mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Change back pipeline signatures (#3105)
* Change back pipeline signatures * String types for non-imported objects
This commit is contained in:
parent
d6df9a8ffe
commit
0ae91c80aa
@ -296,19 +296,13 @@ class Pipeline(_ScikitCompat):
|
||||
pickle format.
|
||||
|
||||
Arguments:
|
||||
model (:obj:`str` or :obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`, `optional`, defaults to :obj:`None`):
|
||||
The model that will be used by the pipeline to make predictions. This can be :obj:`None`, a string
|
||||
checkpoint identifier or an actual pre-trained model inheriting from
|
||||
model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`):
|
||||
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
|
||||
:class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for
|
||||
TensorFlow.
|
||||
|
||||
If :obj:`None`, the default of the pipeline will be loaded.
|
||||
tokenizer (:obj:`str` or :obj:`~transformers.PreTrainedTokenizer`, `optional`, defaults to :obj:`None`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This can be :obj:`None`,
|
||||
a string checkpoint identifier or an actual pre-trained tokenizer inheriting from
|
||||
tokenizer (:obj:`~transformers.PreTrainedTokenizer`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
|
||||
:class:`~transformers.PreTrainedTokenizer`.
|
||||
|
||||
If :obj:`None`, the default of the pipeline will be loaded.
|
||||
modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`, defaults to :obj:`None`):
|
||||
Model card attributed to the model for this pipeline.
|
||||
framework (:obj:`str`, `optional`, defaults to :obj:`None`):
|
||||
@ -334,12 +328,11 @@ class Pipeline(_ScikitCompat):
|
||||
"""
|
||||
|
||||
default_input_names = None
|
||||
task = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: Optional = None,
|
||||
tokenizer: PreTrainedTokenizer = None,
|
||||
model: Union["PreTrainedModel", "TFPreTrainedModel"],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
modelcard: Optional[ModelCard] = None,
|
||||
framework: Optional[str] = None,
|
||||
args_parser: ArgumentHandler = None,
|
||||
@ -350,8 +343,6 @@ class Pipeline(_ScikitCompat):
|
||||
if framework is None:
|
||||
framework = get_framework()
|
||||
|
||||
model, tokenizer = self.get_defaults(model, tokenizer, framework)
|
||||
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
self.modelcard = modelcard
|
||||
@ -483,26 +474,6 @@ class Pipeline(_ScikitCompat):
|
||||
else:
|
||||
return predictions.numpy()
|
||||
|
||||
def get_defaults(self, model, tokenizer, framework):
|
||||
task_defaults = SUPPORTED_TASKS[self.task]
|
||||
if model is None:
|
||||
if framework == "tf":
|
||||
model = task_defaults["tf"].from_pretrained(task_defaults["default"]["model"]["tf"])
|
||||
elif framework == "pt":
|
||||
model = task_defaults["pt"].from_pretrained(task_defaults["default"]["model"]["pt"])
|
||||
else:
|
||||
raise ValueError("Provided framework should be either 'tf' for TensorFlow or 'pt' for PyTorch.")
|
||||
|
||||
if tokenizer is None:
|
||||
default_tokenizer = task_defaults["default"]["tokenizer"]
|
||||
if isinstance(default_tokenizer, tuple):
|
||||
# For tuple we have (tokenizer name, {kwargs})
|
||||
tokenizer = AutoTokenizer.from_pretrained(default_tokenizer[0], **default_tokenizer[1])
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(default_tokenizer)
|
||||
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
class FeatureExtractionPipeline(Pipeline):
|
||||
"""
|
||||
@ -518,19 +489,13 @@ class FeatureExtractionPipeline(Pipeline):
|
||||
`huggingface.co/models <https://huggingface.co/models>`__.
|
||||
|
||||
Arguments:
|
||||
model (:obj:`str` or :obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`, `optional`, defaults to :obj:`None`):
|
||||
The model that will be used by the pipeline to make predictions. This can be :obj:`None`, a string
|
||||
checkpoint identifier or an actual pre-trained model inheriting from
|
||||
model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`):
|
||||
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
|
||||
:class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for
|
||||
TensorFlow.
|
||||
|
||||
If :obj:`None`, the default of the pipeline will be loaded.
|
||||
tokenizer (:obj:`str` or :obj:`~transformers.PreTrainedTokenizer`, `optional`, defaults to :obj:`None`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This can be :obj:`None`,
|
||||
a string checkpoint identifier or an actual pre-trained tokenizer inheriting from
|
||||
tokenizer (:obj:`~transformers.PreTrainedTokenizer`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
|
||||
:class:`~transformers.PreTrainedTokenizer`.
|
||||
|
||||
If :obj:`None`, the default of the pipeline will be loaded.
|
||||
modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`, defaults to :obj:`None`):
|
||||
Model card attributed to the model for this pipeline.
|
||||
framework (:obj:`str`, `optional`, defaults to :obj:`None`):
|
||||
@ -546,12 +511,10 @@ class FeatureExtractionPipeline(Pipeline):
|
||||
on the associated CUDA device id.
|
||||
"""
|
||||
|
||||
task = "feature-extraction"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: Optional = None,
|
||||
tokenizer: PreTrainedTokenizer = None,
|
||||
model: Union["PreTrainedModel", "TFPreTrainedModel"],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
modelcard: Optional[ModelCard] = None,
|
||||
framework: Optional[str] = None,
|
||||
args_parser: ArgumentHandler = None,
|
||||
@ -586,19 +549,13 @@ class TextClassificationPipeline(Pipeline):
|
||||
`huggingface.co/models <https://huggingface.co/models?search=&filter=text-classification>`__.
|
||||
|
||||
Arguments:
|
||||
model (:obj:`str` or :obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`, `optional`, defaults to :obj:`None`):
|
||||
The model that will be used by the pipeline to make predictions. This can be :obj:`None`, a string
|
||||
checkpoint identifier or an actual pre-trained model inheriting from
|
||||
model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`):
|
||||
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
|
||||
:class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for
|
||||
TensorFlow.
|
||||
|
||||
If :obj:`None`, the default of the pipeline will be loaded.
|
||||
tokenizer (:obj:`str` or :obj:`~transformers.PreTrainedTokenizer`, `optional`, defaults to :obj:`None`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This can be :obj:`None`,
|
||||
a string checkpoint identifier or an actual pre-trained tokenizer inheriting from
|
||||
tokenizer (:obj:`~transformers.PreTrainedTokenizer`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
|
||||
:class:`~transformers.PreTrainedTokenizer`.
|
||||
|
||||
If :obj:`None`, the default of the pipeline will be loaded.
|
||||
modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`, defaults to :obj:`None`):
|
||||
Model card attributed to the model for this pipeline.
|
||||
framework (:obj:`str`, `optional`, defaults to :obj:`None`):
|
||||
@ -614,8 +571,6 @@ class TextClassificationPipeline(Pipeline):
|
||||
on the associated CUDA device id.
|
||||
"""
|
||||
|
||||
task = "sentiment-analysis"
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
outputs = super().__call__(*args, **kwargs)
|
||||
scores = np.exp(outputs) / np.exp(outputs).sum(-1)
|
||||
@ -638,19 +593,13 @@ class FillMaskPipeline(Pipeline):
|
||||
`huggingface.co/models <https://huggingface.co/models?search=&filter=lm-head>`__.
|
||||
|
||||
Arguments:
|
||||
model (:obj:`str` or :obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`, `optional`, defaults to :obj:`None`):
|
||||
The model that will be used by the pipeline to make predictions. This can be :obj:`None`, a string
|
||||
checkpoint identifier or an actual pre-trained model inheriting from
|
||||
model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`):
|
||||
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
|
||||
:class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for
|
||||
TensorFlow.
|
||||
|
||||
If :obj:`None`, the default of the pipeline will be loaded.
|
||||
tokenizer (:obj:`str` or :obj:`~transformers.PreTrainedTokenizer`, `optional`, defaults to :obj:`None`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This can be :obj:`None`,
|
||||
a string checkpoint identifier or an actual pre-trained tokenizer inheriting from
|
||||
tokenizer (:obj:`~transformers.PreTrainedTokenizer`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
|
||||
:class:`~transformers.PreTrainedTokenizer`.
|
||||
|
||||
If :obj:`None`, the default of the pipeline will be loaded.
|
||||
modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`, defaults to :obj:`None`):
|
||||
Model card attributed to the model for this pipeline.
|
||||
framework (:obj:`str`, `optional`, defaults to :obj:`None`):
|
||||
@ -666,12 +615,10 @@ class FillMaskPipeline(Pipeline):
|
||||
on the associated CUDA device id.
|
||||
"""
|
||||
|
||||
task = "fill-mask"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: Optional = None,
|
||||
tokenizer: PreTrainedTokenizer = None,
|
||||
model: Union["PreTrainedModel", "TFPreTrainedModel"],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
modelcard: Optional[ModelCard] = None,
|
||||
framework: Optional[str] = None,
|
||||
args_parser: ArgumentHandler = None,
|
||||
@ -743,19 +690,13 @@ class NerPipeline(Pipeline):
|
||||
`huggingface.co/models <https://huggingface.co/models?search=&filter=token-classification>`__.
|
||||
|
||||
Arguments:
|
||||
model (:obj:`str` or :obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`, `optional`, defaults to :obj:`None`):
|
||||
The model that will be used by the pipeline to make predictions. This can be :obj:`None`, a string
|
||||
checkpoint identifier or an actual pre-trained model inheriting from
|
||||
model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`):
|
||||
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
|
||||
:class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for
|
||||
TensorFlow.
|
||||
|
||||
If :obj:`None`, the default of the pipeline will be loaded.
|
||||
tokenizer (:obj:`str` or :obj:`~transformers.PreTrainedTokenizer`, `optional`, defaults to :obj:`None`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This can be :obj:`None`,
|
||||
a string checkpoint identifier or an actual pre-trained tokenizer inheriting from
|
||||
tokenizer (:obj:`~transformers.PreTrainedTokenizer`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
|
||||
:class:`~transformers.PreTrainedTokenizer`.
|
||||
|
||||
If :obj:`None`, the default of the pipeline will be loaded.
|
||||
modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`, defaults to :obj:`None`):
|
||||
Model card attributed to the model for this pipeline.
|
||||
framework (:obj:`str`, `optional`, defaults to :obj:`None`):
|
||||
@ -769,19 +710,14 @@ class NerPipeline(Pipeline):
|
||||
device (:obj:`int`, `optional`, defaults to :obj:`-1`):
|
||||
Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, >=0 will run the model
|
||||
on the associated CUDA device id.
|
||||
|
||||
Example::
|
||||
|
||||
from transformers import pi
|
||||
"""
|
||||
|
||||
default_input_names = "sequences"
|
||||
task = "ner"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: Optional = None,
|
||||
tokenizer: PreTrainedTokenizer = None,
|
||||
model: Union["PreTrainedModel", "TFPreTrainedModel"],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
modelcard: Optional[ModelCard] = None,
|
||||
framework: Optional[str] = None,
|
||||
args_parser: ArgumentHandler = None,
|
||||
@ -928,19 +864,13 @@ class QuestionAnsweringPipeline(Pipeline):
|
||||
`huggingface.co/models <https://huggingface.co/models?search=&filter=question-answering>`__.
|
||||
|
||||
Arguments:
|
||||
model (:obj:`str` or :obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`, `optional`, defaults to :obj:`None`):
|
||||
The model that will be used by the pipeline to make predictions. This can be :obj:`None`, a string
|
||||
checkpoint identifier or an actual pre-trained model inheriting from
|
||||
model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`):
|
||||
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
|
||||
:class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for
|
||||
TensorFlow.
|
||||
|
||||
If :obj:`None`, the default of the pipeline will be loaded.
|
||||
tokenizer (:obj:`str` or :obj:`~transformers.PreTrainedTokenizer`, `optional`, defaults to :obj:`None`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This can be :obj:`None`,
|
||||
a string checkpoint identifier or an actual pre-trained tokenizer inheriting from
|
||||
tokenizer (:obj:`~transformers.PreTrainedTokenizer`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
|
||||
:class:`~transformers.PreTrainedTokenizer`.
|
||||
|
||||
If :obj:`None`, the default of the pipeline will be loaded.
|
||||
modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`, defaults to :obj:`None`):
|
||||
Model card attributed to the model for this pipeline.
|
||||
framework (:obj:`str`, `optional`, defaults to :obj:`None`):
|
||||
@ -957,12 +887,11 @@ class QuestionAnsweringPipeline(Pipeline):
|
||||
"""
|
||||
|
||||
default_input_names = "question,context"
|
||||
task = "question-answering"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: Optional = None,
|
||||
tokenizer: Optional[PreTrainedTokenizer] = None,
|
||||
model: Union["PreTrainedModel", "TFPreTrainedModel"],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
modelcard: Optional[ModelCard] = None,
|
||||
framework: Optional[str] = None,
|
||||
device: int = -1,
|
||||
|
Loading…
Reference in New Issue
Block a user