Fix init empty weights without accelerate (#37337)

* add the integration

* Update accelerate.py

* Update accelerate.py

* add find_tied_params as well

* Update accelerate.py

* add where copied from

* simplify

* add error
This commit is contained in:
Cyril Vallez 2025-04-07 11:37:29 +02:00 committed by GitHub
parent 9db31ea585
commit 08f36771b3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 202 additions and 2 deletions

View File

@ -0,0 +1,196 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Since, https://github.com/huggingface/transformers/pull/36963, loading is always performed with models on meta
device. But since the `init_empty_weights` and `find_tied_parameters` functions are from accelerate, and accelerate is
somewhat still a soft dependency, we copy the functions here to be used natively in Transformers.
The `init_empty_weights` and `init_on_device` functions were copied from `accelerate.big_modeling.py`, and the
`find_tied_parameters` was copied from `accelerate.utils.modeling.py`
"""
from contextlib import contextmanager
from ..utils import is_torch_available, logging
if is_torch_available():
import torch
import torch.nn as nn
logger = logging.get_logger(__name__)
@contextmanager
def init_empty_weights(include_buffers: bool = False):
"""
A context manager under which models are initialized with all parameters on the meta device, therefore creating an
empty model. Useful when just initializing the model would blow the available RAM.
Args:
include_buffers (`bool`, *optional*):
Whether or not to also put all buffers on the meta device while initializing.
Example:
```python
import torch.nn as nn
from accelerate import init_empty_weights
# Initialize a model with 100 billions parameters in no time and without using any RAM.
with init_empty_weights():
tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
```
<Tip warning={true}>
Any model created under this context manager has no weights. As such you can't do something like
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
Make sure to overwrite the default device_map param for [`load_checkpoint_and_dispatch`], otherwise dispatch is not
called.
</Tip>
"""
with init_on_device(torch.device("meta"), include_buffers=include_buffers) as f:
yield f
@contextmanager
def init_on_device(device: "torch.device", include_buffers: bool = False):
"""
A context manager under which models are initialized with all parameters on the specified device.
Args:
device (`torch.device`):
Device to initialize all parameters on.
include_buffers (`bool`, *optional*):
Whether or not to also put all buffers on the meta device while initializing.
Example:
```python
import torch.nn as nn
from accelerate import init_on_device
with init_on_device(device=torch.device("cuda")):
tst = nn.Linear(100, 100) # on `cuda` device
```
"""
if include_buffers:
with device:
yield
return
old_register_parameter = nn.Module.register_parameter
if include_buffers:
old_register_buffer = nn.Module.register_buffer
def register_empty_parameter(module, name, param):
old_register_parameter(module, name, param)
if param is not None:
param_cls = type(module._parameters[name])
kwargs = module._parameters[name].__dict__
kwargs["requires_grad"] = param.requires_grad
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
def register_empty_buffer(module, name, buffer, persistent=True):
old_register_buffer(module, name, buffer, persistent=persistent)
if buffer is not None:
module._buffers[name] = module._buffers[name].to(device)
# Patch tensor creation
if include_buffers:
tensor_constructors_to_patch = {
torch_function_name: getattr(torch, torch_function_name)
for torch_function_name in ["empty", "zeros", "ones", "full"]
}
else:
tensor_constructors_to_patch = {}
def patch_tensor_constructor(fn):
def wrapper(*args, **kwargs):
kwargs["device"] = device
return fn(*args, **kwargs)
return wrapper
try:
nn.Module.register_parameter = register_empty_parameter
if include_buffers:
nn.Module.register_buffer = register_empty_buffer
for torch_function_name in tensor_constructors_to_patch.keys():
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
yield
finally:
nn.Module.register_parameter = old_register_parameter
if include_buffers:
nn.Module.register_buffer = old_register_buffer
for torch_function_name, old_torch_function in tensor_constructors_to_patch.items():
setattr(torch, torch_function_name, old_torch_function)
def find_tied_parameters(model: "nn.Module", **kwargs):
"""
Find the tied parameters in a given model.
<Tip warning={true}>
The signature accepts keyword arguments, but they are for the recursive part of this function and you should ignore
them.
</Tip>
Args:
model (`torch.nn.Module`): The model to inspect.
Returns:
List[List[str]]: A list of lists of parameter names being all tied together.
Example:
```py
>>> from collections import OrderedDict
>>> import torch.nn as nn
>>> model = nn.Sequential(OrderedDict([("linear1", nn.Linear(4, 4)), ("linear2", nn.Linear(4, 4))]))
>>> model.linear2.weight = model.linear1.weight
>>> find_tied_parameters(model)
[['linear1.weight', 'linear2.weight']]
```
"""
# get ALL model parameters and thier names
all_named_parameters = dict(model.named_parameters(remove_duplicate=False))
# get ONLY unique named parameters,
# if parameter is tied and have multiple names, it will be included only once
no_duplicate_named_parameters = dict(model.named_parameters(remove_duplicate=True))
# the difference of the two sets will give us the tied parameters
tied_param_names = set(all_named_parameters.keys()) - set(no_duplicate_named_parameters.keys())
# 'tied_param_names' contains the names of parameters that are tied in the model, but we do not know
# which names refer to the same parameter. To identify this, we need to group them together.
tied_param_groups = {}
for tied_param_name in tied_param_names:
tied_param = all_named_parameters[tied_param_name]
for param_name, param in no_duplicate_named_parameters.items():
# compare if parameters are the same, if so, group thier names together
if param is tied_param:
if param_name not in tied_param_groups:
tied_param_groups[param_name] = []
tied_param_groups[param_name].append(tied_param_name)
return [sorted([weight] + list(set(tied))) for weight, tied in tied_param_groups.items()]

View File

@ -57,6 +57,7 @@ from .configuration_utils import PretrainedConfig
from .dynamic_module_utils import custom_object_save
from .generation import CompileConfig, GenerationConfig, GenerationMixin
from .integrations import PeftAdapterMixin, deepspeed_config, is_deepspeed_zero3_enabled
from .integrations.accelerate import find_tied_parameters, init_empty_weights
from .integrations.deepspeed import _load_state_dict_into_zero3_model, is_deepspeed_available
from .integrations.flash_attention import flash_attention_forward
from .integrations.flex_attention import flex_attention_forward
@ -131,12 +132,11 @@ XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()
if is_accelerate_available():
from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights
from accelerate import dispatch_model, infer_auto_device_map
from accelerate.hooks import add_hook_to_module
from accelerate.utils import (
check_tied_parameters_on_same_device,
extract_model_from_parallel,
find_tied_parameters,
get_balanced_memory,
get_max_memory,
load_offloaded_weights,
@ -4135,6 +4135,10 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
if device_map is not None:
if is_deepspeed_zero3_enabled():
raise ValueError("DeepSpeed Zero-3 is not compatible with passing a `device_map`.")
if not is_accelerate_available():
raise ValueError(
"Using a `device_map` or `tp_plan` requires `accelerate`. You can install it with `pip install accelerate`"
)
# handling bnb config from kwargs, remove after `load_in_{4/8}bit` deprecation.
if load_in_4bit or load_in_8bit: