mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 19:21:31 +06:00
Add type hints for UniSpeech (#16399)
* Add type hints for UniSpeech * Added type hints for UniSpeechSat * Added type hints for Wave2Vec2 (PT) * Added type hints for models dependent of wave2vec
This commit is contained in:
parent
875e07a9e3
commit
0540d1b6c0
@ -977,13 +977,13 @@ class Data2VecAudioModel(Data2VecAudioPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
mask_time_indices=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
mask_time_indices: Optional[torch.FloatTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, Data2VecAudioBaseModelOutput]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
@ -1085,13 +1085,13 @@ class Data2VecAudioForCTC(Data2VecAudioPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, CausalLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
||||
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
|
||||
@ -1221,13 +1221,13 @@ class Data2VecAudioForSequenceClassification(Data2VecAudioPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, SequenceClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
@ -1342,12 +1342,12 @@ class Data2VecAudioForAudioFrameClassification(Data2VecAudioPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, TokenClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
@ -1519,13 +1519,13 @@ class Data2VecAudioForXVector(Data2VecAudioPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, XVectorOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
|
@ -1008,13 +1008,13 @@ class HubertModel(HubertPreTrainedModel):
|
||||
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
mask_time_indices=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
mask_time_indices: Optional[torch.FloatTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutput]:
|
||||
"""
|
||||
|
||||
Returns:
|
||||
@ -1135,13 +1135,13 @@ class HubertForCTC(HubertPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, CausalLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
||||
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
|
||||
@ -1271,13 +1271,13 @@ class HubertForSequenceClassification(HubertPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, SequenceClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
|
@ -914,13 +914,13 @@ class SEWModel(SEWPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
mask_time_indices=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
mask_time_indices: Optional[torch.FloatTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutput]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
@ -1018,13 +1018,13 @@ class SEWForCTC(SEWPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, CausalLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
||||
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
|
||||
@ -1154,13 +1154,13 @@ class SEWForSequenceClassification(SEWPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, SequenceClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
|
@ -1427,13 +1427,13 @@ class SEWDModel(SEWDPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
mask_time_indices=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
mask_time_indices: Optional[torch.FloatTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutput]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
@ -1531,13 +1531,13 @@ class SEWDForCTC(SEWDPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, CausalLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
||||
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
|
||||
@ -1667,13 +1667,13 @@ class SEWDForSequenceClassification(SEWDPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, SequenceClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
|
@ -1160,13 +1160,13 @@ class UniSpeechModel(UniSpeechPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
mask_time_indices=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
mask_time_indices: Optional[torch.FloatTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, UniSpeechBaseModelOutput]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
@ -1274,12 +1274,12 @@ class UniSpeechForPreTraining(UniSpeechPreTrainedModel):
|
||||
@replace_return_docstrings(output_type=UniSpeechForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, UniSpeechForPreTrainingOutput]:
|
||||
r"""
|
||||
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
|
||||
@ -1412,13 +1412,13 @@ class UniSpeechForCTC(UniSpeechPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, CausalLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
||||
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
|
||||
@ -1548,13 +1548,13 @@ class UniSpeechForSequenceClassification(UniSpeechPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, SequenceClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
|
@ -1199,13 +1199,13 @@ class UniSpeechSatModel(UniSpeechSatPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
mask_time_indices=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
mask_time_indices: Optional[torch.FloatTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, UniSpeechSatBaseModelOutput]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
@ -1318,12 +1318,12 @@ class UniSpeechSatForPreTraining(UniSpeechSatPreTrainedModel):
|
||||
@replace_return_docstrings(output_type=UniSpeechSatForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, UniSpeechSatForPreTrainingOutput]:
|
||||
r"""
|
||||
Returns:
|
||||
|
||||
@ -1440,13 +1440,13 @@ class UniSpeechSatForCTC(UniSpeechSatPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, CausalLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
||||
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
|
||||
@ -1576,13 +1576,13 @@ class UniSpeechSatForSequenceClassification(UniSpeechSatPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, SequenceClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
@ -1697,12 +1697,12 @@ class UniSpeechSatForAudioFrameClassification(UniSpeechSatPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, TokenClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
@ -1874,13 +1874,13 @@ class UniSpeechSatForXVector(UniSpeechSatPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, XVectorOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
|
@ -1331,13 +1331,13 @@ class Wav2Vec2Model(Wav2Vec2PreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
mask_time_indices=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
mask_time_indices: Optional[torch.FloatTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
@ -1448,14 +1448,14 @@ class Wav2Vec2ForPreTraining(Wav2Vec2PreTrainedModel):
|
||||
@replace_return_docstrings(output_type=Wav2Vec2ForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
mask_time_indices=None,
|
||||
sampled_negative_indices=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
mask_time_indices: Optional[torch.BoolTensor] = None,
|
||||
sampled_negative_indices: Optional[torch.BoolTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, Wav2Vec2ForPreTrainingOutput]:
|
||||
r"""
|
||||
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
|
||||
@ -1696,13 +1696,13 @@ class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, CausalLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
||||
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
|
||||
@ -1831,13 +1831,13 @@ class Wav2Vec2ForSequenceClassification(Wav2Vec2PreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, SequenceClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
@ -1951,12 +1951,12 @@ class Wav2Vec2ForAudioFrameClassification(Wav2Vec2PreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, TokenClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
@ -2125,13 +2125,13 @@ class Wav2Vec2ForXVector(Wav2Vec2PreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, XVectorOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
|
@ -1282,13 +1282,13 @@ class WavLMModel(WavLMPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
mask_time_indices=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
mask_time_indices: Optional[torch.FloatTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, WavLMBaseModelOutput]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
@ -1390,13 +1390,13 @@ class WavLMForCTC(WavLMPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, CausalLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
||||
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
|
||||
@ -1526,13 +1526,13 @@ class WavLMForSequenceClassification(WavLMPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, SequenceClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
@ -1647,12 +1647,12 @@ class WavLMForAudioFrameClassification(WavLMPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, TokenClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
@ -1824,13 +1824,13 @@ class WavLMForXVector(WavLMPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_values,
|
||||
attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
):
|
||||
input_values: Optional[torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
) -> Union[Tuple, XVectorOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
|
Loading…
Reference in New Issue
Block a user