mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
[Modelcard] bart-squadv2 (#5011)
* [Modelcard] bart-squadv2 * Update README.md * Update README.md
This commit is contained in:
parent
35e0687256
commit
06b60c8b05
76
model_cards/a-ware/bart-squadv2/README.md
Normal file
76
model_cards/a-ware/bart-squadv2/README.md
Normal file
@ -0,0 +1,76 @@
|
||||
---
|
||||
datasets:
|
||||
- squad_v2
|
||||
---
|
||||
|
||||
# BART-LARGE finetuned on SQuADv2
|
||||
|
||||
This is bart-large model finetuned on SQuADv2 dataset for question answering task
|
||||
|
||||
## Model details
|
||||
BART was propsed in the [paper](https://arxiv.org/abs/1910.13461) **BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension**.
|
||||
BART is a seq2seq model intended for both NLG and NLU tasks.
|
||||
|
||||
To use BART for question answering tasks, we feed the complete document into the encoder and decoder, and use the top
|
||||
hidden state of the decoder as a representation for each
|
||||
word. This representation is used to classify the token. As given in the paper bart-large achives comparable to ROBERTa on SQuAD.
|
||||
Another notable thing about BART is that it can handle sequences with upto 1024 tokens.
|
||||
|
||||
| Param | #Value |
|
||||
|---------------------|--------|
|
||||
| encoder layers | 12 |
|
||||
| decoder layers | 12 |
|
||||
| hidden size | 4096 |
|
||||
| num attetion heads | 16 |
|
||||
| on disk size | 1.63GB |
|
||||
|
||||
|
||||
## Model training
|
||||
This model was trained with following parameters using simpletransformers wrapper:
|
||||
```
|
||||
train_args = {
|
||||
'learning_rate': 1e-5,
|
||||
'max_seq_length': 512,
|
||||
'doc_stride': 512,
|
||||
'overwrite_output_dir': True,
|
||||
'reprocess_input_data': False,
|
||||
'train_batch_size': 8,
|
||||
'num_train_epochs': 2,
|
||||
'gradient_accumulation_steps': 2,
|
||||
'no_cache': True,
|
||||
'use_cached_eval_features': False,
|
||||
'save_model_every_epoch': False,
|
||||
'output_dir': "bart-squadv2",
|
||||
'eval_batch_size': 32,
|
||||
'fp16_opt_level': 'O2',
|
||||
}
|
||||
```
|
||||
|
||||
[You can even train your own model using this colab notebook](https://colab.research.google.com/drive/1I5cK1M_0dLaf5xoewh6swcm5nAInfwHy?usp=sharing)
|
||||
|
||||
## Results
|
||||
```{"correct": 6832, "similar": 4409, "incorrect": 632, "eval_loss": -14.950117511952177}```
|
||||
|
||||
## Model in Action 🚀
|
||||
```python3
|
||||
from transformers import BartTokenizer, BartForQuestionAnswering
|
||||
import torch
|
||||
|
||||
tokenizer = BartTokenizer.from_pretrained('a-ware/bart-squadv2')
|
||||
model = BartForQuestionAnswering.from_pretrained('a-ware/bart-squadv2')
|
||||
|
||||
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
||||
encoding = tokenizer.encode_plus(question, text, return_tensors='pt')
|
||||
input_ids = encoding['input_ids']
|
||||
attention_mask = encoding['attention_mask']
|
||||
|
||||
start_scores, end_scores = model(input_ids, attention_mask=attention_mask, output_attentions=False)[:2]
|
||||
|
||||
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
||||
answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1])
|
||||
answer = tokenizer.convert_tokens_to_ids(answer.split())
|
||||
answer = tokenizer.decode(answer)
|
||||
#answer => 'a nice puppet'
|
||||
```
|
||||
|
||||
> Created with ❤️ by A-ware UG [](https://github.com/aware-ai)
|
Loading…
Reference in New Issue
Block a user