mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
[model cards] ported allenai Deep Encoder, Shallow Decoder models (#7153)
* [model cards] ported allenai Deep Encoder, Shallow Decoder models * typo * fix references * add allenai/wmt19-de-en-6-6 model cards * fill-in the missing info for the build script as provided by the searcher.
This commit is contained in:
parent
1eeb206bef
commit
0fe6e435b6
95
model_cards/allenai/wmt16-en-de-12-1/README.md
Normal file
95
model_cards/allenai/wmt16-en-de-12-1/README.md
Normal file
@ -0,0 +1,95 @@
|
|||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
language: en, de
|
||||||
|
thumbnail:
|
||||||
|
tags:
|
||||||
|
- translation
|
||||||
|
- wmt16
|
||||||
|
- allenai
|
||||||
|
license: Apache 2.0
|
||||||
|
datasets:
|
||||||
|
- http://www.statmt.org/wmt16/ ([test-set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372))
|
||||||
|
|
||||||
|
metrics:
|
||||||
|
- http://www.statmt.org/wmt16/metrics-task.html
|
||||||
|
---
|
||||||
|
|
||||||
|
# FSMT
|
||||||
|
|
||||||
|
## Model description
|
||||||
|
|
||||||
|
This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for en-de.
|
||||||
|
|
||||||
|
For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).
|
||||||
|
|
||||||
|
All 3 models are available:
|
||||||
|
|
||||||
|
* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)
|
||||||
|
* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)
|
||||||
|
* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)
|
||||||
|
|
||||||
|
```
|
||||||
|
@misc{kasai2020deep,
|
||||||
|
title={Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation},
|
||||||
|
author={Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith},
|
||||||
|
year={2020},
|
||||||
|
eprint={2006.10369},
|
||||||
|
archivePrefix={arXiv},
|
||||||
|
primaryClass={cs.CL}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Intended uses & limitations
|
||||||
|
|
||||||
|
#### How to use
|
||||||
|
|
||||||
|
```python
|
||||||
|
from transformers.tokenization_fsmt import FSMTTokenizer
|
||||||
|
from transformers.modeling_fsmt import FSMTForConditionalGeneration
|
||||||
|
mname = "allenai/wmt16-en-de-12-1"
|
||||||
|
tokenizer = FSMTTokenizer.from_pretrained(mname)
|
||||||
|
model = FSMTForConditionalGeneration.from_pretrained(mname)
|
||||||
|
|
||||||
|
input = "Machine learning is great, isn't it?"
|
||||||
|
input_ids = tokenizer.encode(input, return_tensors="pt")
|
||||||
|
outputs = model.generate(input_ids)
|
||||||
|
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||||
|
print(decoded) # Maschinelles Lernen ist großartig, nicht wahr?
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Limitations and bias
|
||||||
|
|
||||||
|
|
||||||
|
## Training data
|
||||||
|
|
||||||
|
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).
|
||||||
|
|
||||||
|
## Eval results
|
||||||
|
|
||||||
|
Here are the BLEU scores:
|
||||||
|
|
||||||
|
model | fairseq | transformers
|
||||||
|
-------|---------|----------
|
||||||
|
wmt16-en-de-12-1 | 26.9 | 25.75
|
||||||
|
|
||||||
|
The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.
|
||||||
|
|
||||||
|
The score was calculated using this code:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/huggingface/transformers
|
||||||
|
cd transformers
|
||||||
|
export PAIR=en-de
|
||||||
|
export DATA_DIR=data/$PAIR
|
||||||
|
export SAVE_DIR=data/$PAIR
|
||||||
|
export BS=8
|
||||||
|
export NUM_BEAMS=5
|
||||||
|
mkdir -p $DATA_DIR
|
||||||
|
sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source
|
||||||
|
sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target
|
||||||
|
echo $PAIR
|
||||||
|
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/wmt16-en-de-12-1 $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
|
||||||
|
```
|
||||||
|
|
95
model_cards/allenai/wmt16-en-de-dist-12-1/README.md
Normal file
95
model_cards/allenai/wmt16-en-de-dist-12-1/README.md
Normal file
@ -0,0 +1,95 @@
|
|||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
language: en, de
|
||||||
|
thumbnail:
|
||||||
|
tags:
|
||||||
|
- translation
|
||||||
|
- wmt16
|
||||||
|
- allenai
|
||||||
|
license: Apache 2.0
|
||||||
|
datasets:
|
||||||
|
- http://www.statmt.org/wmt16/ ([test-set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372))
|
||||||
|
|
||||||
|
metrics:
|
||||||
|
- http://www.statmt.org/wmt16/metrics-task.html
|
||||||
|
---
|
||||||
|
|
||||||
|
# FSMT
|
||||||
|
|
||||||
|
## Model description
|
||||||
|
|
||||||
|
This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for en-de.
|
||||||
|
|
||||||
|
For more details, please see, [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).
|
||||||
|
|
||||||
|
All 3 models are available:
|
||||||
|
|
||||||
|
* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)
|
||||||
|
* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)
|
||||||
|
* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)
|
||||||
|
|
||||||
|
```
|
||||||
|
@misc{kasai2020deep,
|
||||||
|
title={Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation},
|
||||||
|
author={Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith},
|
||||||
|
year={2020},
|
||||||
|
eprint={2006.10369},
|
||||||
|
archivePrefix={arXiv},
|
||||||
|
primaryClass={cs.CL}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Intended uses & limitations
|
||||||
|
|
||||||
|
#### How to use
|
||||||
|
|
||||||
|
```python
|
||||||
|
from transformers.tokenization_fsmt import FSMTTokenizer
|
||||||
|
from transformers.modeling_fsmt import FSMTForConditionalGeneration
|
||||||
|
mname = "allenai/wmt16-en-de-dist-12-1"
|
||||||
|
tokenizer = FSMTTokenizer.from_pretrained(mname)
|
||||||
|
model = FSMTForConditionalGeneration.from_pretrained(mname)
|
||||||
|
|
||||||
|
input = "Machine learning is great, isn't it?"
|
||||||
|
input_ids = tokenizer.encode(input, return_tensors="pt")
|
||||||
|
outputs = model.generate(input_ids)
|
||||||
|
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||||
|
print(decoded) # Maschinelles Lernen ist großartig, nicht wahr?
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Limitations and bias
|
||||||
|
|
||||||
|
|
||||||
|
## Training data
|
||||||
|
|
||||||
|
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).
|
||||||
|
|
||||||
|
## Eval results
|
||||||
|
|
||||||
|
Here are the BLEU scores:
|
||||||
|
|
||||||
|
model | fairseq | transformers
|
||||||
|
-------|---------|----------
|
||||||
|
wmt16-en-de-dist-12-1 | 28.3 | 27.52
|
||||||
|
|
||||||
|
The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.
|
||||||
|
|
||||||
|
The score was calculated using this code:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/huggingface/transformers
|
||||||
|
cd transformers
|
||||||
|
export PAIR=en-de
|
||||||
|
export DATA_DIR=data/$PAIR
|
||||||
|
export SAVE_DIR=data/$PAIR
|
||||||
|
export BS=8
|
||||||
|
export NUM_BEAMS=5
|
||||||
|
mkdir -p $DATA_DIR
|
||||||
|
sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source
|
||||||
|
sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target
|
||||||
|
echo $PAIR
|
||||||
|
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/wmt16-en-de-dist-12-1 $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
|
||||||
|
```
|
||||||
|
|
95
model_cards/allenai/wmt16-en-de-dist-6-1/README.md
Normal file
95
model_cards/allenai/wmt16-en-de-dist-6-1/README.md
Normal file
@ -0,0 +1,95 @@
|
|||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
language: en, de
|
||||||
|
thumbnail:
|
||||||
|
tags:
|
||||||
|
- translation
|
||||||
|
- wmt16
|
||||||
|
- allenai
|
||||||
|
license: Apache 2.0
|
||||||
|
datasets:
|
||||||
|
- http://www.statmt.org/wmt16/ ([test-set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372))
|
||||||
|
|
||||||
|
metrics:
|
||||||
|
- http://www.statmt.org/wmt16/metrics-task.html
|
||||||
|
---
|
||||||
|
|
||||||
|
# FSMT
|
||||||
|
|
||||||
|
## Model description
|
||||||
|
|
||||||
|
This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for en-de.
|
||||||
|
|
||||||
|
For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).
|
||||||
|
|
||||||
|
All 3 models are available:
|
||||||
|
|
||||||
|
* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)
|
||||||
|
* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)
|
||||||
|
* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)
|
||||||
|
|
||||||
|
```
|
||||||
|
@misc{kasai2020deep,
|
||||||
|
title={Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation},
|
||||||
|
author={Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith},
|
||||||
|
year={2020},
|
||||||
|
eprint={2006.10369},
|
||||||
|
archivePrefix={arXiv},
|
||||||
|
primaryClass={cs.CL}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Intended uses & limitations
|
||||||
|
|
||||||
|
#### How to use
|
||||||
|
|
||||||
|
```python
|
||||||
|
from transformers.tokenization_fsmt import FSMTTokenizer
|
||||||
|
from transformers.modeling_fsmt import FSMTForConditionalGeneration
|
||||||
|
mname = "allenai/wmt16-en-de-dist-6-1"
|
||||||
|
tokenizer = FSMTTokenizer.from_pretrained(mname)
|
||||||
|
model = FSMTForConditionalGeneration.from_pretrained(mname)
|
||||||
|
|
||||||
|
input = "Machine learning is great, isn't it?"
|
||||||
|
input_ids = tokenizer.encode(input, return_tensors="pt")
|
||||||
|
outputs = model.generate(input_ids)
|
||||||
|
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||||
|
print(decoded) # Maschinelles Lernen ist großartig, nicht wahr?
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Limitations and bias
|
||||||
|
|
||||||
|
|
||||||
|
## Training data
|
||||||
|
|
||||||
|
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).
|
||||||
|
|
||||||
|
## Eval results
|
||||||
|
|
||||||
|
Here are the BLEU scores:
|
||||||
|
|
||||||
|
model | fairseq | transformers
|
||||||
|
-------|---------|----------
|
||||||
|
wmt16-en-de-dist-6-1 | 27.4 | 27.11
|
||||||
|
|
||||||
|
The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.
|
||||||
|
|
||||||
|
The score was calculated using this code:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/huggingface/transformers
|
||||||
|
cd transformers
|
||||||
|
export PAIR=en-de
|
||||||
|
export DATA_DIR=data/$PAIR
|
||||||
|
export SAVE_DIR=data/$PAIR
|
||||||
|
export BS=8
|
||||||
|
export NUM_BEAMS=5
|
||||||
|
mkdir -p $DATA_DIR
|
||||||
|
sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source
|
||||||
|
sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target
|
||||||
|
echo $PAIR
|
||||||
|
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/wmt16-en-de-dist-6-1 $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
|
||||||
|
```
|
||||||
|
|
91
model_cards/allenai/wmt19-de-en-6-6-base/README.md
Normal file
91
model_cards/allenai/wmt19-de-en-6-6-base/README.md
Normal file
@ -0,0 +1,91 @@
|
|||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
language: de, en
|
||||||
|
thumbnail:
|
||||||
|
tags:
|
||||||
|
- translation
|
||||||
|
- wmt19
|
||||||
|
- allenai
|
||||||
|
license: Apache 2.0
|
||||||
|
datasets:
|
||||||
|
- http://www.statmt.org/wmt19/ ([test-set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561))
|
||||||
|
metrics:
|
||||||
|
- http://www.statmt.org/wmt19/metrics-task.html
|
||||||
|
---
|
||||||
|
|
||||||
|
# FSMT
|
||||||
|
|
||||||
|
## Model description
|
||||||
|
|
||||||
|
This is a ported version of fairseq-based [wmt19 transformer](https://github.com/jungokasai/deep-shallow/) for de-en.
|
||||||
|
|
||||||
|
For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).
|
||||||
|
|
||||||
|
2 models are available:
|
||||||
|
|
||||||
|
* [wmt19-de-en-6-6-big](https://huggingface.co/allenai/wmt19-de-en-6-6-big)
|
||||||
|
* [wmt19-de-en-6-6-base](https://huggingface.co/allenai/wmt19-de-en-6-6-base)
|
||||||
|
|
||||||
|
```
|
||||||
|
@misc{kasai2020deep,
|
||||||
|
title={Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation},
|
||||||
|
author={Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith},
|
||||||
|
year={2020},
|
||||||
|
eprint={2006.10369},
|
||||||
|
archivePrefix={arXiv},
|
||||||
|
primaryClass={cs.CL}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Intended uses & limitations
|
||||||
|
|
||||||
|
#### How to use
|
||||||
|
|
||||||
|
```python
|
||||||
|
from transformers.tokenization_fsmt import FSMTTokenizer
|
||||||
|
from transformers.modeling_fsmt import FSMTForConditionalGeneration
|
||||||
|
mname = "allenai/wmt19-de-en-6-6-base"
|
||||||
|
tokenizer = FSMTTokenizer.from_pretrained(mname)
|
||||||
|
model = FSMTForConditionalGeneration.from_pretrained(mname)
|
||||||
|
|
||||||
|
input = "Maschinelles Lernen ist großartig, nicht wahr?"
|
||||||
|
input_ids = tokenizer.encode(input, return_tensors="pt")
|
||||||
|
outputs = model.generate(input_ids)
|
||||||
|
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||||
|
print(decoded) # Machine learning is great, isn't it?
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Limitations and bias
|
||||||
|
|
||||||
|
|
||||||
|
## Training data
|
||||||
|
|
||||||
|
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).
|
||||||
|
|
||||||
|
## Eval results
|
||||||
|
|
||||||
|
Here are the BLEU scores:
|
||||||
|
|
||||||
|
model | transformers
|
||||||
|
-------|---------|----------
|
||||||
|
wmt19-de-en-6-6-base | 38.37
|
||||||
|
|
||||||
|
The score was calculated using this code:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/huggingface/transformers
|
||||||
|
cd transformers
|
||||||
|
export PAIR=de-en
|
||||||
|
export DATA_DIR=data/$PAIR
|
||||||
|
export SAVE_DIR=data/$PAIR
|
||||||
|
export BS=8
|
||||||
|
export NUM_BEAMS=5
|
||||||
|
mkdir -p $DATA_DIR
|
||||||
|
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
|
||||||
|
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
|
||||||
|
echo $PAIR
|
||||||
|
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/wmt19-de-en-6-6-base $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
|
||||||
|
```
|
||||||
|
|
91
model_cards/allenai/wmt19-de-en-6-6-big/README.md
Normal file
91
model_cards/allenai/wmt19-de-en-6-6-big/README.md
Normal file
@ -0,0 +1,91 @@
|
|||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
language: de, en
|
||||||
|
thumbnail:
|
||||||
|
tags:
|
||||||
|
- translation
|
||||||
|
- wmt19
|
||||||
|
- allenai
|
||||||
|
license: Apache 2.0
|
||||||
|
datasets:
|
||||||
|
- http://www.statmt.org/wmt19/ ([test-set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561))
|
||||||
|
metrics:
|
||||||
|
- http://www.statmt.org/wmt19/metrics-task.html
|
||||||
|
---
|
||||||
|
|
||||||
|
# FSMT
|
||||||
|
|
||||||
|
## Model description
|
||||||
|
|
||||||
|
This is a ported version of fairseq-based [wmt19 transformer](https://github.com/jungokasai/deep-shallow/) for de-en.
|
||||||
|
|
||||||
|
For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).
|
||||||
|
|
||||||
|
2 models are available:
|
||||||
|
|
||||||
|
* [wmt19-de-en-6-6-big](https://huggingface.co/allenai/wmt19-de-en-6-6-big)
|
||||||
|
* [wmt19-de-en-6-6-base](https://huggingface.co/allenai/wmt19-de-en-6-6-base)
|
||||||
|
|
||||||
|
```
|
||||||
|
@misc{kasai2020deep,
|
||||||
|
title={Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation},
|
||||||
|
author={Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith},
|
||||||
|
year={2020},
|
||||||
|
eprint={2006.10369},
|
||||||
|
archivePrefix={arXiv},
|
||||||
|
primaryClass={cs.CL}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Intended uses & limitations
|
||||||
|
|
||||||
|
#### How to use
|
||||||
|
|
||||||
|
```python
|
||||||
|
from transformers.tokenization_fsmt import FSMTTokenizer
|
||||||
|
from transformers.modeling_fsmt import FSMTForConditionalGeneration
|
||||||
|
mname = "allenai/wmt19-de-en-6-6-big"
|
||||||
|
tokenizer = FSMTTokenizer.from_pretrained(mname)
|
||||||
|
model = FSMTForConditionalGeneration.from_pretrained(mname)
|
||||||
|
|
||||||
|
input = "Maschinelles Lernen ist großartig, nicht wahr?"
|
||||||
|
input_ids = tokenizer.encode(input, return_tensors="pt")
|
||||||
|
outputs = model.generate(input_ids)
|
||||||
|
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||||
|
print(decoded) # Machine learning is great, isn't it?
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Limitations and bias
|
||||||
|
|
||||||
|
|
||||||
|
## Training data
|
||||||
|
|
||||||
|
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).
|
||||||
|
|
||||||
|
## Eval results
|
||||||
|
|
||||||
|
Here are the BLEU scores:
|
||||||
|
|
||||||
|
model | transformers
|
||||||
|
-------|---------|----------
|
||||||
|
wmt19-de-en-6-6-big | 39.9
|
||||||
|
|
||||||
|
The score was calculated using this code:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/huggingface/transformers
|
||||||
|
cd transformers
|
||||||
|
export PAIR=de-en
|
||||||
|
export DATA_DIR=data/$PAIR
|
||||||
|
export SAVE_DIR=data/$PAIR
|
||||||
|
export BS=8
|
||||||
|
export NUM_BEAMS=5
|
||||||
|
mkdir -p $DATA_DIR
|
||||||
|
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
|
||||||
|
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
|
||||||
|
echo $PAIR
|
||||||
|
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/wmt19-de-en-6-6-big $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
|
||||||
|
```
|
||||||
|
|
@ -42,13 +42,26 @@ metrics:
|
|||||||
|
|
||||||
## Model description
|
## Model description
|
||||||
|
|
||||||
This is a ported version of fairseq-based wmt19 transformer created by [jungokasai]](https://github.com/jungokasai/) @ allenai for {src_lang}-{tgt_lang}.
|
This is a ported version of fairseq-based [wmt19 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.
|
||||||
|
|
||||||
|
For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).
|
||||||
|
|
||||||
2 models are available:
|
2 models are available:
|
||||||
|
|
||||||
* [wmt19-de-en-6-6-big](https://huggingface.co/allenai/wmt19-de-en-6-6-big)
|
* [wmt19-de-en-6-6-big](https://huggingface.co/allenai/wmt19-de-en-6-6-big)
|
||||||
* [wmt19-de-en-6-6-base](https://huggingface.co/allenai/wmt19-de-en-6-6-base)
|
* [wmt19-de-en-6-6-base](https://huggingface.co/allenai/wmt19-de-en-6-6-base)
|
||||||
|
|
||||||
|
```
|
||||||
|
@misc{{kasai2020deep,
|
||||||
|
title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},
|
||||||
|
author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},
|
||||||
|
year={{2020}},
|
||||||
|
eprint={{2006.10369}},
|
||||||
|
archivePrefix={{arXiv}},
|
||||||
|
primaryClass={{cs.CL}}
|
||||||
|
}}
|
||||||
|
```
|
||||||
|
|
||||||
## Intended uses & limitations
|
## Intended uses & limitations
|
||||||
|
|
||||||
#### How to use
|
#### How to use
|
||||||
@ -73,7 +86,7 @@ print(decoded) # {texts[tgt_lang]}
|
|||||||
|
|
||||||
## Training data
|
## Training data
|
||||||
|
|
||||||
Pretrained weights were left identical to the original model released by the researcher.
|
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).
|
||||||
|
|
||||||
## Eval results
|
## Eval results
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user