_faster_than_slow * remove unnecessary import
This commit is contained in:
parent
3df90103b8
commit
107f9f5127
@ -315,6 +315,11 @@ model = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||
[[autodoc]] Qwen2VLImageProcessor
|
||||
- preprocess
|
||||
|
||||
## Qwen2VLImageProcessorFast
|
||||
|
||||
[[autodoc]] Qwen2VLImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
## Qwen2VLProcessor
|
||||
|
||||
[[autodoc]] Qwen2VLProcessor
|
||||
|
@ -1299,6 +1299,7 @@ else:
|
||||
_import_structure["models.deformable_detr"].append("DeformableDetrImageProcessorFast")
|
||||
_import_structure["models.detr"].append("DetrImageProcessorFast")
|
||||
_import_structure["models.pixtral"].append("PixtralImageProcessorFast")
|
||||
_import_structure["models.qwen2_vl"].append("Qwen2VLImageProcessorFast")
|
||||
_import_structure["models.rt_detr"].append("RTDetrImageProcessorFast")
|
||||
_import_structure["models.vit"].append("ViTImageProcessorFast")
|
||||
|
||||
@ -6397,6 +6398,7 @@ if TYPE_CHECKING:
|
||||
from .models.deformable_detr import DeformableDetrImageProcessorFast
|
||||
from .models.detr import DetrImageProcessorFast
|
||||
from .models.pixtral import PixtralImageProcessorFast
|
||||
from .models.qwen2_vl import Qwen2VLImageProcessorFast
|
||||
from .models.rt_detr import RTDetrImageProcessorFast
|
||||
from .models.vit import ViTImageProcessorFast
|
||||
|
||||
|
@ -125,7 +125,7 @@ else:
|
||||
("poolformer", ("PoolFormerImageProcessor",)),
|
||||
("pvt", ("PvtImageProcessor",)),
|
||||
("pvt_v2", ("PvtImageProcessor",)),
|
||||
("qwen2_vl", ("Qwen2VLImageProcessor",)),
|
||||
("qwen2_vl", ("Qwen2VLImageProcessor", "Qwen2VLImageProcessorFast")),
|
||||
("regnet", ("ConvNextImageProcessor",)),
|
||||
("resnet", ("ConvNextImageProcessor",)),
|
||||
("rt_detr", ("RTDetrImageProcessor", "RTDetrImageProcessorFast")),
|
||||
|
@ -20,6 +20,7 @@ from ...utils.import_utils import define_import_structure
|
||||
if TYPE_CHECKING:
|
||||
from .configuration_qwen2_vl import *
|
||||
from .image_processing_qwen2_vl import *
|
||||
from .image_processing_qwen2_vl_fast import *
|
||||
from .modeling_qwen2_vl import *
|
||||
from .processing_qwen2_vl import *
|
||||
else:
|
||||
|
@ -0,0 +1,422 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2025 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Fast Image processor class for Qwen2-VL."""
|
||||
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
from ...image_processing_utils import BatchFeature
|
||||
from ...image_processing_utils_fast import (
|
||||
BaseImageProcessorFast,
|
||||
)
|
||||
from ...image_transforms import (
|
||||
convert_to_rgb,
|
||||
)
|
||||
from ...image_utils import (
|
||||
OPENAI_CLIP_MEAN,
|
||||
OPENAI_CLIP_STD,
|
||||
ChannelDimension,
|
||||
ImageInput,
|
||||
ImageType,
|
||||
PILImageResampling,
|
||||
VideoInput,
|
||||
get_image_size,
|
||||
get_image_type,
|
||||
infer_channel_dimension_format,
|
||||
make_list_of_images,
|
||||
valid_images,
|
||||
validate_preprocess_arguments,
|
||||
)
|
||||
from ...utils import (
|
||||
TensorType,
|
||||
is_torch_available,
|
||||
is_torchvision_available,
|
||||
is_torchvision_v2_available,
|
||||
is_vision_available,
|
||||
logging,
|
||||
)
|
||||
from .image_processing_qwen2_vl import make_batched_images, make_batched_videos, smart_resize
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from ...image_utils import pil_torch_interpolation_mapping
|
||||
|
||||
|
||||
if is_torchvision_v2_available():
|
||||
from torchvision.transforms.v2 import functional as F
|
||||
elif is_torchvision_available():
|
||||
from torchvision.transforms import functional as F
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class Qwen2VLImageProcessorFast(BaseImageProcessorFast):
|
||||
r"""
|
||||
Constructs a fast Qwen2-VL image processor that dynamically resizes images based on the original images.
|
||||
|
||||
Args:
|
||||
do_resize (`bool`, *optional*, defaults to `True`):
|
||||
Whether to resize the image's (height, width) dimensions.
|
||||
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
||||
Resampling filter to use when resizing the image.
|
||||
do_rescale (`bool`, *optional*, defaults to `True`):
|
||||
Whether to rescale the image by the specified scale `rescale_factor`.
|
||||
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
||||
Scale factor to use if rescaling the image.
|
||||
do_normalize (`bool`, *optional*, defaults to `True`):
|
||||
Whether to normalize the image.
|
||||
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
||||
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
||||
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
||||
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
||||
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
||||
Whether to convert the image to RGB.
|
||||
min_pixels (`int`, *optional*, defaults to `56 * 56`):
|
||||
The min pixels of the image to resize the image.
|
||||
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
|
||||
The max pixels of the image to resize the image.
|
||||
patch_size (`int`, *optional*, defaults to 14):
|
||||
The spacial patch size of the vision encoder.
|
||||
temporal_patch_size (`int`, *optional*, defaults to 2):
|
||||
The temporal patch size of the vision encoder.
|
||||
merge_size (`int`, *optional*, defaults to 2):
|
||||
The merge size of the vision encoder to llm encoder.
|
||||
"""
|
||||
|
||||
model_input_names = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
do_resize: bool = True,
|
||||
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
||||
do_rescale: bool = True,
|
||||
rescale_factor: Union[int, float] = 1 / 255,
|
||||
do_normalize: bool = True,
|
||||
image_mean: Optional[Union[float, List[float]]] = None,
|
||||
image_std: Optional[Union[float, List[float]]] = None,
|
||||
do_convert_rgb: bool = True,
|
||||
min_pixels: int = 56 * 56,
|
||||
max_pixels: int = 28 * 28 * 1280,
|
||||
patch_size: int = 14,
|
||||
temporal_patch_size: int = 2,
|
||||
merge_size: int = 2,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.do_resize = do_resize
|
||||
self.resample = resample
|
||||
self.do_rescale = do_rescale
|
||||
self.rescale_factor = rescale_factor
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
||||
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
||||
self.min_pixels = min_pixels
|
||||
self.max_pixels = max_pixels
|
||||
self.patch_size = patch_size
|
||||
self.temporal_patch_size = temporal_patch_size
|
||||
self.merge_size = merge_size
|
||||
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
|
||||
self.do_convert_rgb = do_convert_rgb
|
||||
|
||||
def _preprocess(
|
||||
self,
|
||||
images: Union[ImageInput, VideoInput],
|
||||
do_resize: bool = None,
|
||||
resample: PILImageResampling = None,
|
||||
do_rescale: bool = None,
|
||||
rescale_factor: float = None,
|
||||
do_normalize: bool = None,
|
||||
image_mean: Optional[Union[float, List[float]]] = None,
|
||||
image_std: Optional[Union[float, List[float]]] = None,
|
||||
do_convert_rgb: bool = None,
|
||||
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
||||
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
):
|
||||
"""
|
||||
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
|
||||
|
||||
Args:
|
||||
images (`ImageInput`):
|
||||
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
||||
vision_info (`List[Dict]`, *optional*):
|
||||
Optional list of dictionaries containing additional information about vision inputs.
|
||||
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
||||
Whether to resize the image.
|
||||
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
||||
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
||||
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
||||
Whether to rescale the image.
|
||||
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
||||
Scale factor to use if rescaling the image.
|
||||
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
||||
Whether to normalize the image.
|
||||
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
||||
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
||||
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
||||
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
||||
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
||||
Whether to convert the image to RGB.
|
||||
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
||||
The channel dimension format for the output image. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
- Unset: Use the channel dimension format of the input image.
|
||||
input_data_format (`ChannelDimension` or `str`, *optional*):
|
||||
The channel dimension format for the input image. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
||||
"""
|
||||
images = make_list_of_images(images)
|
||||
|
||||
if do_convert_rgb:
|
||||
images = [convert_to_rgb(image) for image in images]
|
||||
image_type = get_image_type(images[0])
|
||||
if image_type == ImageType.PIL:
|
||||
images = [F.pil_to_tensor(image) for image in images]
|
||||
elif image_type == ImageType.NUMPY:
|
||||
# not using F.to_tensor as it doesn't handle (C, H, W) numpy arrays
|
||||
images = [torch.from_numpy(image).contiguous() for image in images]
|
||||
|
||||
if device is not None:
|
||||
images = [image.to(device) for image in images]
|
||||
|
||||
# We assume that all images have the same channel dimension format.
|
||||
if input_data_format is None:
|
||||
input_data_format = infer_channel_dimension_format(images[0])
|
||||
if input_data_format == ChannelDimension.LAST:
|
||||
images = [image.permute(2, 0, 1).contiguous() for image in images]
|
||||
input_data_format = ChannelDimension.FIRST
|
||||
|
||||
if do_rescale and do_normalize:
|
||||
# fused rescale and normalize
|
||||
image_mean = torch.tensor(image_mean, device=images[0].device) * (1.0 / rescale_factor)
|
||||
image_std = torch.tensor(image_std, device=images[0].device) * (1.0 / rescale_factor)
|
||||
|
||||
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
||||
interpolation = (
|
||||
pil_torch_interpolation_mapping[resample] if isinstance(resample, (PILImageResampling, int)) else resample
|
||||
)
|
||||
resized_height, resized_width = height, width
|
||||
processed_images = []
|
||||
for image in images:
|
||||
if do_resize:
|
||||
resized_height, resized_width = smart_resize(
|
||||
height,
|
||||
width,
|
||||
factor=self.patch_size * self.merge_size,
|
||||
min_pixels=self.min_pixels,
|
||||
max_pixels=self.max_pixels,
|
||||
)
|
||||
image = F.resize(image, size=(resized_height, resized_width), interpolation=interpolation)
|
||||
|
||||
if do_rescale and do_normalize:
|
||||
# fused rescale and normalize
|
||||
image = F.normalize(image.to(dtype=torch.float32), image_mean, image_std)
|
||||
elif do_rescale:
|
||||
image = image * rescale_factor
|
||||
elif do_normalize:
|
||||
image = F.normalize(image, image_mean, image_std)
|
||||
|
||||
processed_images.append(image)
|
||||
|
||||
patches = torch.stack(processed_images)
|
||||
if patches.shape[0] % self.temporal_patch_size != 0:
|
||||
repeats = patches[-1].unsqueeze(0).repeat(self.temporal_patch_size - 1, 1, 1, 1)
|
||||
patches = torch.cat([patches, repeats], dim=0)
|
||||
|
||||
channel = patches.shape[1]
|
||||
grid_t = patches.shape[0] // self.temporal_patch_size
|
||||
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
|
||||
|
||||
patches = patches.view(
|
||||
grid_t,
|
||||
self.temporal_patch_size,
|
||||
channel,
|
||||
grid_h // self.merge_size,
|
||||
self.merge_size,
|
||||
self.patch_size,
|
||||
grid_w // self.merge_size,
|
||||
self.merge_size,
|
||||
self.patch_size,
|
||||
)
|
||||
patches = patches.permute(0, 3, 6, 4, 7, 2, 1, 5, 8)
|
||||
flatten_patches = patches.reshape(
|
||||
grid_t * grid_h * grid_w, channel * self.temporal_patch_size * self.patch_size * self.patch_size
|
||||
)
|
||||
|
||||
return flatten_patches, (grid_t, grid_h, grid_w)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
videos: VideoInput = None,
|
||||
do_resize: bool = None,
|
||||
size: Dict[str, int] = None,
|
||||
resample: PILImageResampling = None,
|
||||
do_rescale: bool = None,
|
||||
rescale_factor: float = None,
|
||||
do_normalize: bool = None,
|
||||
image_mean: Optional[Union[float, List[float]]] = None,
|
||||
image_std: Optional[Union[float, List[float]]] = None,
|
||||
do_convert_rgb: bool = None,
|
||||
return_tensors: Optional[Union[str, TensorType]] = None,
|
||||
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
||||
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
images (`ImageInput`):
|
||||
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
||||
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
||||
videos (`VideoInput`):
|
||||
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
|
||||
passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
|
||||
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
||||
Whether to resize the image.
|
||||
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
||||
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
||||
the longest edge resized to keep the input aspect ratio.
|
||||
resample (`int`, *optional*, defaults to `self.resample`):
|
||||
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
||||
has an effect if `do_resize` is set to `True`.
|
||||
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
||||
Whether to rescale the image.
|
||||
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
||||
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
||||
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
||||
Whether to normalize the image.
|
||||
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
||||
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
||||
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
||||
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
||||
`True`.
|
||||
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
||||
Whether to convert the image to RGB.
|
||||
return_tensors (`str` or `TensorType`, *optional*):
|
||||
The type of tensors to return. Can be one of:
|
||||
- Unset: Return a list of `np.ndarray`.
|
||||
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
||||
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
||||
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
||||
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
||||
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
||||
The channel dimension format for the output image. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
- Unset: Use the channel dimension format of the input image.
|
||||
input_data_format (`ChannelDimension` or `str`, *optional*):
|
||||
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
||||
from the input image. Can be one of:
|
||||
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
||||
|
||||
"""
|
||||
do_resize = do_resize if do_resize is not None else self.do_resize
|
||||
size = size if size is not None else self.size
|
||||
resample = resample if resample is not None else self.resample
|
||||
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
||||
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
||||
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
||||
image_mean = image_mean if image_mean is not None else self.image_mean
|
||||
image_std = image_std if image_std is not None else self.image_std
|
||||
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
||||
device = kwargs.pop("device", None)
|
||||
|
||||
# Make hashable for cache
|
||||
image_mean = tuple(image_mean) if isinstance(image_mean, list) else image_mean
|
||||
image_std = tuple(image_std) if isinstance(image_std, list) else image_std
|
||||
|
||||
if images is not None:
|
||||
images = make_batched_images(images)
|
||||
if videos is not None:
|
||||
videos = make_batched_videos(videos)
|
||||
|
||||
if images is not None and not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
"torch.Tensor, tf.Tensor or jax.ndarray."
|
||||
)
|
||||
|
||||
validate_preprocess_arguments(
|
||||
rescale_factor=rescale_factor,
|
||||
do_normalize=do_normalize,
|
||||
image_mean=image_mean,
|
||||
image_std=image_std,
|
||||
do_resize=do_resize,
|
||||
size=size,
|
||||
resample=resample,
|
||||
)
|
||||
|
||||
if images is not None:
|
||||
pixel_values, vision_grid_thws = [], []
|
||||
for image in images:
|
||||
patches, image_grid_thw = self._preprocess(
|
||||
image,
|
||||
do_resize=do_resize,
|
||||
resample=resample,
|
||||
do_rescale=do_rescale,
|
||||
rescale_factor=rescale_factor,
|
||||
do_normalize=do_normalize,
|
||||
image_mean=image_mean,
|
||||
image_std=image_std,
|
||||
data_format=data_format,
|
||||
do_convert_rgb=do_convert_rgb,
|
||||
input_data_format=input_data_format,
|
||||
device=device,
|
||||
)
|
||||
pixel_values.extend(patches)
|
||||
vision_grid_thws.append(image_grid_thw)
|
||||
pixel_values = torch.stack(pixel_values)
|
||||
vision_grid_thws = torch.tensor(vision_grid_thws)
|
||||
data = {"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws}
|
||||
|
||||
if videos is not None:
|
||||
pixel_values, vision_grid_thws = [], []
|
||||
for images in videos:
|
||||
patches, video_grid_thw = self._preprocess(
|
||||
images,
|
||||
do_resize=do_resize,
|
||||
resample=resample,
|
||||
do_rescale=do_rescale,
|
||||
rescale_factor=rescale_factor,
|
||||
do_normalize=do_normalize,
|
||||
image_mean=image_mean,
|
||||
image_std=image_std,
|
||||
data_format=data_format,
|
||||
do_convert_rgb=do_convert_rgb,
|
||||
input_data_format=input_data_format,
|
||||
device=device,
|
||||
)
|
||||
pixel_values.extend(patches)
|
||||
vision_grid_thws.append(video_grid_thw)
|
||||
pixel_values = torch.stack(pixel_values)
|
||||
vision_grid_thws = torch.tensor(vision_grid_thws)
|
||||
data = {"pixel_values_videos": pixel_values, "video_grid_thw": vision_grid_thws}
|
||||
|
||||
return BatchFeature(data=data, tensor_type=return_tensors)
|
||||
|
||||
|
||||
__all__ = ["Qwen2VLImageProcessorFast"]
|
@ -171,6 +171,8 @@ class ImagesKwargs(TypedDict, total=False):
|
||||
The channel dimension format for the output image.
|
||||
input_data_format (`ChannelDimension` or `str`, *optional*):
|
||||
The channel dimension format for the input image.
|
||||
device (`str`, *optional*):
|
||||
The device to use for processing (e.g. "cpu", "cuda"), only relevant for fast image processing.
|
||||
"""
|
||||
|
||||
do_resize: Optional[bool]
|
||||
@ -188,6 +190,7 @@ class ImagesKwargs(TypedDict, total=False):
|
||||
do_center_crop: Optional[bool]
|
||||
data_format: Optional[ChannelDimension]
|
||||
input_data_format: Optional[Union[str, ChannelDimension]]
|
||||
device: Optional[str]
|
||||
|
||||
|
||||
class VideosKwargs(TypedDict, total=False):
|
||||
|
@ -30,6 +30,13 @@ class PixtralImageProcessorFast(metaclass=DummyObject):
|
||||
requires_backends(self, ["torchvision"])
|
||||
|
||||
|
||||
class Qwen2VLImageProcessorFast(metaclass=DummyObject):
|
||||
_backends = ["torchvision"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torchvision"])
|
||||
|
||||
|
||||
class RTDetrImageProcessorFast(metaclass=DummyObject):
|
||||
_backends = ["torchvision"]
|
||||
|
||||
|
@ -20,7 +20,7 @@ import numpy as np
|
||||
from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
|
||||
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs, prepare_video_inputs
|
||||
|
||||
@ -33,6 +33,9 @@ if is_vision_available():
|
||||
|
||||
from transformers import Qwen2VLImageProcessor
|
||||
|
||||
if is_torchvision_available():
|
||||
from transformers import Qwen2VLImageProcessorFast
|
||||
|
||||
|
||||
class Qwen2VLImageProcessingTester:
|
||||
def __init__(
|
||||
@ -114,6 +117,7 @@ class Qwen2VLImageProcessingTester:
|
||||
@require_vision
|
||||
class Qwen2VLImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = Qwen2VLImageProcessor if is_vision_available() else None
|
||||
fast_image_processing_class = Qwen2VLImageProcessorFast if is_torchvision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
@ -124,28 +128,30 @@ class Qwen2VLImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
return self.image_processor_tester.prepare_image_processor_dict()
|
||||
|
||||
def test_image_processor_properties(self):
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
||||
self.assertTrue(hasattr(image_processing, "image_mean"))
|
||||
self.assertTrue(hasattr(image_processing, "image_std"))
|
||||
self.assertTrue(hasattr(image_processing, "do_resize"))
|
||||
self.assertTrue(hasattr(image_processing, "min_pixels"))
|
||||
self.assertTrue(hasattr(image_processing, "max_pixels"))
|
||||
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
|
||||
self.assertTrue(hasattr(image_processing, "patch_size"))
|
||||
self.assertTrue(hasattr(image_processing, "temporal_patch_size"))
|
||||
self.assertTrue(hasattr(image_processing, "merge_size"))
|
||||
for image_processing_class in self.image_processor_list:
|
||||
image_processing = image_processing_class(**self.image_processor_dict)
|
||||
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
||||
self.assertTrue(hasattr(image_processing, "image_mean"))
|
||||
self.assertTrue(hasattr(image_processing, "image_std"))
|
||||
self.assertTrue(hasattr(image_processing, "do_resize"))
|
||||
self.assertTrue(hasattr(image_processing, "min_pixels"))
|
||||
self.assertTrue(hasattr(image_processing, "max_pixels"))
|
||||
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
|
||||
self.assertTrue(hasattr(image_processing, "patch_size"))
|
||||
self.assertTrue(hasattr(image_processing, "temporal_patch_size"))
|
||||
self.assertTrue(hasattr(image_processing, "merge_size"))
|
||||
|
||||
def test_image_processor_from_dict_with_kwargs(self):
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
||||
self.assertEqual(image_processor.min_pixels, 56 * 56)
|
||||
self.assertEqual(image_processor.max_pixels, 28 * 28 * 1280)
|
||||
for image_processing_class in self.image_processor_list:
|
||||
image_processor = image_processing_class.from_dict(self.image_processor_dict)
|
||||
self.assertEqual(image_processor.min_pixels, 56 * 56)
|
||||
self.assertEqual(image_processor.max_pixels, 28 * 28 * 1280)
|
||||
|
||||
image_processor = self.image_processing_class.from_dict(
|
||||
self.image_processor_dict, min_pixels=256 * 256, max_pixels=640 * 640
|
||||
)
|
||||
self.assertEqual(image_processor.min_pixels, 256 * 256)
|
||||
self.assertEqual(image_processor.max_pixels, 640 * 640)
|
||||
image_processor = image_processing_class.from_dict(
|
||||
self.image_processor_dict, min_pixels=256 * 256, max_pixels=640 * 640
|
||||
)
|
||||
self.assertEqual(image_processor.min_pixels, 256 * 256)
|
||||
self.assertEqual(image_processor.max_pixels, 640 * 640)
|
||||
|
||||
def test_select_best_resolution(self):
|
||||
# Test with a final resize resolution
|
||||
@ -153,134 +159,140 @@ class Qwen2VLImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
self.assertEqual(best_resolution, (560, 280))
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image[0], Image.Image)
|
||||
for image_processing_class in self.image_processor_list:
|
||||
# Initialize image_processing
|
||||
image_processing = image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image[0], Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
prcocess_out = image_processing(image_inputs[0], return_tensors="pt")
|
||||
encoded_images = prcocess_out.pixel_values
|
||||
image_grid_thws = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (4900, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]])
|
||||
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
# Test not batched input
|
||||
prcocess_out = image_processing(image_inputs[0], return_tensors="pt")
|
||||
encoded_images = prcocess_out.pixel_values
|
||||
image_grid_thws = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (4900, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]])
|
||||
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
|
||||
# Test batched
|
||||
prcocess_out = image_processing(image_inputs, return_tensors="pt")
|
||||
encoded_images = prcocess_out.pixel_values
|
||||
image_grid_thws = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (34300, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
|
||||
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
# Test batched
|
||||
prcocess_out = image_processing(image_inputs, return_tensors="pt")
|
||||
encoded_images = prcocess_out.pixel_values
|
||||
image_grid_thws = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (34300, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
|
||||
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image[0], np.ndarray)
|
||||
for image_processing_class in self.image_processor_list:
|
||||
# Initialize image_processing
|
||||
image_processing = image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image[0], np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
prcocess_out = image_processing(image_inputs[0], return_tensors="pt")
|
||||
encoded_images = prcocess_out.pixel_values
|
||||
image_grid_thws = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (4900, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]])
|
||||
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
# Test not batched input
|
||||
prcocess_out = image_processing(image_inputs[0], return_tensors="pt")
|
||||
encoded_images = prcocess_out.pixel_values
|
||||
image_grid_thws = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (4900, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]])
|
||||
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
|
||||
# Test batched
|
||||
prcocess_out = image_processing(image_inputs, return_tensors="pt")
|
||||
encoded_images = prcocess_out.pixel_values
|
||||
image_grid_thws = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (34300, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
|
||||
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
# Test batched
|
||||
prcocess_out = image_processing(image_inputs, return_tensors="pt")
|
||||
encoded_images = prcocess_out.pixel_values
|
||||
image_grid_thws = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (34300, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
|
||||
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
|
||||
for image_processing_class in self.image_processor_list:
|
||||
# Initialize image_processing
|
||||
image_processing = image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
|
||||
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image[0], torch.Tensor)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image[0], torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
prcocess_out = image_processing(image_inputs[0], return_tensors="pt")
|
||||
encoded_images = prcocess_out.pixel_values
|
||||
image_grid_thws = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (4900, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]])
|
||||
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
# Test not batched input
|
||||
prcocess_out = image_processing(image_inputs[0], return_tensors="pt")
|
||||
encoded_images = prcocess_out.pixel_values
|
||||
image_grid_thws = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (4900, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]])
|
||||
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
|
||||
# Test batched
|
||||
prcocess_out = image_processing(image_inputs, return_tensors="pt")
|
||||
encoded_images = prcocess_out.pixel_values
|
||||
image_grid_thws = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (34300, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
|
||||
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
# Test batched
|
||||
prcocess_out = image_processing(image_inputs, return_tensors="pt")
|
||||
encoded_images = prcocess_out.pixel_values
|
||||
image_grid_thws = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (34300, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
|
||||
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
|
||||
@unittest.skip(reason="Qwen2VLImageProcessor doesn't treat 4 channel PIL and numpy consistently yet")
|
||||
def test_call_numpy_4_channels(self):
|
||||
pass
|
||||
|
||||
def test_nested_input(self):
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True)
|
||||
for image_processing_class in self.image_processor_list:
|
||||
image_processing = image_processing_class(**self.image_processor_dict)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True)
|
||||
|
||||
# Test batched as a list of images
|
||||
prcocess_out = image_processing(image_inputs, return_tensors="pt")
|
||||
encoded_images = prcocess_out.pixel_values
|
||||
image_grid_thws = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (34300, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
|
||||
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
# Test batched as a list of images
|
||||
prcocess_out = image_processing(image_inputs, return_tensors="pt")
|
||||
encoded_images = prcocess_out.pixel_values
|
||||
image_grid_thws = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (34300, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
|
||||
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
|
||||
# Test batched as a nested list of images, where each sublist is one batch
|
||||
image_inputs_nested = image_inputs[:3] + image_inputs[3:]
|
||||
prcocess_out = image_processing(image_inputs_nested, return_tensors="pt")
|
||||
encoded_images_nested = prcocess_out.pixel_values
|
||||
image_grid_thws_nested = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (34300, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
|
||||
self.assertEqual(tuple(encoded_images_nested.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
# Test batched as a nested list of images, where each sublist is one batch
|
||||
image_inputs_nested = image_inputs[:3] + image_inputs[3:]
|
||||
prcocess_out = image_processing(image_inputs_nested, return_tensors="pt")
|
||||
encoded_images_nested = prcocess_out.pixel_values
|
||||
image_grid_thws_nested = prcocess_out.image_grid_thw
|
||||
expected_output_image_shape = (34300, 1176)
|
||||
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
|
||||
self.assertEqual(tuple(encoded_images_nested.shape), expected_output_image_shape)
|
||||
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
|
||||
|
||||
# Image processor should return same pixel values, independently of ipnut format
|
||||
self.assertTrue((encoded_images_nested == encoded_images).all())
|
||||
self.assertTrue((image_grid_thws_nested == expected_image_grid_thws).all())
|
||||
# Image processor should return same pixel values, independently of ipnut format
|
||||
self.assertTrue((encoded_images_nested == encoded_images).all())
|
||||
self.assertTrue((image_grid_thws_nested == expected_image_grid_thws).all())
|
||||
|
||||
def test_video_inputs(self):
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
expected_dims_by_frames = {1: 34300, 2: 34300, 3: 68600, 4: 68600, 5: 102900, 6: 102900}
|
||||
for image_processing_class in self.image_processor_list:
|
||||
image_processing = image_processing_class(**self.image_processor_dict)
|
||||
expected_dims_by_frames = {1: 34300, 2: 34300, 3: 68600, 4: 68600, 5: 102900, 6: 102900}
|
||||
|
||||
for num_frames, expected_dims in expected_dims_by_frames.items():
|
||||
image_processor_tester = Qwen2VLImageProcessingTester(self, num_frames=num_frames)
|
||||
video_inputs = image_processor_tester.prepare_video_inputs(equal_resolution=True)
|
||||
prcocess_out = image_processing(None, videos=video_inputs, return_tensors="pt")
|
||||
encoded_video = prcocess_out.pixel_values_videos
|
||||
expected_output_video_shape = (expected_dims, 1176)
|
||||
self.assertEqual(tuple(encoded_video.shape), expected_output_video_shape)
|
||||
for num_frames, expected_dims in expected_dims_by_frames.items():
|
||||
image_processor_tester = Qwen2VLImageProcessingTester(self, num_frames=num_frames)
|
||||
video_inputs = image_processor_tester.prepare_video_inputs(equal_resolution=True)
|
||||
prcocess_out = image_processing(None, videos=video_inputs, return_tensors="pt")
|
||||
encoded_video = prcocess_out.pixel_values_videos
|
||||
expected_output_video_shape = (expected_dims, 1176)
|
||||
self.assertEqual(tuple(encoded_video.shape), expected_output_video_shape)
|
||||
|
||||
def test_custom_patch_size(self):
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
for image_processing_class in self.image_processor_list:
|
||||
image_processing = image_processing_class(**self.image_processor_dict)
|
||||
|
||||
for patch_size in (1, 3, 5, 7):
|
||||
image_processor_tester = Qwen2VLImageProcessingTester(self, patch_size=patch_size)
|
||||
video_inputs = image_processor_tester.prepare_video_inputs(equal_resolution=True)
|
||||
prcocess_out = image_processing(None, videos=video_inputs, return_tensors="pt")
|
||||
encoded_video = prcocess_out.pixel_values_videos
|
||||
expected_output_video_shape = (171500, 1176)
|
||||
self.assertEqual(tuple(encoded_video.shape), expected_output_video_shape)
|
||||
for patch_size in (1, 3, 5, 7):
|
||||
image_processor_tester = Qwen2VLImageProcessingTester(self, patch_size=patch_size)
|
||||
video_inputs = image_processor_tester.prepare_video_inputs(equal_resolution=True)
|
||||
prcocess_out = image_processing(None, videos=video_inputs, return_tensors="pt")
|
||||
encoded_video = prcocess_out.pixel_values_videos
|
||||
expected_output_video_shape = (171500, 1176)
|
||||
self.assertEqual(tuple(encoded_video.shape), expected_output_video_shape)
|
||||
|
@ -181,7 +181,10 @@ class ImageProcessingTestMixin:
|
||||
encoding_slow = image_processor_slow(dummy_image, return_tensors="pt")
|
||||
encoding_fast = image_processor_fast(dummy_image, return_tensors="pt")
|
||||
|
||||
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-2))
|
||||
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1))
|
||||
self.assertLessEqual(
|
||||
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 1e-3
|
||||
)
|
||||
|
||||
@require_vision
|
||||
@require_torch
|
||||
@ -193,6 +196,8 @@ class ImageProcessingTestMixin:
|
||||
self.skipTest(reason="Skipping speed test as one of the image processors is not defined")
|
||||
|
||||
def measure_time(image_processor, image):
|
||||
# Warmup
|
||||
_ = image_processor(image, return_tensors="pt")
|
||||
start = time.time()
|
||||
_ = image_processor(image, return_tensors="pt")
|
||||
return time.time() - start
|
||||
|
Loading…
Reference in New Issue
Block a user