Only resize embeddings when necessary (#20043)

* Only resize embeddings when necessary

* Add comment
This commit is contained in:
Sylvain Gugger 2022-11-03 12:05:04 -04:00 committed by GitHub
parent 9080607b2c
commit 06886d5a68
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 87 additions and 17 deletions

View File

@ -387,7 +387,11 @@ def main():
n_params = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.

View File

@ -378,7 +378,11 @@ def main():
logger.info("Training new model from scratch")
model = AutoModelForCausalLM.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.

View File

@ -389,7 +389,11 @@ def main():
logger.info("Training new model from scratch")
model = AutoModelForMaskedLM.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.

View File

@ -383,7 +383,11 @@ def main():
logger.info("Training new model from scratch")
model = AutoModelForMaskedLM.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.

View File

@ -376,7 +376,11 @@ def main():
logger.info("Training new model from scratch")
model = XLNetLMHeadModel(config)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.

View File

@ -398,7 +398,11 @@ def main():
logger.info("Training new model from scratch")
model = AutoModelForMultipleChoice.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.

View File

@ -380,7 +380,11 @@ def main():
use_auth_token=True if model_args.use_auth_token else None,
)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

View File

@ -422,7 +422,11 @@ def main():
use_auth_token=True if model_args.use_auth_token else None,
)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
if isinstance(tokenizer, MBartTokenizer):

View File

@ -439,7 +439,11 @@ def main():
logger.info("Training new model from scratch")
model = AutoModelForSeq2SeqLM.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

View File

@ -414,7 +414,13 @@ def main():
logger.info("Training new model from scratch")
model = AutoModelForTokenClassification.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# Model has labels -> use them.
if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id:

View File

@ -380,7 +380,11 @@ def main():
use_auth_token=True if model_args.use_auth_token else None,
)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# Set decoder_start_token_id
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):

View File

@ -411,7 +411,11 @@ def main():
logger.info("Training new model from scratch")
model = AutoModelForSeq2SeqLM.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# Set decoder_start_token_id
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):

View File

@ -473,7 +473,11 @@ def main():
logger.info("Training new model from scratch")
model = TFAutoModelForCausalLM.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# endregion
# region TF Dataset preparation

View File

@ -489,7 +489,11 @@ def main():
logger.info("Training new model from scratch")
model = TFAutoModelForMaskedLM.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# endregion
# region TF Dataset preparation

View File

@ -516,7 +516,11 @@ def main():
use_auth_token=True if model_args.use_auth_token else None,
)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# endregion
# region Prepare TF Dataset objects

View File

@ -385,7 +385,11 @@ def main():
logger.info("Training new model from scratch")
model = TFAutoModelForTokenClassification.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# endregion
# region Create TF datasets

View File

@ -469,7 +469,11 @@ def main():
use_auth_token=True if model_args.use_auth_token else None,
)
model.resize_token_embeddings(len(tokenizer))
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
model.config.forced_bos_token_id = forced_bos_token_id
# endregion