improve comments for examples

This commit is contained in:
patrickvonplaten 2019-12-26 00:35:11 +01:00
parent 87c8fca9bc
commit 0f6017bee3

View File

@ -614,7 +614,7 @@ class PreTrainedModel(nn.Module):
model = AutoModelWithLMHead.from_pretrained('openai-gpt') # Download model and configuration from S3 and cache.
input_context = 'The dog'
input_ids = torch.tensor(tokenizer.encode(input_context)).unsqueeze(0) # encode input context
outputs = model.generate(input_ids=input_ids, do_sample=True, num_beams=5, num_return_sequences=3) # generate 3 independent sequences using beam search decoding (5 beams) from initial context 'The dog'
outputs = model.generate(input_ids=input_ids, do_sample=True, num_beams=5, num_return_sequences=3, temperature=1.5) # generate 3 independent sequences using beam search decoding (5 beams) with sampling from initial context 'The dog'
for i in range(3): # 3 output sequences were generated
print('Generated {}: {}'.format(i, tokenizer.decode(outputs[0][i], skip_special_tokens=True)))
@ -622,7 +622,7 @@ class PreTrainedModel(nn.Module):
model = AutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from S3 and cache.
input_context = 'The dog'
input_ids = torch.tensor(tokenizer.encode(input_context)).unsqueeze(0) # encode input context
outputs = model.generate(input_ids=input_ids, max_length=40, do_sample=True, temperature=0.7, bos_token_id=tokenizer.bos_token_id, eos_token_ids=tokenizer.eos_token_id, num_beams=3) # generate sequences using beam search decoding (3 beams)
outputs = model.generate(input_ids=input_ids, max_length=40, temperature=0.7, bos_token_id=tokenizer.bos_token_id, eos_token_ids=tokenizer.eos_token_id, num_beams=3) # generate sequences using greedy beam search decoding (3 beams)
print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
tokenizer = AutoTokenizer.from_pretrained('ctrl') # Initialize tokenizer