Fix torch version comparisons (#18460)

Comparisons like
version.parse(torch.__version__) > version.parse("1.6")
are True for torch==1.6.0+cu101 or torch==1.6.0+cpu

version.parse(version.parse(torch.__version__).base_version) are preferred (and available in pytorch_utils.py
This commit is contained in:
LSinev 2022-08-03 20:37:18 +03:00 committed by GitHub
parent be41eaf55f
commit 02b176c4ce
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
34 changed files with 164 additions and 87 deletions

View File

@ -30,7 +30,7 @@ from transformers import (
if is_apex_available():
from apex import amp
if version.parse(torch.__version__) >= version.parse("1.6"):
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_is_native_amp_available = True
from torch.cuda.amp import autocast

View File

@ -33,7 +33,7 @@ if is_apex_available():
from apex import amp
if version.parse(torch.__version__) >= version.parse("1.6"):
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_is_native_amp_available = True
from torch.cuda.amp import autocast

View File

@ -26,7 +26,7 @@ from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices
if is_apex_available():
from apex import amp
if version.parse(torch.__version__) >= version.parse("1.6"):
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_is_native_amp_available = True
from torch.cuda.amp import autocast

View File

@ -44,7 +44,7 @@ class GELUActivation(nn.Module):
def __init__(self, use_gelu_python: bool = False):
super().__init__()
if version.parse(torch.__version__) < version.parse("1.4") or use_gelu_python:
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.4") or use_gelu_python:
self.act = self._gelu_python
else:
self.act = nn.functional.gelu
@ -110,7 +110,7 @@ class SiLUActivation(nn.Module):
def __init__(self):
super().__init__()
if version.parse(torch.__version__) < version.parse("1.7"):
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.7"):
self.act = self._silu_python
else:
self.act = nn.functional.silu
@ -130,7 +130,7 @@ class MishActivation(nn.Module):
def __init__(self):
super().__init__()
if version.parse(torch.__version__) < version.parse("1.9"):
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.9"):
self.act = self._mish_python
else:
self.act = nn.functional.mish

View File

@ -273,6 +273,8 @@ def convert_pytorch(nlp: Pipeline, opset: int, output: Path, use_external_format
import torch
from torch.onnx import export
from .pytorch_utils import is_torch_less_than_1_11
print(f"Using framework PyTorch: {torch.__version__}")
with torch.no_grad():
@ -281,7 +283,7 @@ def convert_pytorch(nlp: Pipeline, opset: int, output: Path, use_external_format
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if parse(torch.__version__) <= parse("1.10.99"):
if is_torch_less_than_1_11:
export(
nlp.model,
model_args,

View File

@ -20,7 +20,6 @@ from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import torch
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -35,7 +34,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
@ -212,7 +216,7 @@ class AlbertEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),

View File

@ -24,7 +24,6 @@ from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -41,7 +40,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
@ -195,7 +199,7 @@ class BertEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),

View File

@ -23,7 +23,6 @@ from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -38,7 +37,7 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward
from ...pytorch_utils import apply_chunking_to_forward, is_torch_greater_than_1_6
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
@ -260,7 +259,7 @@ class BigBirdEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),

View File

@ -22,7 +22,6 @@ from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -36,7 +35,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_convbert import ConvBertConfig
@ -194,7 +198,7 @@ class ConvBertEmbeddings(nn.Module):
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),

View File

@ -19,7 +19,6 @@ from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -35,7 +34,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
@ -83,7 +87,7 @@ class Data2VecTextForTextEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),

View File

@ -21,12 +21,16 @@ from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from ...activations import ACT2FN
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
from ...pytorch_utils import (
Conv1D,
find_pruneable_heads_and_indices,
is_torch_greater_or_equal_than_1_6,
prune_conv1d_layer,
)
from ...utils import (
ModelOutput,
add_start_docstrings,
@ -36,7 +40,7 @@ from ...utils import (
)
if version.parse(torch.__version__) >= version.parse("1.6"):
if is_torch_greater_or_equal_than_1_6:
is_amp_available = True
from torch.cuda.amp import autocast
else:

View File

@ -23,7 +23,6 @@ from typing import Dict, List, Optional, Set, Tuple, Union
import numpy as np
import torch
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -40,7 +39,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
@ -102,7 +106,7 @@ class Embeddings(nn.Module):
self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12)
self.dropout = nn.Dropout(config.dropout)
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)

View File

@ -21,7 +21,6 @@ from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -37,7 +36,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
@ -165,7 +169,7 @@ class ElectraEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),

View File

@ -19,10 +19,10 @@ import random
from typing import Dict, Optional, Tuple, Union
import torch
from packaging import version
from torch import nn
from ...modeling_outputs import BaseModelOutput
from ...pytorch_utils import is_torch_greater_than_1_6
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from ..xlm.modeling_xlm import (
XLMForMultipleChoice,
@ -139,7 +139,7 @@ class FlaubertModel(XLMModel):
super().__init__(config)
self.layerdrop = getattr(config, "layerdrop", 0.0)
self.pre_norm = getattr(config, "pre_norm", False)
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)

View File

@ -22,7 +22,6 @@ from typing import Any, Dict, List, Optional, Set, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from transformers.utils.doc import add_code_sample_docstrings
@ -30,6 +29,7 @@ from transformers.utils.doc import add_code_sample_docstrings
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import is_torch_greater_than_1_6
from ...utils import (
ModelOutput,
add_start_docstrings,
@ -392,7 +392,7 @@ class FlavaTextEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),

View File

@ -21,7 +21,6 @@ from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -44,7 +43,7 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward
from ...pytorch_utils import apply_chunking_to_forward, is_torch_greater_than_1_6
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
@ -118,7 +117,7 @@ class FNetEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),

View File

@ -22,12 +22,18 @@ from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...pytorch_utils import (
Conv1D,
find_pruneable_heads_and_indices,
is_torch_greater_or_equal_than_1_6,
prune_conv1d_layer,
)
if version.parse(torch.__version__) >= version.parse("1.6"):
if is_torch_greater_or_equal_than_1_6:
is_amp_available = True
from torch.cuda.amp import autocast
else:
@ -41,7 +47,6 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,

View File

@ -21,12 +21,18 @@ from typing import Any, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...pytorch_utils import (
Conv1D,
find_pruneable_heads_and_indices,
is_torch_greater_or_equal_than_1_6,
prune_conv1d_layer,
)
if version.parse(torch.__version__) >= version.parse("1.6"):
if is_torch_greater_or_equal_than_1_6:
is_amp_available = True
from torch.cuda.amp import autocast
else:
@ -39,7 +45,6 @@ from ...modeling_outputs import (
SequenceClassifierOutputWithPast,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_imagegpt import ImageGPTConfig

View File

@ -21,7 +21,6 @@ from typing import Optional
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from ...activations import ACT2FN
@ -34,6 +33,7 @@ from ...modeling_utils import (
find_pruneable_heads_and_indices,
prune_linear_layer,
)
from ...pytorch_utils import is_torch_greater_than_1_6
from ...utils import logging
from .configuration_mctct import MCTCTConfig
@ -153,7 +153,7 @@ class MCTCTEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),

View File

@ -23,7 +23,6 @@ from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -39,7 +38,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
@ -183,7 +187,7 @@ class NezhaEmbeddings(nn.Module):
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros((1, config.max_position_embeddings), dtype=torch.long),

View File

@ -20,7 +20,6 @@ from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -34,7 +33,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_nystromformer import NystromformerConfig
@ -68,7 +72,7 @@ class NystromformerEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),

View File

@ -23,7 +23,6 @@ from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -40,7 +39,7 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import find_pruneable_heads_and_indices, is_torch_greater_than_1_6, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
@ -167,7 +166,7 @@ class QDQBertEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),

View File

@ -20,7 +20,6 @@ from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from packaging import version
from torch import nn
from torch.nn import CrossEntropyLoss
@ -32,7 +31,12 @@ from ...modeling_outputs import (
ModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_realm import RealmConfig
@ -181,7 +185,7 @@ class RealmEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),

View File

@ -20,7 +20,6 @@ from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -36,7 +35,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
@ -83,7 +87,7 @@ class RobertaEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),

View File

@ -21,7 +21,6 @@ from typing import List, Optional, Tuple
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import CrossEntropyLoss
@ -35,14 +34,19 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
find_pruneable_heads_and_indices,
is_torch_greater_or_equal_than_1_10,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_vilt import ViltConfig
logger = logging.get_logger(__name__)
if version.parse(torch.__version__) < version.parse("1.10.0"):
if not is_torch_greater_or_equal_than_1_10:
logger.warning(
f"You are using torch=={torch.__version__}, but torch>=1.10.0 is required to use "
"ViltModel. Please upgrade torch."
@ -251,7 +255,7 @@ class TextEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),

View File

@ -19,7 +19,6 @@ from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -35,7 +34,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
@ -76,7 +80,7 @@ class XLMRobertaXLEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),

View File

@ -21,7 +21,6 @@ from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -35,7 +34,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_yoso import YosoConfig
@ -257,7 +261,7 @@ class YosoEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),

View File

@ -34,6 +34,7 @@ from .config import OnnxConfig
if is_torch_available():
from ..modeling_utils import PreTrainedModel
from ..pytorch_utils import is_torch_less_than_1_11
if is_tf_available():
from ..modeling_tf_utils import TFPreTrainedModel
@ -155,7 +156,7 @@ def export_pytorch(
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if parse(torch.__version__) < parse("1.10"):
if is_torch_less_than_1_11:
# export can work with named args but the dict containing named args
# has to be the last element of the args tuple.
try:

View File

@ -967,7 +967,9 @@ class Pipeline(_ScikitCompat):
def get_inference_context(self):
inference_context = (
torch.inference_mode if version.parse(torch.__version__) >= version.parse("1.9.0") else torch.no_grad
torch.inference_mode
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.9.0")
else torch.no_grad
)
return inference_context

View File

@ -25,8 +25,12 @@ ALL_LAYERNORM_LAYERS = [nn.LayerNorm]
logger = logging.get_logger(__name__)
is_torch_less_than_1_8 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.8.0")
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
parsed_torch_version_base = version.parse(version.parse(torch.__version__).base_version)
is_torch_greater_or_equal_than_1_6 = parsed_torch_version_base >= version.parse("1.6.0")
is_torch_greater_than_1_6 = parsed_torch_version_base > version.parse("1.6.0")
is_torch_less_than_1_8 = parsed_torch_version_base < version.parse("1.8.0")
is_torch_greater_or_equal_than_1_10 = parsed_torch_version_base >= version.parse("1.10")
is_torch_less_than_1_11 = parsed_torch_version_base < version.parse("1.11")
def torch_int_div(tensor1, tensor2):

View File

@ -71,7 +71,12 @@ from .modelcard import TrainingSummary
from .modeling_utils import PreTrainedModel, load_sharded_checkpoint, unwrap_model
from .models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, MODEL_MAPPING_NAMES
from .optimization import Adafactor, get_scheduler
from .pytorch_utils import ALL_LAYERNORM_LAYERS
from .pytorch_utils import (
ALL_LAYERNORM_LAYERS,
is_torch_greater_or_equal_than_1_6,
is_torch_greater_or_equal_than_1_10,
is_torch_less_than_1_11,
)
from .tokenization_utils_base import PreTrainedTokenizerBase
from .trainer_callback import (
CallbackHandler,
@ -165,11 +170,11 @@ if is_in_notebook():
if is_apex_available():
from apex import amp
if version.parse(torch.__version__) >= version.parse("1.6"):
if is_torch_greater_or_equal_than_1_6:
_is_torch_generator_available = True
_is_native_cuda_amp_available = True
if version.parse(torch.__version__) >= version.parse("1.10"):
if is_torch_greater_or_equal_than_1_10:
_is_native_cpu_amp_available = True
if is_datasets_available():
@ -405,7 +410,7 @@ class Trainer:
# Would have to update setup.py with torch>=1.12.0
# which isn't ideally given that it will force people not using FSDP to also use torch>=1.12.0
# below is the current alternative.
if version.parse(torch.__version__) < version.parse("1.12.0"):
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.12.0"):
raise ValueError("FSDP requires PyTorch >= 1.12.0")
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
@ -1676,7 +1681,7 @@ class Trainer:
is_random_sampler = hasattr(train_dataloader, "sampler") and isinstance(
train_dataloader.sampler, RandomSampler
)
if version.parse(torch.__version__) < version.parse("1.11") or not is_random_sampler:
if is_torch_less_than_1_11 or not is_random_sampler:
# We just need to begin an iteration to create the randomization of the sampler.
# That was before PyTorch 1.11 however...
for _ in train_dataloader:
@ -2430,7 +2435,7 @@ class Trainer:
arguments, depending on the situation.
"""
if self.use_cuda_amp or self.use_cpu_amp:
if version.parse(torch.__version__) >= version.parse("1.10"):
if is_torch_greater_or_equal_than_1_10:
ctx_manager = (
torch.cpu.amp.autocast(dtype=self.amp_dtype)
if self.use_cpu_amp

View File

@ -835,7 +835,7 @@ def _get_learning_rate(self):
last_lr = (
# backward compatibility for pytorch schedulers
self.lr_scheduler.get_last_lr()[0]
if version.parse(torch.__version__) >= version.parse("1.4")
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.4")
else self.lr_scheduler.get_lr()[0]
)
return last_lr

View File

@ -300,7 +300,7 @@ def is_torch_bf16_gpu_available():
# 4. torch.autocast exists
# XXX: one problem here is that it may give invalid results on mixed gpus setup, so it's
# really only correct for the 0th gpu (or currently set default device if different from 0)
if version.parse(torch.__version__) < version.parse("1.10"):
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.10"):
return False
if torch.cuda.is_available() and torch.version.cuda is not None:
@ -322,7 +322,7 @@ def is_torch_bf16_cpu_available():
import torch
if version.parse(torch.__version__) < version.parse("1.10"):
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.10"):
return False
try:
@ -357,7 +357,7 @@ def is_torch_tf32_available():
return False
if int(torch.version.cuda.split(".")[0]) < 11:
return False
if version.parse(torch.__version__) < version.parse("1.7"):
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.7"):
return False
return True

View File

@ -22,7 +22,6 @@ import os
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from typing import Optional, Tuple, Union
@ -48,6 +47,7 @@ from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
prune_linear_layer,
is_torch_greater_than_1_6,
)
from ...utils import logging
from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Config
@ -157,7 +157,7 @@ class {{cookiecutter.camelcase_modelname}}Embeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),