mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00
Enforce target version for black.
This should stabilize formatting.
This commit is contained in:
parent
f01b3e6680
commit
0ffc8eaf53
@ -101,7 +101,7 @@ jobs:
|
||||
# we need a version of isort with https://github.com/timothycrosley/isort/pull/1000
|
||||
- run: sudo pip install git+git://github.com/timothycrosley/isort.git@e63ae06ec7d70b06df9e528357650281a3d3ec22#egg=isort
|
||||
- run: sudo pip install .[tf,torch,quality]
|
||||
- run: black --check --line-length 119 examples templates tests src utils
|
||||
- run: black --check --line-length 119 --target-version py35 examples templates tests src utils
|
||||
- run: isort --check-only --recursive examples templates tests src utils
|
||||
- run: flake8 examples templates tests src utils
|
||||
check_repository_consistency:
|
||||
|
4
Makefile
4
Makefile
@ -3,14 +3,14 @@
|
||||
# Check that source code meets quality standards
|
||||
|
||||
quality:
|
||||
black --check --line-length 119 examples templates tests src utils
|
||||
black --check --line-length 119 --target-version py35 examples templates tests src utils
|
||||
isort --check-only --recursive examples templates tests src utils
|
||||
flake8 examples templates tests src utils
|
||||
|
||||
# Format source code automatically
|
||||
|
||||
style:
|
||||
black --line-length 119 examples templates tests src utils
|
||||
black --line-length 119 --target-version py35 examples templates tests src utils
|
||||
isort --recursive examples templates tests src utils
|
||||
|
||||
# Run tests for the library
|
||||
|
@ -325,7 +325,7 @@ class Model2Model(PreTrainedEncoderDecoder):
|
||||
encoder_pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||||
decoder_pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||||
*args,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return model
|
||||
|
@ -250,7 +250,7 @@ class TFPreTrainedModel(tf.keras.Model):
|
||||
return_unused_kwargs=True,
|
||||
force_download=force_download,
|
||||
resume_download=resume_download,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
model_kwargs = kwargs
|
||||
|
@ -355,7 +355,7 @@ class PreTrainedModel(nn.Module):
|
||||
force_download=force_download,
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
model_kwargs = kwargs
|
||||
|
@ -643,7 +643,7 @@ class QuestionAnsweringPipeline(Pipeline):
|
||||
framework=framework,
|
||||
args_parser=QuestionAnsweringArgumentHandler(),
|
||||
device=device,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
|
@ -87,7 +87,7 @@ class AlbertTokenizer(PreTrainedTokenizer):
|
||||
pad_token=pad_token,
|
||||
cls_token=cls_token,
|
||||
mask_token=mask_token,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens
|
||||
|
@ -169,7 +169,7 @@ class BertTokenizer(PreTrainedTokenizer):
|
||||
pad_token=pad_token,
|
||||
cls_token=cls_token,
|
||||
mask_token=mask_token,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens
|
||||
self.max_len_sentences_pair = self.max_len - 3 # take into account special tokens
|
||||
@ -560,7 +560,7 @@ class BertTokenizerFast(PreTrainedTokenizerFast):
|
||||
pad_token=pad_token,
|
||||
cls_token=cls_token,
|
||||
mask_token=mask_token,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
self._tokenizer = tk.Tokenizer(tk.models.WordPiece.from_files(vocab_file, unk_token=unk_token))
|
||||
|
@ -113,7 +113,7 @@ class BertJapaneseTokenizer(BertTokenizer):
|
||||
pad_token=pad_token,
|
||||
cls_token=cls_token,
|
||||
mask_token=mask_token,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens
|
||||
self.max_len_sentences_pair = self.max_len - 3 # take into account special tokens
|
||||
|
@ -76,7 +76,7 @@ class CamembertTokenizer(PreTrainedTokenizer):
|
||||
pad_token=pad_token,
|
||||
mask_token=mask_token,
|
||||
additional_special_tokens=additional_special_tokens,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens
|
||||
self.max_len_sentences_pair = self.max_len - 4 # take into account special tokens
|
||||
|
@ -95,7 +95,7 @@ class RobertaTokenizer(GPT2Tokenizer):
|
||||
cls_token=cls_token,
|
||||
pad_token=pad_token,
|
||||
mask_token=mask_token,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens
|
||||
self.max_len_sentences_pair = self.max_len - 4 # take into account special tokens
|
||||
|
@ -96,7 +96,7 @@ class T5Tokenizer(PreTrainedTokenizer):
|
||||
unk_token=unk_token,
|
||||
pad_token=pad_token,
|
||||
additional_special_tokens=additional_special_tokens,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
try:
|
||||
|
@ -817,7 +817,7 @@ class PreTrainedTokenizer(object):
|
||||
truncation_strategy=truncation_strategy,
|
||||
pad_to_max_length=pad_to_max_length,
|
||||
return_tensors=return_tensors,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return encoded_inputs["input_ids"]
|
||||
|
@ -586,7 +586,7 @@ class XLMTokenizer(PreTrainedTokenizer):
|
||||
cls_token=cls_token,
|
||||
mask_token=mask_token,
|
||||
additional_special_tokens=additional_special_tokens,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens
|
||||
|
@ -83,7 +83,7 @@ class XLMRobertaTokenizer(PreTrainedTokenizer):
|
||||
cls_token=cls_token,
|
||||
pad_token=pad_token,
|
||||
mask_token=mask_token,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens
|
||||
self.max_len_sentences_pair = self.max_len - 4 # take into account special tokens
|
||||
|
@ -86,7 +86,7 @@ class XLNetTokenizer(PreTrainedTokenizer):
|
||||
cls_token=cls_token,
|
||||
mask_token=mask_token,
|
||||
additional_special_tokens=additional_special_tokens,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens
|
||||
|
@ -115,7 +115,7 @@ class XxxTokenizer(PreTrainedTokenizer):
|
||||
pad_token=pad_token,
|
||||
cls_token=cls_token,
|
||||
mask_token=mask_token,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens
|
||||
self.max_len_sentences_pair = self.max_len - 3 # take into account special tokens
|
||||
|
@ -84,7 +84,7 @@ class BertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
||||
tokenizer = self.get_tokenizer()
|
||||
rust_tokenizer = self.get_rust_tokenizer(add_special_tokens=False)
|
||||
|
||||
sequence = u"UNwant\u00E9d,running"
|
||||
sequence = "UNwant\u00E9d,running"
|
||||
|
||||
tokens = tokenizer.tokenize(sequence)
|
||||
rust_tokens = rust_tokenizer.tokenize(sequence)
|
||||
|
@ -96,7 +96,7 @@ class GPT2TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
||||
tokenizer = self.get_tokenizer()
|
||||
rust_tokenizer = self.get_rust_tokenizer(add_special_tokens=False, add_prefix_space=True)
|
||||
|
||||
sequence = u"lower newer"
|
||||
sequence = "lower newer"
|
||||
|
||||
# Testing tokenization
|
||||
tokens = tokenizer.tokenize(sequence, add_prefix_space=True)
|
||||
|
Loading…
Reference in New Issue
Block a user