[Vision] fix small nit on BeitDropPath layers (#20587)

* fix small nit

* add last file
This commit is contained in:
Younes Belkada 2022-12-05 14:53:49 +01:00 committed by GitHub
parent e135a6c931
commit 0911057744
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 30 additions and 30 deletions

View File

@ -118,8 +118,8 @@ class BeitDropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)

View File

@ -82,8 +82,8 @@ class ConvNextDropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)

View File

@ -107,8 +107,8 @@ class CvtDropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)

View File

@ -120,8 +120,8 @@ class Data2VecVisionDropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)

View File

@ -295,8 +295,8 @@ class DinatDropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)

View File

@ -325,8 +325,8 @@ class DonutSwinDropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)

View File

@ -82,8 +82,8 @@ class GLPNDropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)

View File

@ -285,8 +285,8 @@ class MaskFormerSwinDropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)

View File

@ -289,8 +289,8 @@ class NatDropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)

View File

@ -79,8 +79,8 @@ class PoolFormerDropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)

View File

@ -114,8 +114,8 @@ class SegformerDropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)

View File

@ -397,8 +397,8 @@ class SwinDropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)

View File

@ -262,8 +262,8 @@ class Swinv2DropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)

View File

@ -83,8 +83,8 @@ class VanDropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)

View File

@ -381,8 +381,8 @@ class XCLIPDropPath(nn.Module):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)