mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-30 17:52:35 +06:00
Merge branch 'main' into add-bagel
This commit is contained in:
commit
00d01786ab
2
.github/workflows/self-comment-ci.yml
vendored
2
.github/workflows/self-comment-ci.yml
vendored
@ -29,7 +29,7 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Get PR number
|
||||
# For security: only allow team members to run
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
outputs:
|
||||
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
|
||||
steps:
|
||||
|
@ -93,6 +93,9 @@ RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch]
|
||||
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
|
||||
# Uninstall flash-attn installed by autoawq, it causes issues here : https://github.com/huggingface/transformers/actions/runs/15915442841/job/44892146131
|
||||
RUN python3 -m pip uninstall -y flash-attn
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
@ -473,13 +473,6 @@ Hier ist zum Beispiel ein Test, der nur ausgeführt werden muss, wenn 2 oder meh
|
||||
def test_example_with_multi_gpu():
|
||||
```
|
||||
|
||||
Wenn ein Test `tensorflow` benötigt, verwenden Sie den Dekorator `require_tf`. Zum Beispiel:
|
||||
|
||||
```python no-style
|
||||
@require_tf
|
||||
def test_tf_thing_with_tensorflow():
|
||||
```
|
||||
|
||||
Diese Dekors können gestapelt werden. Wenn zum Beispiel ein Test langsam ist und mindestens eine GPU unter pytorch benötigt, können Sie
|
||||
wie Sie ihn einrichten können:
|
||||
|
||||
@ -1204,9 +1197,6 @@ if torch.cuda.is_available():
|
||||
import numpy as np
|
||||
|
||||
np.random.seed(seed)
|
||||
|
||||
# tf RNG
|
||||
tf.random.set_seed(seed)
|
||||
```
|
||||
|
||||
### Tests debuggen
|
||||
|
@ -17,12 +17,12 @@
|
||||
title: Customizing model components
|
||||
- local: model_sharing
|
||||
title: Sharing
|
||||
- local: add_new_model
|
||||
title: Adding a new model to Transformers
|
||||
- local: modular_transformers
|
||||
title: Modular Transformers
|
||||
title: Contributing a new model to Transformers
|
||||
- local: add_new_model
|
||||
title: Legacy model contribution
|
||||
- local: auto_docstring
|
||||
title: Document your models
|
||||
title: Documenting a model
|
||||
- local: attention_interface
|
||||
title: Customizing attention function
|
||||
title: Models
|
||||
@ -97,7 +97,7 @@
|
||||
- local: perf_infer_gpu_one
|
||||
title: GPU
|
||||
- local: perf_infer_gpu_multi
|
||||
title: Distributed GPU inference
|
||||
title: Distributed inference
|
||||
- local: perf_infer_cpu
|
||||
title: CPU
|
||||
- local: tf_xla
|
||||
@ -363,6 +363,8 @@
|
||||
- sections:
|
||||
- local: model_doc/albert
|
||||
title: ALBERT
|
||||
- local: model_doc/arcee
|
||||
title: Arcee
|
||||
- local: model_doc/bamba
|
||||
title: Bamba
|
||||
- local: model_doc/bart
|
||||
@ -431,6 +433,8 @@
|
||||
title: DiffLlama
|
||||
- local: model_doc/distilbert
|
||||
title: DistilBERT
|
||||
- local: model_doc/dots1
|
||||
title: dots1
|
||||
- local: model_doc/dpr
|
||||
title: DPR
|
||||
- local: model_doc/electra
|
||||
@ -653,6 +657,8 @@
|
||||
title: SwitchTransformers
|
||||
- local: model_doc/t5
|
||||
title: T5
|
||||
- local: model_doc/t5gemma
|
||||
title: T5Gemma
|
||||
- local: model_doc/t5v1.1
|
||||
title: T5v1.1
|
||||
- local: model_doc/tapex
|
||||
@ -731,6 +737,8 @@
|
||||
title: EfficientFormer
|
||||
- local: model_doc/efficientnet
|
||||
title: EfficientNet
|
||||
- local: model_doc/eomt
|
||||
title: EoMT
|
||||
- local: model_doc/focalnet
|
||||
title: FocalNet
|
||||
- local: model_doc/glpn
|
||||
@ -833,6 +841,8 @@
|
||||
title: CSM
|
||||
- local: model_doc/dac
|
||||
title: dac
|
||||
- local: model_doc/dia
|
||||
title: Dia
|
||||
- local: model_doc/encodec
|
||||
title: EnCodec
|
||||
- local: model_doc/fastspeech2_conformer
|
||||
@ -841,6 +851,8 @@
|
||||
title: GraniteSpeech
|
||||
- local: model_doc/hubert
|
||||
title: Hubert
|
||||
- local: model_doc/kyutai_speech_to_text
|
||||
title: Kyutai Speech-To-Text
|
||||
- local: model_doc/mctct
|
||||
title: MCTCT
|
||||
- local: model_doc/mimi
|
||||
@ -949,8 +961,12 @@
|
||||
title: FLAVA
|
||||
- local: model_doc/gemma3
|
||||
title: Gemma3
|
||||
- local: model_doc/gemma3n
|
||||
title: Gemma3n
|
||||
- local: model_doc/git
|
||||
title: GIT
|
||||
- local: model_doc/glm4v
|
||||
title: glm4v
|
||||
- local: model_doc/got_ocr2
|
||||
title: GOT-OCR2
|
||||
- local: model_doc/granitevision
|
||||
@ -1043,6 +1059,8 @@
|
||||
title: SigLIP
|
||||
- local: model_doc/siglip2
|
||||
title: SigLIP2
|
||||
- local: model_doc/smollm3
|
||||
title: SmolLM3
|
||||
- local: model_doc/smolvlm
|
||||
title: SmolVLM
|
||||
- local: model_doc/speech-encoder-decoder
|
||||
|
@ -13,7 +13,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Adding a new model to Transformers
|
||||
# Legacy model contribution
|
||||
|
||||
> [!TIP]
|
||||
> Try adding new models with a more [modular](./modular_transformers) approach first. This makes it significantly easier to contribute a model to Transformers!
|
||||
|
@ -14,43 +14,26 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Utilizing the @auto_docstring Decorator
|
||||
# Documenting a model
|
||||
|
||||
The `@auto_docstring` decorator in the Hugging Face Transformers library helps generate docstrings for model classes and their methods, which will be used to build the documentation for the library. It aims to improve consistency and reduce boilerplate by automatically including standard argument descriptions and allowing for targeted overrides and additions.
|
||||
The `@auto_docstring` decorator in Transformers generates consistent docstrings for model classes and their methods. It reduces boilerplate by automatically including standard argument descriptions while also allowing overrides to add new or custom arguments. [Contributing a new model](./modular_transformers) is easier because you don't need to manually add the standard docstrings, and only focus on documenting new arguments.
|
||||
|
||||
---
|
||||
This guide describes how to use the `@auto_docstring` decorator and how it works.
|
||||
|
||||
## 📜 How it Works
|
||||
## @auto_docstring
|
||||
|
||||
The `@auto_docstring` decorator constructs docstrings by:
|
||||
|
||||
1. **Signature Inspection:** It inspects the signature (arguments, types, defaults) of the decorated class's `__init__` method or the decorated function.
|
||||
2. **Centralized Docstring Fetching:** It retrieves predefined docstrings for common arguments (e.g., `input_ids`, `attention_mask`) from internal library sources (like `ModelArgs` or `ImageProcessorArgs` in `utils/args_doc.py`).
|
||||
3. **Overriding or Adding Arguments Descriptions:**
|
||||
* **Direct Docstring Block:** It incorporates custom docstring content from an `r""" """` (or `""" """`) block below the method signature or within the `__init__` docstring. This is for documenting new arguments or overriding standard descriptions.
|
||||
* **Decorator Arguments (`custom_args`):** A `custom_args` docstring block can be passed to the decorator to provide docstrings for specific arguments directly in the decorator call. This can be used to define the docstring block for new arguments once if they are repeated in multiple places in the modeling file.
|
||||
4. **Adding Classes and Functions Introduction:**
|
||||
* **`custom_intro` argument:** Allows prepending a custom introductory paragraph to a class or function docstring.
|
||||
* **Automatic Introduction Generation:** For model classes with standard naming patterns (like `ModelForCausalLM`) or belonging to a pipeline, the decorator automatically generates an appropriate introductory paragraph using `ClassDocstring` in `utils/args_doc.py` as the source.
|
||||
5. **Templating:** The decorator uses a templating system, allowing predefined docstrings to include dynamic information deduced from the `auto_modules` of the library, such as `{{processor_class}}` or `{{config_class}}`.
|
||||
6. **Deducing Relevant Examples:** The decorator attempts to find appropriate usage examples based on the model's task or pipeline compatibility. It extracts checkpoint information from the model's configuration class to provide concrete examples with real model identifiers.
|
||||
7. **Adding Return Value Documentation:** For methods like `forward`, the decorator can automatically generate the "Returns" section based on the method's return type annotation. For example, for a method returning a `ModelOutput` subclass, it will extracts field descriptions from that class's docstring to create a comprehensive return value description. A custom `Returns` section can also be manually specified in the function docstring block.
|
||||
8. **Unrolling Kwargs Typed With Unpack Operator:** For specific methods (defined in `UNROLL_KWARGS_METHODS`) or classes (defined in `UNROLL_KWARGS_CLASSES`), the decorator processes `**kwargs` parameters that are typed with `Unpack[KwargsTypedDict]`. It extracts the documentation from the TypedDict and adds each parameter to the function's docstring. Currently, this functionality is only supported for `FastImageProcessorKwargs`.
|
||||
|
||||
|
||||
---
|
||||
|
||||
## 🚀 How to Use @auto_docstring
|
||||
|
||||
### 1. Importing the Decorator
|
||||
Import the decorator into your modeling file:
|
||||
Start by importing the decorator in the modeling file (`modular_model.py` or `modeling_model.py`).
|
||||
|
||||
```python
|
||||
from ...utils import auto_docstring
|
||||
```
|
||||
|
||||
### 2. Applying to Classes
|
||||
Place `@auto_docstring` directly above the class definition. It uses the `__init__` method's signature and its docstring for parameter descriptions.
|
||||
Select whether you'd like to apply `@auto_docstring` to a class or function below to see how to use it.
|
||||
|
||||
<hfoptions id="type">
|
||||
<hfoption id="classes">
|
||||
|
||||
Place `@auto_docstring` directly above the class definition. The decorator derives parameter descriptions from the `__init__` method's signature and docstring.
|
||||
|
||||
```python
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
@ -73,9 +56,7 @@ class MyAwesomeModel(PreTrainedModel):
|
||||
# ... other methods
|
||||
```
|
||||
|
||||
#### Advanced Class Decoration:
|
||||
|
||||
Arguments can be passed directly to `@auto_docstring` for more control:
|
||||
Arguments can also be passed directly to `@auto_docstring` for more control. Use the `custom_intro` parameter to describe the argument and the `custom_args` parameter to describe the arguments.
|
||||
|
||||
```python
|
||||
@auto_docstring(
|
||||
@ -93,7 +74,7 @@ class MySpecialModel(PreTrainedModel):
|
||||
# ...
|
||||
```
|
||||
|
||||
Or:
|
||||
You can also choose to only use `custom_intro` and define the custom arguments directly in the class.
|
||||
|
||||
```python
|
||||
@auto_docstring(
|
||||
@ -111,8 +92,10 @@ class MySpecialModel(PreTrainedModel):
|
||||
# ...
|
||||
```
|
||||
|
||||
### 3. Applying to Functions (e.g., `forward` method)
|
||||
Apply the decorator above method definitions, such as the `forward` method.
|
||||
</hfoption>
|
||||
<hfoption id="functions">
|
||||
|
||||
Place `@auto_docstring` directly above the method definition. The decorator derives parameter descriptions from the function signature.
|
||||
|
||||
```python
|
||||
@auto_docstring
|
||||
@ -131,9 +114,10 @@ Apply the decorator above method definitions, such as the `forward` method.
|
||||
# ...
|
||||
```
|
||||
|
||||
#### Advanced Function Decoration:
|
||||
Arguments can also be passed directly to `@auto_docstring` for more control. Use the `custom_intro` parameter to describe the argument and the `custom_args` parameter to describe the arguments.
|
||||
|
||||
The `Returns` and `Examples` parts of the docstring can also be manually specified.
|
||||
|
||||
Arguments can be passed directly to `@auto_docstring` for more control. `Returns` and `Examples` sections can also be manually specified:
|
||||
|
||||
```python
|
||||
MODEL_COMMON_CUSTOM_ARGS = r"""
|
||||
@ -180,100 +164,117 @@ class MyModel(PreTrainedModel):
|
||||
# ...
|
||||
```
|
||||
|
||||
---
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### ✍️ Documenting Arguments: Approach & Priority
|
||||
## Documenting arguments
|
||||
|
||||
1. **Standard Arguments (e.g., `input_ids`, `attention_mask`, `pixel_values`, `encoder_hidden_states` etc.):**
|
||||
* `@auto_docstring` retrieves descriptions from a central source. Do not redefine these locally if their description and shape are the same as in `args_doc.py`.
|
||||
There are some rules for documenting different types of arguments and they're listed below.
|
||||
|
||||
- Standard arguments (`input_ids`, `attention_mask`, `pixel_values`, etc.) are defined and retrieved from `args_doc.py`. It is the single source of truth for standard arguments and should not be redefined locally if an argument's description and shape is the same as an argument in `args_doc.py`.
|
||||
|
||||
If a standard argument behaves differently in your model, then you can override it locally in a `r""" """` block. This local definition has a higher priority. For example, the `labels` argument is often customized per model and typically requires overriding.
|
||||
|
||||
|
||||
- New or custom arguments should be documented within an `r""" """` block after the signature if it is a function or in the `__init__` method's docstring if it is a class.
|
||||
|
||||
```py
|
||||
argument_name (`type`, *optional*, defaults to `X`):
|
||||
Description of the argument.
|
||||
Explain its purpose, expected shape/type if complex, and default behavior.
|
||||
This can span multiple lines.
|
||||
```
|
||||
|
||||
2. **New or Custom Arguments:**
|
||||
* **Primary Method:** Document these within an `r""" """` docstring block following the signature (for functions) or in the `__init__` method's docstring (for class parameters).
|
||||
* **Format:**
|
||||
```
|
||||
argument_name (`type`, *optional*, defaults to `X`):
|
||||
Description of the argument.
|
||||
Explain its purpose, expected shape/type if complex, and default behavior.
|
||||
This can span multiple lines.
|
||||
```
|
||||
* Include `type` in backticks.
|
||||
* Add "*optional*" if the argument is not required (has a default value).
|
||||
* Add "defaults to `X`" if it has a default value (no need to specify "defaults to `None`" if the default value is `None`).
|
||||
* Add *optional* if the argument is not required or has a default value.
|
||||
* Add "defaults to X" if it has a default value. You don't need to add "defaults to `None`" if the default value is `None`.
|
||||
|
||||
3. **Overriding Standard Arguments:**
|
||||
* If a standard argument behaves differently (e.g., different expected shape, model-specific behavior), provide its complete description in the local `r""" """` docstring. This local definition takes precedence.
|
||||
* The `labels` argument is often customized per model and typically requires a specific docstring.
|
||||
These arguments can also be passed to `@auto_docstring` as a `custom_args` argument. It is used to define the docstring block for new arguments once if they are repeated in multiple places in the modeling file.
|
||||
|
||||
4. **Using Decorator Arguments for Overrides or New Arguments (`custom_args`):**
|
||||
* New or custom arguments docstrings can also be passed to `@auto_docstring` as a `custom_args` argument. This can be used to define the docstring block for new arguments once if they are repeated in multiple places in the modeling file.
|
||||
```py
|
||||
class MyModel(PreTrainedModel):
|
||||
# ...
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
This is a custom introduction for the function.
|
||||
"""
|
||||
custom_args=r"""
|
||||
common_arg_1 (`torch.Tensor`, *optional*, defaults to `default_value`):
|
||||
Description of common_arg_1
|
||||
"""
|
||||
)
|
||||
```
|
||||
|
||||
---
|
||||
## Checking the docstrings
|
||||
|
||||
### Usage with [modular files](./modular_transformers)
|
||||
Transformers includes a utility script to validate the docstrings when you open a Pull Request which triggers CI (continuous integration) checks. The script checks for the following criteria.
|
||||
|
||||
When working with modular files, follow these guidelines for applying the `@auto_docstring` decorator:
|
||||
* Ensures `@auto_docstring` is applied to relevant mode classes and public methods.
|
||||
* Ensures arguments are complete and consistent. It checks that documented arguments exist in the signature and verifies whether the types and default values in the docstring match the signature. Arguments that aren't known standard arguments or if they lack a local description are flagged.
|
||||
* Reminds you to complete placeholders like `<fill_type>` and `<fill_docstring>`.
|
||||
* Ensures docstrings are formatted according to the expected docstring style.
|
||||
|
||||
- **For standalone models in modular files:**
|
||||
Apply the `@auto_docstring` decorator just as you would in regular modeling files.
|
||||
|
||||
- **For models inheriting from other library models:**
|
||||
- When inheriting from a parent model, decorators (including `@auto_docstring`) are automatically carried over to the generated modeling file without needing to add them in your modular file.
|
||||
- If you need to modify the `@auto_docstring` behavior, apply the customized decorator in your modular file, making sure to *include all other decorators* that were present on the original function/class.
|
||||
|
||||
> **Warning**: When overriding any decorator in a modular file, you must include ALL decorators that were applied to that function/class in the parent model. If you only override some decorators, the others won't be included in the generated modeling file.
|
||||
|
||||
|
||||
**Note**: The `check_auto_docstrings` tool doesn't check modular files directly, but it will check (and modify when using `--fix_and_overwrite`) the generated modeling files. If issues are found in the generated files, you'll need to update your modular files accordingly.
|
||||
|
||||
---
|
||||
|
||||
## ✅ Checking Your Docstrings with `check_auto_docstrings`
|
||||
|
||||
The library includes a utility script to validate docstrings. This check is typically run during Continuous Integration (CI).
|
||||
|
||||
#### What it Checks:
|
||||
|
||||
* **Decorator Presence:** Ensures `@auto_docstring` is applied to relevant model classes and public methods. (TODO)
|
||||
* **Argument Completeness & Consistency:**
|
||||
* Flags arguments in the signature that are not known standard arguments and lack a local description.
|
||||
* Ensures documented arguments exist in the signature. (TODO)
|
||||
* Verifies that types and default values in the docstring match the signature. (TODO)
|
||||
* **Placeholder Detection:** Reminds you to complete placeholders like `<fill_type>` or `<fill_docstring>`.
|
||||
* **Formatting:** Adherence to the expected docstring style.
|
||||
|
||||
#### Running the Check Locally:
|
||||
|
||||
Run this check locally before committing. The common command is:
|
||||
You can run this check locally - before committing - by running the following command.
|
||||
|
||||
```bash
|
||||
make fix-copies
|
||||
```
|
||||
|
||||
Alternatively, to only perform docstrings and auto-docstring checks, you can use:
|
||||
`make fix-copies` runs several other checks as well. If you don't need those checks, run the command below to only perform docstring and auto-docstring checks.
|
||||
|
||||
```bash
|
||||
python utils/check_docstrings.py # to only check files included in the diff without fixing them
|
||||
# Or: python utils/check_docstrings.py --fix_and_overwrite # to fix and overwrite the files in the diff
|
||||
# Or: python utils/check_docstrings.py --fix_and_overwrite --check_all # to fix and overwrite all files
|
||||
# python utils/check_docstrings.py --fix_and_overwrite # to fix and overwrite the files in the diff
|
||||
# python utils/check_docstrings.py --fix_and_overwrite --check_all # to fix and overwrite all files
|
||||
```
|
||||
|
||||
#### Workflow with the Checker:
|
||||
## modular_model.py files
|
||||
|
||||
1. Add `@auto_docstring(...)` to the class or method.
|
||||
2. For new, custom, or overridden arguments, add descriptions in an `r""" """` block.
|
||||
3. Run `make fix-copies` (or the `check_docstrings.py` utility).
|
||||
* For unrecognized arguments lacking documentation, the utility will create placeholder entries.
|
||||
4. Manually edit these placeholders with accurate types and descriptions.
|
||||
5. Re-run the check to ensure all issues are resolved.
|
||||
When working with modular files (`modular_model.py`), follow the guidelines below for applying `@auto_docstring`.
|
||||
|
||||
---
|
||||
- For standalone models in modular files, apply `@auto_docstring` like you would in a `modeling_model.py` file.
|
||||
- For models that inherit from other library models, `@auto_docstring` is automatically carried over to the generated modeling file. You don't need to add `@auto_docstring` in your modular file.
|
||||
|
||||
## 🔑 Key Takeaways & Best Practices
|
||||
If you need to modify the `@auto_docstring` behavior, apply the customized decorator in your modular file. Make sure to **include all other decorators** that are present in the original function or class.
|
||||
|
||||
* Use `@auto_docstring` for new PyTorch model classes (`PreTrainedModel` subclasses) and their primary for methods (e.g., `forward`, `get_text_features` etc.).
|
||||
* For classes, the `__init__` method's docstring is the main source for parameter descriptions when using `@auto_docstring` on the class.
|
||||
* Rely on standard docstrings; do not redefine common arguments unless their behavior is different in your specific model.
|
||||
> [!WARNING]
|
||||
> When overriding any decorator in a modular file, you must include **all** decorators that were applied to that function or class in the parent model. If you only override some decorators, the others won't be included in the generated modeling file.
|
||||
|
||||
## How it works
|
||||
|
||||
The `@auto_docstring` decorator automatically generates docstrings by:
|
||||
|
||||
1. Inspecting the signature (arguments, types, defaults) of the decorated class' `__init__` method or the decorated function.
|
||||
2. Retrieving the predefined docstrings for common arguments (`input_ids`, `attention_mask`, etc.) from internal library sources like [`ModelArgs`], [`ImageProcessorArgs`], and the `args_doc.py` file.
|
||||
3. Adding argument descriptions in one of two ways as shown below.
|
||||
|
||||
| method | description | usage |
|
||||
|---|---|---|
|
||||
| `r""" """` | add custom docstring content directly to a method signature or within the `__init__` docstring | document new arguments or override standard descriptions |
|
||||
| `custom_args` | add custom docstrings for specific arguments directly in `@auto_docstring` | define docstring for new arguments once if they're repeated in multiple places in the modeling file |
|
||||
|
||||
4. Adding class and function descriptions. For model classes with standard naming patterns, like `ModelForCausalLM`, or if it belongs to a pipeline, `@auto_docstring` automatically generates the appropriate descriptions with `ClassDocstring` from `args_doc.py`.
|
||||
|
||||
`@auto_docstring` also accepts the `custom_intro` argument to describe a class or function.
|
||||
|
||||
5. Using a templating system to allow predefined docstrings to include dynamic information from Transformers' [auto_modules](https://github.com/huggingface/transformers/tree/main/src/transformers/models/auto) such as `{{processor_class}}` and `{{config_class}}`.
|
||||
|
||||
6. Finding appropriate usage examples based on the model's task or pipeline compatibility. It extracts checkpoint information form the model's configuration class to provide concrete examples with real model identifiers.
|
||||
|
||||
7. Adding return values to the docstring. For methods like `forward`, the decorator automatically generates the `Returns` field in the docstring based on the method's return type annotation.
|
||||
|
||||
For example, if a method returns a [`~transformers.utils.ModelOutput`] subclass, `@auto_docstring` extracts the field descriptions from the class' docstring to create a comprehensive return value description. You can also manually specifiy a custom `Returns` field in a functions docstring.
|
||||
|
||||
8. Unrolling kwargs typed with the unpack operator. For specific methods (defined in `UNROLL_KWARGS_METHODS`) or classes (defined in `UNROLL_KWARGS_CLASSES`), the decorator processes `**kwargs` parameters that are typed with `Unpack[KwargsTypedDict]`. It extracts the documentations from the `TypedDict` and adds each parameter to the function's docstring.
|
||||
|
||||
Currently only supported for [`FastImageProcessorKwargs`].
|
||||
|
||||
## Best practices
|
||||
|
||||
Follow the best practices below to help maintain consistent and informative documentation for Transformers!
|
||||
|
||||
* Use `@auto_docstring` for new PyTorch model classes ([`PreTrainedModel`] subclasses) and their primary methods like `forward` or `get_text_features`.
|
||||
* For classes, `@auto_docstring` retrieves parameter descriptions from the `__init__` method's docstring.
|
||||
* Rely on standard docstrings and do not redefine common arguments unless their behavior is different in your model.
|
||||
* Document new or custom arguments clearly.
|
||||
* Run `check_docstrings` locally and iteratively.
|
||||
|
||||
By following these guidelines, you help maintain consistent and informative documentation for the Hugging Face Transformers library 🤗.
|
||||
|
104
docs/source/en/model_doc/arcee.md
Normal file
104
docs/source/en/model_doc/arcee.md
Normal file
@ -0,0 +1,104 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Arcee
|
||||
|
||||
Arcee is a decoder-only transformer model based on the Llama architecture with a key modification: it uses ReLU² (ReLU-squared) activation in the MLP blocks instead of SiLU, following recent research showing improved training efficiency with squared activations. This architecture is designed for efficient training and inference while maintaining the proven stability of the Llama design.
|
||||
|
||||
The Arcee model is architecturally similar to Llama but uses `x * relu(x)` in MLP layers for improved gradient flow and is optimized for efficiency in both training and inference scenarios.
|
||||
|
||||
> [!TIP]
|
||||
> The Arcee model supports extended context with RoPE scaling and all standard transformers features including Flash Attention 2, SDPA, gradient checkpointing, and quantization support.
|
||||
|
||||
The example below demonstrates how to generate text with Arcee using [`Pipeline`] or the [`AutoModel`].
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="text-generation",
|
||||
model="arcee-ai/AFM-4.5B",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
|
||||
output = pipeline("The key innovation in Arcee is")
|
||||
print(output[0]["generated_text"])
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, ArceeForCausalLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("arcee-ai/AFM-4.5B")
|
||||
model = ArceeForCausalLM.from_pretrained(
|
||||
"arcee-ai/AFM-4.5B",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
inputs = tokenizer("The key innovation in Arcee is", return_tensors="pt")
|
||||
with torch.no_grad():
|
||||
outputs = model.generate(**inputs, max_new_tokens=50)
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## ArceeConfig
|
||||
|
||||
[[autodoc]] ArceeConfig
|
||||
|
||||
## ArceeModel
|
||||
|
||||
[[autodoc]] ArceeModel
|
||||
- forward
|
||||
|
||||
## ArceeForCausalLM
|
||||
|
||||
[[autodoc]] ArceeForCausalLM
|
||||
- forward
|
||||
|
||||
## ArceeForSequenceClassification
|
||||
|
||||
[[autodoc]] ArceeForSequenceClassification
|
||||
- forward
|
||||
|
||||
## ArceeForQuestionAnswering
|
||||
|
||||
[[autodoc]] ArceeForQuestionAnswering
|
||||
- forward
|
||||
|
||||
## ArceeForTokenClassification
|
||||
|
||||
[[autodoc]] ArceeForTokenClassification
|
||||
- forward
|
@ -350,6 +350,10 @@ The following auto classes are available for the following audio tasks.
|
||||
|
||||
[[autodoc]] AutoModelForTextToWaveform
|
||||
|
||||
### AutoModelForAudioTokenization
|
||||
|
||||
[[autodoc]] AutoModelForAudioTokenization
|
||||
|
||||
## Multimodal
|
||||
|
||||
The following auto classes are available for the following multimodal tasks.
|
||||
|
@ -191,6 +191,11 @@ model = ChameleonForConditionalGeneration.from_pretrained(
|
||||
[[autodoc]] ChameleonImageProcessor
|
||||
- preprocess
|
||||
|
||||
## ChameleonImageProcessorFast
|
||||
|
||||
[[autodoc]] ChameleonImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
## ChameleonVQVAE
|
||||
|
||||
[[autodoc]] ChameleonVQVAE
|
||||
|
@ -3,6 +3,7 @@
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
@ -4,6 +4,7 @@
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
@ -14,66 +14,111 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# DeBERTa-v2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://huggingface.co/papers/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's
|
||||
BERT model released in 2018 and Facebook's RoBERTa model released in 2019.
|
||||
# DeBERTa-v2
|
||||
|
||||
It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in
|
||||
RoBERTa.
|
||||
[DeBERTa-v2](https://huggingface.co/papers/2006.03654) improves on the original [DeBERTa](./deberta) architecture by using a SentencePiece-based tokenizer and a new vocabulary size of 128K. It also adds an additional convolutional layer within the first transformer layer to better learn local dependencies of input tokens. Finally, the position projection and content projection matrices are shared in the attention layer to reduce the number of parameters.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Recent progress in pre-trained neural language models has significantly improved the performance of many natural
|
||||
language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with
|
||||
disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the
|
||||
disentangled attention mechanism, where each word is represented using two vectors that encode its content and
|
||||
position, respectively, and the attention weights among words are computed using disentangled matrices on their
|
||||
contents and relative positions. Second, an enhanced mask decoder is used to replace the output softmax layer to
|
||||
predict the masked tokens for model pretraining. We show that these two techniques significantly improve the efficiency
|
||||
of model pretraining and performance of downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of
|
||||
the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9%
|
||||
(90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). The DeBERTa code and
|
||||
pre-trained models will be made publicly available at https://github.com/microsoft/DeBERTa.*
|
||||
You can find all the original [DeBERTa-v2] checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=deberta-v2) organization.
|
||||
|
||||
|
||||
The following information is visible directly on the [original implementation
|
||||
repository](https://github.com/microsoft/DeBERTa). DeBERTa v2 is the second version of the DeBERTa model. It includes
|
||||
the 1.5B model used for the SuperGLUE single-model submission and achieving 89.9, versus human baseline 89.8. You can
|
||||
find more details about this submission in the authors'
|
||||
[blog](https://www.microsoft.com/en-us/research/blog/microsoft-deberta-surpasses-human-performance-on-the-superglue-benchmark/)
|
||||
> [!TIP]
|
||||
> This model was contributed by [Pengcheng He](https://huggingface.co/DeBERTa).
|
||||
>
|
||||
> Click on the DeBERTa-v2 models in the right sidebar for more examples of how to apply DeBERTa-v2 to different language tasks.
|
||||
|
||||
New in v2:
|
||||
The example below demonstrates how to classify text with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
- **Vocabulary** In v2 the tokenizer is changed to use a new vocabulary of size 128K built from the training data.
|
||||
Instead of a GPT2-based tokenizer, the tokenizer is now
|
||||
[sentencepiece-based](https://github.com/google/sentencepiece) tokenizer.
|
||||
- **nGiE(nGram Induced Input Encoding)** The DeBERTa-v2 model uses an additional convolution layer aside with the first
|
||||
transformer layer to better learn the local dependency of input tokens.
|
||||
- **Sharing position projection matrix with content projection matrix in attention layer** Based on previous
|
||||
experiments, this can save parameters without affecting the performance.
|
||||
- **Apply bucket to encode relative positions** The DeBERTa-v2 model uses log bucket to encode relative positions
|
||||
similar to T5.
|
||||
- **900M model & 1.5B model** Two additional model sizes are available: 900M and 1.5B, which significantly improves the
|
||||
performance of downstream tasks.
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
This model was contributed by [DeBERTa](https://huggingface.co/DeBERTa). This model TF 2.0 implementation was
|
||||
contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/microsoft/DeBERTa).
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
## Resources
|
||||
pipeline = pipeline(
|
||||
task="text-classification",
|
||||
model="microsoft/deberta-v2-xlarge-mnli",
|
||||
device=0,
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
result = pipeline("DeBERTa-v2 is great at understanding context!")
|
||||
print(result)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"microsoft/deberta-v2-xlarge-mnli"
|
||||
)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
"microsoft/deberta-v2-xlarge-mnli",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
inputs = tokenizer("DeBERTa-v2 is great at understanding context!", return_tensors="pt").to("cuda")
|
||||
outputs = model(**inputs)
|
||||
|
||||
logits = outputs.logits
|
||||
predicted_class_id = logits.argmax().item()
|
||||
predicted_label = model.config.id2label[predicted_class_id]
|
||||
print(f"Predicted label: {predicted_label}")
|
||||
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "DeBERTa-v2 is great at understanding context!" | transformers-cli run --task fill-mask --model microsoft/deberta-v2-xlarge-mnli --device 0
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes quantization](../quantization/bitsandbytes) to only quantize the weights to 4-bit.
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig
|
||||
|
||||
model_id = "microsoft/deberta-v2-xlarge-mnli"
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype="float16",
|
||||
bnb_4bit_use_double_quant=True,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_id,
|
||||
quantization_config=quantization_config,
|
||||
torch_dtype="float16"
|
||||
)
|
||||
|
||||
inputs = tokenizer("DeBERTa-v2 is great at understanding context!", return_tensors="pt").to("cuda")
|
||||
outputs = model(**inputs)
|
||||
logits = outputs.logits
|
||||
predicted_class_id = logits.argmax().item()
|
||||
predicted_label = model.config.id2label[predicted_class_id]
|
||||
print(f"Predicted label: {predicted_label}")
|
||||
|
||||
```
|
||||
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
|
||||
## DebertaV2Config
|
||||
|
||||
|
162
docs/source/en/model_doc/dia.md
Normal file
162
docs/source/en/model_doc/dia.md
Normal file
@ -0,0 +1,162 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Dia
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
Dia is an opensource text-to-speech (TTS) model (1.6B parameters) developed by [Nari Labs](https://huggingface.co/nari-labs).
|
||||
It can generate highly realistic dialogue from transcript including nonverbal communications such as laughter and coughing.
|
||||
Furthermore, emotion and tone control is also possible via audio conditioning (voice cloning).
|
||||
|
||||
**Model Architecture:**
|
||||
Dia is an encoder-decoder transformer based on the original transformer architecture. However, some more modern features such as
|
||||
rotational positional embeddings (RoPE) are also included. For its text portion (encoder), a byte tokenizer is utilized while
|
||||
for the audio portion (decoder), a pretrained codec model [DAC](./dac.md) is used - DAC encodes speech into discrete codebook
|
||||
tokens and decodes them back into audio.
|
||||
|
||||
## Usage Tips
|
||||
|
||||
### Generation with Text
|
||||
|
||||
```python
|
||||
from transformers import AutoProcessor, DiaForConditionalGeneration
|
||||
|
||||
torch_device = "cuda"
|
||||
model_checkpoint = "buttercrab/dia-v1-1.6b"
|
||||
|
||||
text = ["[S1] Dia is an open weights text to dialogue model."]
|
||||
processor = AutoProcessor.from_pretrained(model_checkpoint)
|
||||
inputs = processor(text=text, padding=True, return_tensors="pt").to(torch_device)
|
||||
|
||||
model = DiaForConditionalGeneration.from_pretrained(model_checkpoint).to(torch_device)
|
||||
outputs = model.generate(**inputs, max_new_tokens=256) # corresponds to around ~2s
|
||||
|
||||
# save audio to a file
|
||||
outputs = processor.batch_decode(outputs)
|
||||
processor.save_audio(outputs, "example.wav")
|
||||
|
||||
```
|
||||
|
||||
### Generation with Text and Audio (Voice Cloning)
|
||||
|
||||
```python
|
||||
from datasets import load_dataset, Audio
|
||||
from transformers import AutoProcessor, DiaForConditionalGeneration
|
||||
|
||||
torch_device = "cuda"
|
||||
model_checkpoint = "buttercrab/dia-v1-1.6b"
|
||||
|
||||
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
|
||||
ds = ds.cast_column("audio", Audio(sampling_rate=44100))
|
||||
audio = ds[-1]["audio"]["array"]
|
||||
# text is a transcript of the audio + additional text you want as new audio
|
||||
text = ["[S1] I know. It's going to save me a lot of money, I hope. [S2] I sure hope so for you."]
|
||||
|
||||
processor = AutoProcessor.from_pretrained(model_checkpoint)
|
||||
inputs = processor(text=text, audio=audio, padding=True, return_tensors="pt").to(torch_device)
|
||||
prompt_len = processor.get_audio_prompt_len(inputs["decoder_attention_mask"])
|
||||
|
||||
model = DiaForConditionalGeneration.from_pretrained(model_checkpoint).to(torch_device)
|
||||
outputs = model.generate(**inputs, max_new_tokens=256) # corresponds to around ~2s
|
||||
|
||||
# retrieve actually generated audio and save to a file
|
||||
outputs = processor.batch_decode(outputs, audio_prompt_len=prompt_len)
|
||||
processor.save_audio(outputs, "example_with_audio.wav")
|
||||
```
|
||||
|
||||
### Training
|
||||
|
||||
```python
|
||||
from datasets import load_dataset, Audio
|
||||
from transformers import AutoProcessor, DiaForConditionalGeneration
|
||||
|
||||
torch_device = "cuda"
|
||||
model_checkpoint = "buttercrab/dia-v1-1.6b"
|
||||
|
||||
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
|
||||
ds = ds.cast_column("audio", Audio(sampling_rate=44100))
|
||||
audio = ds[-1]["audio"]["array"]
|
||||
# text is a transcript of the audio
|
||||
text = ["[S1] I know. It's going to save me a lot of money, I hope."]
|
||||
|
||||
processor = AutoProcessor.from_pretrained(model_checkpoint)
|
||||
inputs = processor(
|
||||
text=text,
|
||||
audio=audio,
|
||||
generation=False,
|
||||
output_labels=True,
|
||||
padding=True,
|
||||
return_tensors="pt"
|
||||
).to(torch_device)
|
||||
|
||||
model = DiaForConditionalGeneration.from_pretrained(model_checkpoint).to(torch_device)
|
||||
out = model(**inputs)
|
||||
out.loss.backward()
|
||||
```
|
||||
|
||||
|
||||
This model was contributed by [Jaeyong Sung](https://huggingface.co/buttercrab), [Arthur Zucker](https://huggingface.co/ArthurZ),
|
||||
and [Anton Vlasjuk](https://huggingface.co/AntonV). The original code can be found [here](https://github.com/nari-labs/dia/).
|
||||
|
||||
|
||||
## DiaConfig
|
||||
|
||||
[[autodoc]] DiaConfig
|
||||
|
||||
## DiaDecoderConfig
|
||||
|
||||
[[autodoc]] DiaDecoderConfig
|
||||
|
||||
## DiaEncoderConfig
|
||||
|
||||
[[autodoc]] DiaEncoderConfig
|
||||
|
||||
## DiaTokenizer
|
||||
|
||||
[[autodoc]] DiaTokenizer
|
||||
- __call__
|
||||
|
||||
## DiaFeatureExtractor
|
||||
|
||||
[[autodoc]] DiaFeatureExtractor
|
||||
- __call__
|
||||
|
||||
## DiaProcessor
|
||||
|
||||
[[autodoc]] DiaProcessor
|
||||
- __call__
|
||||
- batch_decode
|
||||
- decode
|
||||
|
||||
## DiaModel
|
||||
|
||||
[[autodoc]] DiaModel
|
||||
- forward
|
||||
|
||||
## DiaForConditionalGeneration
|
||||
|
||||
[[autodoc]] DiaForConditionalGeneration
|
||||
- forward
|
||||
- generate
|
40
docs/source/en/model_doc/dots1.md
Normal file
40
docs/source/en/model_doc/dots1.md
Normal file
@ -0,0 +1,40 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# dots.llm1
|
||||
|
||||
## Overview
|
||||
|
||||
The `dots.llm1` model was proposed in [dots.llm1 technical report](https://www.arxiv.org/pdf/2506.05767) by rednote-hilab team.
|
||||
|
||||
The abstract from the report is the following:
|
||||
|
||||
*Mixture of Experts (MoE) models have emerged as a promising paradigm for scaling language models efficiently by activating only a subset of parameters for each input token. In this report, we present dots.llm1, a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models while reducing training and inference costs. Leveraging our meticulously crafted and efficient data processing pipeline, dots.llm1 achieves performance comparable to Qwen2.5-72B after pretraining on high-quality corpus and post-training to fully unlock its capabilities. Notably, no synthetic data is used during pretraining. To foster further research, we open-source intermediate training checkpoints spanning the entire training process, providing valuable insights into the learning dynamics of large language models.*
|
||||
|
||||
|
||||
## Dots1Config
|
||||
|
||||
[[autodoc]] Dots1Config
|
||||
|
||||
## Dots1Model
|
||||
|
||||
[[autodoc]] Dots1Model
|
||||
- forward
|
||||
|
||||
## Dots1ForCausalLM
|
||||
|
||||
[[autodoc]] Dots1ForCausalLM
|
||||
- forward
|
214
docs/source/en/model_doc/eomt.md
Normal file
214
docs/source/en/model_doc/eomt.md
Normal file
@ -0,0 +1,214 @@
|
||||
<!--Copyright 2025 Mobile Perception Systems Lab at TU/e and The HuggingFace Inc. team. All rights reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# EoMT
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
The Encoder-only Mask Transformer (EoMT) model was introduced in the CVPR 2025 Highlight Paper [Your ViT is Secretly an Image Segmentation Model](https://www.tue-mps.org/eomt) by Tommie Kerssies, Niccolò Cavagnero, Alexander Hermans, Narges Norouzi, Giuseppe Averta, Bastian Leibe, Gijs Dubbelman, and Daan de Geus.
|
||||
EoMT reveals Vision Transformers can perform image segmentation efficiently without task-specific components.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Vision Transformers (ViTs) have shown remarkable performance and scalability across various computer vision tasks. To apply single-scale ViTs to image segmentation, existing methods adopt a convolutional adapter to generate multi-scale features, a pixel decoder to fuse these features, and a Transformer decoder that uses the fused features to make predictions. In this paper, we show that the inductive biases introduced by these task-specific components can instead be learned by the ViT itself, given sufficiently large models and extensive pre-training. Based on these findings, we introduce the Encoder-only Mask Transformer (EoMT), which repurposes the plain ViT architecture to conduct image segmentation. With large-scale models and pre-training, EoMT obtains a segmentation accuracy similar to state-of-the-art models that use task-specific components. At the same time, EoMT is significantly faster than these methods due to its architectural simplicity, e.g., up to 4x faster with ViT-L. Across a range of model sizes, EoMT demonstrates an optimal balance between segmentation accuracy and prediction speed, suggesting that compute resources are better spent on scaling the ViT itself rather than adding architectural complexity.*
|
||||
|
||||
This model was contributed by [Yaswanth Gali](https://huggingface.co/yaswanthgali).
|
||||
The original code can be found [here](https://github.com/tue-mps/eomt).
|
||||
|
||||
## Architecture Info
|
||||
|
||||
The `EoMT` model uses a DINOv2-pretrained Vision Transformer with **register tokens** as its backbone. EoMT simplifies the segmentation pipeline by relying solely on the encoder, eliminating the need for task-specific decoders commonly used in prior approaches.
|
||||
|
||||
Architecturally, EoMT introduces a small set of **learned queries** and a lightweight **mask prediction module**. These queries are injected into the final encoder blocks, enabling **joint attention** between image patches and object queries. During training, **masked attention** is applied to constrain each query to focus on its corresponding region—effectively mimicking cross-attention. This constraint is gradually phased out via a **mask annealing strategy**, allowing for **efficient, decoder-free inference** without compromising segmentation performance.
|
||||
|
||||
<div style="text-align: center;">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/eomt_architecture.png"
|
||||
alt="drawing" width="500"/>
|
||||
</div>
|
||||
|
||||
|
||||
The model supports semantic, instance, and panoptic segmentation using a unified architecture and task-specific post-processing.
|
||||
|
||||
## Usage Examples
|
||||
|
||||
Use the Hugging Face implementation of EoMT for inference with pre-trained models.
|
||||
|
||||
### Semantic Segmentation
|
||||
|
||||
The EoMT model performs semantic segmentation using sliding-window inference. The input image is resized such that the shorter side matches the target input size, then it is split into overlapping crops. Each crop is then passed through the model. After inference, the predicted logits from each crop are stitched back together and rescaled to the original image size to get the final segmentation mask.
|
||||
|
||||
> **Note:**
|
||||
> If you want to use a custom target size for **semantic segmentation**, specify it in the following format:
|
||||
> `{"shortest_edge": 512}`
|
||||
> Notice that `longest_edge` is not provided here — this is intentional. For semantic segmentation, images are typically **scaled so that the shortest edge is greater than or equal to the target size** hence longest_edge is not necessary.
|
||||
|
||||
```python
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from transformers import EomtForUniversalSegmentation, AutoImageProcessor
|
||||
|
||||
|
||||
model_id = "tue-mps/ade20k_semantic_eomt_large_512"
|
||||
processor = AutoImageProcessor.from_pretrained(model_id)
|
||||
model = EomtForUniversalSegmentation.from_pretrained(model_id)
|
||||
|
||||
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
||||
|
||||
inputs = processor(
|
||||
images=image,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
# Remove Patch Offsets from inputs — only used later for post-processing.
|
||||
patch_offsets = inputs.pop("patch_offsets")
|
||||
|
||||
with torch.inference_mode():
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Prepare the original image size in the format (height, width)
|
||||
original_image_sizes = [(image.height, image.width)]
|
||||
|
||||
# Post-process the model outputs to get final segmentation prediction
|
||||
preds = processor.post_process_semantic_segmentation(
|
||||
outputs,
|
||||
patch_offsets=patch_offsets,
|
||||
original_image_sizes=original_image_sizes,
|
||||
)
|
||||
|
||||
# Visualize the segmentation mask
|
||||
plt.imshow(preds[0])
|
||||
plt.axis("off")
|
||||
plt.title("Semantic Segmentation")
|
||||
plt.show()
|
||||
```
|
||||
|
||||
### Instance Segmentation
|
||||
|
||||
The EoMT model performs instance segmentation using padded inference. The input image is resized so that the longer side matches the target input size, and the shorter side is zero-padded to form a square. The resulting mask and class logits are combined through post-processing (adapted from Mask2Former) to produce a unified instance segmentation map, along with segment metadata like segment id, class labels and confidence scores.
|
||||
|
||||
> **Note:**
|
||||
> To use a custom target size, specify the size as a dictionary in the following format:
|
||||
> `{"shortest_edge": 512, "longest_edge": 512}`
|
||||
> For both instance and panoptic segmentation, input images will be **scaled and padded** to this target size.
|
||||
|
||||
```python
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from transformers import EomtForUniversalSegmentation, AutoImageProcessor
|
||||
|
||||
|
||||
model_id = "tue-mps/coco_instance_eomt_large_640"
|
||||
processor = AutoImageProcessor.from_pretrained(model_id)
|
||||
model = EomtForUniversalSegmentation.from_pretrained(model_id)
|
||||
|
||||
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
||||
|
||||
inputs = processor(
|
||||
images=image,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
with torch.inference_mode():
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Prepare the original image size in the format (height, width)
|
||||
original_image_sizes = [(image.height, image.width)]
|
||||
|
||||
# Post-process the model outputs to get final segmentation prediction
|
||||
preds = processor.post_process_instance_segmentation(
|
||||
outputs,
|
||||
original_image_sizes=original_image_sizes,
|
||||
)
|
||||
|
||||
# Visualize the segmentation mask
|
||||
plt.imshow(preds[0]["segmentation"])
|
||||
plt.axis("off")
|
||||
plt.title("Instance Segmentation")
|
||||
plt.show()
|
||||
```
|
||||
|
||||
### Panoptic Segmentation
|
||||
|
||||
The EoMT model performs panoptic segmentation using the same padded inference strategy as in instance segmentation. After padding and normalization, the model predicts both thing (instances) and stuff (amorphous regions) classes. The resulting mask and class logits are combined through post-processing (adapted from Mask2Former) to produce a unified panoptic segmentation map, along with segment metadata like segment id, class labels and confidence scores.
|
||||
|
||||
```python
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from transformers import EomtForUniversalSegmentation, AutoImageProcessor
|
||||
|
||||
|
||||
model_id = "tue-mps/coco_panoptic_eomt_large_640"
|
||||
processor = AutoImageProcessor.from_pretrained(model_id)
|
||||
model = EomtForUniversalSegmentation.from_pretrained(model_id)
|
||||
|
||||
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
||||
|
||||
inputs = processor(
|
||||
images=image,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
with torch.inference_mode():
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Prepare the original image size in the format (height, width)
|
||||
original_image_sizes = [(image.height, image.width)]
|
||||
|
||||
# Post-process the model outputs to get final segmentation prediction
|
||||
preds = processor.post_process_panoptic_segmentation(
|
||||
outputs,
|
||||
original_image_sizes=original_image_sizes,
|
||||
)
|
||||
|
||||
# Visualize the panoptic segmentation mask
|
||||
plt.imshow(preds[0]["segmentation"])
|
||||
plt.axis("off")
|
||||
plt.title("Panoptic Segmentation")
|
||||
plt.show()
|
||||
```
|
||||
|
||||
## EomtImageProcessor
|
||||
|
||||
[[autodoc]] EomtImageProcessor
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
- post_process_instance_segmentation
|
||||
- post_process_panoptic_segmentation
|
||||
|
||||
## EomtImageProcessorFast
|
||||
|
||||
[[autodoc]] EomtImageProcessorFast
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
- post_process_instance_segmentation
|
||||
- post_process_panoptic_segmentation
|
||||
|
||||
## EomtConfig
|
||||
|
||||
[[autodoc]] EomtConfig
|
||||
|
||||
## EomtForUniversalSegmentation
|
||||
|
||||
[[autodoc]] EomtForUniversalSegmentation
|
||||
- forward
|
@ -23,6 +23,7 @@ rendered properly in your Markdown viewer.
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
@ -22,6 +22,7 @@ rendered properly in your Markdown viewer.
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
204
docs/source/en/model_doc/gemma3n.md
Normal file
204
docs/source/en/model_doc/gemma3n.md
Normal file
@ -0,0 +1,204 @@
|
||||
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Gemma3n
|
||||
|
||||
## Overview
|
||||
|
||||
Gemma3n is a multimodal model with pretrained and instruction-tuned variants, available in E4B and E2B sizes. While
|
||||
large portions of the language model architecture are shared with prior Gemma releases, there are many new additions in
|
||||
this model, including [Alternating Updates][altup] (AltUp), [Learned Augmented Residual Layer][laurel] (LAuReL),
|
||||
[MatFormer][matformer], Per-Layer Embeddings (PLE), activation sparsity, and KV cache sharing. The language model uses
|
||||
a similar attention pattern to [Gemma 3](./gemma3.md) with alternating 4 local sliding window self-attention layers for
|
||||
every global self-attention layer with a maximum context length of 32k tokens. Gemma 3n introduces
|
||||
[MobileNet v5][mobilenetv5] as the vision encoder, using a default resolution of 768x768 pixels, and adds a
|
||||
[Universal Speech Model][usm] (USM) as the audio encoder.
|
||||
|
||||
The instruction-tuned variant was post-trained with knowledge distillation and reinforcement learning.
|
||||
|
||||
You can find all the original Gemma 3n checkpoints under the [Gemma 3n][gemma3n-collection] release.
|
||||
|
||||
> [!TIP]
|
||||
> Click on the Gemma 3n models in the right sidebar for more examples of how to apply Gemma to different vision, audio,
|
||||
> and language tasks.
|
||||
|
||||
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="image-text-to-text",
|
||||
model="google/gemma-3n-e4b",
|
||||
device=0,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
pipeline(
|
||||
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
|
||||
text="<start_of_image> What is shown in this image?"
|
||||
)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoProcessor, Gemma3nForConditionalGeneration
|
||||
|
||||
model = Gemma3nForConditionalGeneration.from_pretrained(
|
||||
"google/gemma-3n-e4b-it",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
"google/gemma-3n-e4b-it",
|
||||
padding_side="left"
|
||||
)
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": [
|
||||
{"type": "text", "text": "You are a helpful assistant."}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "user", "content": [
|
||||
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
]
|
||||
},
|
||||
]
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt",
|
||||
add_generation_prompt=True,
|
||||
).to("cuda")
|
||||
|
||||
output = model.generate(**inputs, max_new_tokens=50, cache_implementation="static")
|
||||
print(processor.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model google/gemma-3n-e2b --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- Use [`Gemma3nForConditionalGeneration`] for image-audio-and-text, image-and-text, image-and-audio, audio-and-text,
|
||||
image-only and aduio-only inputs.
|
||||
- Gemma 3n supports multiple images per input, but make sure the images are correctly batched before passing them to
|
||||
the processor. Each batch should be a list of one or more images.
|
||||
|
||||
```py
|
||||
url_cow = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4="
|
||||
url_cat = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
|
||||
messages =[
|
||||
{
|
||||
"role": "system",
|
||||
"content": [
|
||||
{"type": "text", "text": "You are a helpful assistant."}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "url": url_cow},
|
||||
{"type": "image", "url": url_cat},
|
||||
{"type": "text", "text": "Which image is cuter?"},
|
||||
]
|
||||
},
|
||||
]
|
||||
```
|
||||
- Text passed to the processor should have a `<image_soft_token>` token wherever an image should be inserted.
|
||||
- Gemma 3n accept at most one target audio clip per input, though multiple audio clips can be provided in few-shot
|
||||
prompts, for example.
|
||||
- Text passed to the processor should have a `<audio_soft_token>` token wherever an audio clip should be inserted.
|
||||
- The processor has its own [`~ProcessorMixin.apply_chat_template`] method to convert chat messages to model inputs.
|
||||
|
||||
## Gemma3nAudioFeatureExtractor
|
||||
|
||||
[[autodoc]] Gemma3nAudioFeatureExtractor
|
||||
|
||||
## Gemma3nProcessor
|
||||
|
||||
[[autodoc]] Gemma3nProcessor
|
||||
|
||||
## Gemma3nTextConfig
|
||||
|
||||
[[autodoc]] Gemma3nTextConfig
|
||||
|
||||
## Gemma3nVisionConfig
|
||||
|
||||
[[autodoc]] Gemma3nVisionConfig
|
||||
|
||||
## Gemma3nAudioConfig
|
||||
|
||||
[[autodoc]] Gemma3nAudioConfig
|
||||
|
||||
## Gemma3nConfig
|
||||
|
||||
[[autodoc]] Gemma3nConfig
|
||||
|
||||
## Gemma3nTextModel
|
||||
|
||||
[[autodoc]] Gemma3nTextModel
|
||||
- forward
|
||||
|
||||
## Gemma3nModel
|
||||
|
||||
[[autodoc]] Gemma3nModel
|
||||
- forward
|
||||
|
||||
## Gemma3nForCausalLM
|
||||
|
||||
[[autodoc]] Gemma3nForCausalLM
|
||||
- forward
|
||||
|
||||
## Gemma3nForConditionalGeneration
|
||||
|
||||
[[autodoc]] Gemma3nForConditionalGeneration
|
||||
- forward
|
||||
|
||||
[altup]: https://proceedings.neurips.cc/paper_files/paper/2023/hash/f2059277ac6ce66e7e5543001afa8bb5-Abstract-Conference.html
|
||||
[attention-mask-viz]: https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139
|
||||
[gemma3n-collection]: https://huggingface.co/collections/google/gemma-3n
|
||||
[laurel]: https://arxiv.org/abs/2411.07501
|
||||
[matformer]: https://arxiv.org/abs/2310.07707
|
||||
[usm]: https://arxiv.org/abs/2303.01037
|
@ -20,6 +20,7 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
180
docs/source/en/model_doc/glm4v.md
Normal file
180
docs/source/en/model_doc/glm4v.md
Normal file
@ -0,0 +1,180 @@
|
||||
<!--Copyright 2025 The ZhipuAI Inc. and The HuggingFace Inc. team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white"> </div>
|
||||
</div>
|
||||
|
||||
# GLM-4.1V
|
||||
|
||||
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
pipe = pipeline(
|
||||
task="image-text-to-text",
|
||||
model="THUDM/GLM-4.1V-9B-Thinking",
|
||||
device=0,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
|
||||
},
|
||||
{ "type": "text", "text": "Describe this image."},
|
||||
]
|
||||
}
|
||||
]
|
||||
pipe(text=messages,max_new_tokens=20, return_full_text=False)
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import Glm4vForConditionalGeneration, AutoProcessor
|
||||
|
||||
model = Glm4vForConditionalGeneration.from_pretrained(
|
||||
"THUDM/GLM-4.1V-9B-Thinking",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
processor = AutoProcessor.from_pretrained("THUDM/GLM-4.1V-9B-Thinking")
|
||||
messages = [
|
||||
{
|
||||
"role":"user",
|
||||
"content":[
|
||||
{
|
||||
"type":"image",
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
},
|
||||
{
|
||||
"type":"text",
|
||||
"text":"Describe this image."
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
).to("cuda")
|
||||
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
print(output_text)
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Using GLM-4.1V with video input is similar to using it with image input.
|
||||
The model can process video data and generate text based on the content of the video.
|
||||
|
||||
```python
|
||||
from transformers import AutoProcessor, Glm4vForConditionalGeneration
|
||||
import torch
|
||||
|
||||
processor = AutoProcessor.from_pretrained("THUDM/GLM-4.1V-9B-Thinking")
|
||||
model = Glm4vForConditionalGeneration.from_pretrained(
|
||||
pretrained_model_name_or_path="THUDM/GLM-4.1V-9B-Thinking",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="cuda:0"
|
||||
)
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "video",
|
||||
"url": "https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4",
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "discribe this video",
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
inputs = processor.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt", padding=True).to("cuda:0")
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=1024, do_sample=True, temperature=1.0)
|
||||
output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1] :], skip_special_tokens=True)
|
||||
print(output_text)
|
||||
```
|
||||
|
||||
## Glm4vConfig
|
||||
|
||||
[[autodoc]] Glm4vConfig
|
||||
|
||||
## Glm4vTextConfig
|
||||
|
||||
[[autodoc]] Glm4vTextConfig
|
||||
|
||||
## Glm4vImageProcessor
|
||||
|
||||
[[autodoc]] Glm4vImageProcessor
|
||||
- preprocess
|
||||
|
||||
## Glm4vVideoProcessor
|
||||
|
||||
[[autodoc]] Glm4vVideoProcessor
|
||||
- preprocess
|
||||
|
||||
## Glm4vImageProcessorFast
|
||||
|
||||
[[autodoc]] Glm4vImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
## Glm4vProcessor
|
||||
|
||||
[[autodoc]] Glm4vProcessor
|
||||
|
||||
## Glm4vTextModel
|
||||
|
||||
[[autodoc]] Glm4vTextModel
|
||||
- forward
|
||||
|
||||
## Glm4vModel
|
||||
|
||||
[[autodoc]] Glm4vModel
|
||||
- forward
|
||||
|
||||
## Glm4vForConditionalGeneration
|
||||
|
||||
[[autodoc]] Glm4vForConditionalGeneration
|
||||
- forward
|
@ -19,6 +19,7 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
|
||||
# Granite
|
||||
|
122
docs/source/en/model_doc/kyutai_speech_to_text.md
Normal file
122
docs/source/en/model_doc/kyutai_speech_to_text.md
Normal file
@ -0,0 +1,122 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Kyutai Speech-To-Text
|
||||
## Overview
|
||||
|
||||
Kyutai STT is a speech-to-text model architecture based on the [Mimi codec](https://huggingface.co/docs/transformers/en/model_doc/mimi), which encodes audio into discrete tokens in a streaming fashion, and a [Moshi-like](https://huggingface.co/docs/transformers/en/model_doc/moshi) autoregressive decoder. Kyutai’s lab has released two model checkpoints:
|
||||
- [kyutai/stt-1b-en_fr](https://huggingface.co/kyutai/stt-1b-en_fr): a 1B-parameter model capable of transcribing both English and French
|
||||
- [kyutai/stt-2.6b-en](https://huggingface.co/kyutai/stt-2.6b-en): a 2.6B-parameter model focused solely on English, optimized for maximum transcription accuracy
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/eustlb/documentation-images/resolve/main/kyutai_stt.png"/>
|
||||
</div>
|
||||
|
||||
## Usage Tips
|
||||
|
||||
### Inference
|
||||
|
||||
```python
|
||||
import torch
|
||||
from datasets import load_dataset, Audio
|
||||
from transformers import KyutaiSpeechToTextProcessor, KyutaiSpeechToTextForConditionalGeneration
|
||||
|
||||
# 1. load the model and the processor
|
||||
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
model_id = "kyutai/stt-2.6b-en-trfs"
|
||||
|
||||
processor = KyutaiSpeechToTextProcessor.from_pretrained(model_id)
|
||||
model = KyutaiSpeechToTextForConditionalGeneration.from_pretrained(model_id, device_map=torch_device, torch_dtype="auto")
|
||||
|
||||
# 2. load audio samples
|
||||
ds = load_dataset(
|
||||
"hf-internal-testing/librispeech_asr_dummy", "clean", split="validation"
|
||||
)
|
||||
ds = ds.cast_column("audio", Audio(sampling_rate=24000))
|
||||
|
||||
# 3. prepare the model inputs
|
||||
inputs = processor(
|
||||
ds[0]["audio"]["array"],
|
||||
)
|
||||
inputs.to(torch_device)
|
||||
|
||||
# 4. infer the model
|
||||
output_tokens = model.generate(**inputs)
|
||||
|
||||
# 5. decode the generated tokens
|
||||
print(processor.batch_decode(output_tokens, skip_special_tokens=True))
|
||||
```
|
||||
|
||||
### Batched Inference
|
||||
|
||||
```python
|
||||
import torch
|
||||
from datasets import load_dataset, Audio
|
||||
from transformers import KyutaiSpeechToTextProcessor, KyutaiSpeechToTextForConditionalGeneration
|
||||
|
||||
# 1. load the model and the processor
|
||||
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
model_id = "kyutai/stt-2.6b-en-trfs"
|
||||
|
||||
processor = KyutaiSpeechToTextProcessor.from_pretrained(model_id)
|
||||
model = KyutaiSpeechToTextForConditionalGeneration.from_pretrained(model_id, device_map=torch_device, torch_dtype="auto")
|
||||
|
||||
# 2. load audio samples
|
||||
ds = load_dataset(
|
||||
"hf-internal-testing/librispeech_asr_dummy", "clean", split="validation"
|
||||
)
|
||||
ds = ds.cast_column("audio", Audio(sampling_rate=24000))
|
||||
|
||||
# 3. prepare the model inputs
|
||||
audio_arrays = [ds[i]["audio"]["array"] for i in range(4)]
|
||||
inputs = processor(audio_arrays, return_tensors="pt", padding=True)
|
||||
inputs = inputs.to(torch_device)
|
||||
|
||||
# 4. infer the model
|
||||
output_tokens = model.generate(**inputs)
|
||||
|
||||
# 5. decode the generated tokens
|
||||
decoded_outputs = processor.batch_decode(output_tokens, skip_special_tokens=True)
|
||||
for output in decoded_outputs:
|
||||
print(output)
|
||||
```
|
||||
|
||||
This model was contributed by [Eustache Le Bihan](https://huggingface.co/eustlb).
|
||||
The original code can be found [here](https://github.com/kyutai-labs/moshi).
|
||||
|
||||
|
||||
## KyutaiSpeechToTextConfig
|
||||
|
||||
[[autodoc]] KyutaiSpeechToTextConfig
|
||||
|
||||
## KyutaiSpeechToTextProcessor
|
||||
|
||||
[[autodoc]] KyutaiSpeechToTextProcessor
|
||||
- __call__
|
||||
|
||||
## KyutaiSpeechToTextFeatureExtractor
|
||||
|
||||
[[autodoc]] KyutaiSpeechToTextFeatureExtractor
|
||||
|
||||
## KyutaiSpeechToTextForConditionalGeneration
|
||||
|
||||
[[autodoc]] KyutaiSpeechToTextForConditionalGeneration
|
||||
- forward
|
||||
- generate
|
||||
|
||||
## KyutaiSpeechToTextModel
|
||||
|
||||
[[autodoc]] KyutaiSpeechToTextModel
|
@ -21,6 +21,7 @@ rendered properly in your Markdown viewer.
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
@ -19,6 +19,7 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
@ -20,6 +20,7 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
|
||||
```py3
|
||||
|
@ -21,6 +21,7 @@ rendered properly in your Markdown viewer.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
@ -22,6 +22,7 @@ rendered properly in your Markdown viewer.
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
@ -20,6 +20,7 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
@ -95,6 +95,12 @@ If you're interested in submitting a resource to be included here, please feel f
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
|
||||
## MobileViTImageProcessorFast
|
||||
|
||||
[[autodoc]] MobileViTImageProcessorFast
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
|
@ -107,6 +107,11 @@ The model is identical to [Donut](donut) in terms of architecture.
|
||||
[[autodoc]] NougatImageProcessor
|
||||
- preprocess
|
||||
|
||||
## NougatImageProcessorFast
|
||||
|
||||
[[autodoc]] NougatImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
## NougatTokenizerFast
|
||||
|
||||
[[autodoc]] NougatTokenizerFast
|
||||
|
@ -20,6 +20,7 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
@ -14,35 +14,115 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# PEGASUS-X
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# PEGASUS-X
|
||||
|
||||
The PEGASUS-X model was proposed in [Investigating Efficiently Extending Transformers for Long Input Summarization](https://huggingface.co/papers/2208.04347) by Jason Phang, Yao Zhao and Peter J. Liu.
|
||||
[PEGASUS-X](https://huggingface.co/papers/2208.04347) is an encoder-decoder (sequence-to-sequence) transformer model for long-input summarization. It extends the [Pegasus](./pegasus) model with staggered block-local attention, global encoder tokens, and additional pretraining on long text sequences, enabling it to handle inputs of up to 16,000 tokens. PEGASUS-X matches the performance of much larger models while using fewer parameters.
|
||||
|
||||
PEGASUS-X (PEGASUS eXtended) extends the PEGASUS models for long input summarization through additional long input pretraining and using staggered block-local attention with global tokens in the encoder.
|
||||
You can find all the original PEGASUS-X checkpoints under the [Google](https://huggingface.co/google/models?search=pegasus-x) organization.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
> [!TIP]
|
||||
> This model was contributed by [zphang](https://huggingface.co/zphang).
|
||||
>
|
||||
> Click on the PEGASUS-X models in the right sidebar for more examples of how to apply PEGASUS-X to different language tasks.
|
||||
|
||||
*While large pretrained Transformer models have proven highly capable at tackling natural language tasks, handling long sequence inputs continues to be a significant challenge. One such task is long input summarization, where inputs are longer than the maximum input context of most pretrained models. Through an extensive set of experiments, we investigate what model architectural changes and pretraining paradigms can most efficiently adapt a pretrained Transformer for long input summarization. We find that a staggered, block-local Transformer with global encoder tokens strikes a good balance of performance and efficiency, and that an additional pretraining phase on long sequences meaningfully improves downstream summarization performance. Based on our findings, we introduce PEGASUS-X, an extension of the PEGASUS model with additional long input pretraining to handle inputs of up to 16K tokens. PEGASUS-X achieves strong performance on long input summarization tasks comparable with much larger models while adding few additional parameters and not requiring model parallelism to train.*
|
||||
The example below demonstrates how to summarize text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
This model was contributed by [zphang](https://huggingface.co/zphang). The original code can be found [here](https://github.com/google-research/pegasus).
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
## Documentation resources
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
- [Translation task guide](../tasks/translation)
|
||||
- [Summarization task guide](../tasks/summarization)
|
||||
pipeline = pipeline(
|
||||
task="summarization",
|
||||
model="google/pegasus-x-large",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device=0
|
||||
)
|
||||
pipeline("""Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
|
||||
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
|
||||
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
|
||||
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle.""")
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
<Tip>
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
||||
|
||||
PEGASUS-X uses the same tokenizer as [PEGASUS](pegasus).
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"google/pegasus-x-large"
|
||||
)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
"google/pegasus-x-large",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
)
|
||||
|
||||
</Tip>
|
||||
input_text = """Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
|
||||
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
|
||||
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
|
||||
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle."""
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="transformers-cli">
|
||||
|
||||
```bash
|
||||
echo -e "Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet. Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts." | transformers-cli run --task summarization --model google/pegasus-x-large --device 0
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import BitsAndBytesConfig, AutoModelForSeq2SeqLM, AutoTokenizer
|
||||
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_quant_type="nf4"
|
||||
)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
"google/pegasus-x-large",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"google/pegasus-x-large"
|
||||
)
|
||||
|
||||
input_text = """Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
|
||||
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
|
||||
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
|
||||
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle."""
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- PEGASUS-X also uses the [`PegasusTokenizer`].
|
||||
|
||||
## PegasusXConfig
|
||||
|
||||
|
@ -18,6 +18,7 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
@ -20,6 +20,7 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
@ -19,6 +19,7 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
@ -18,6 +18,7 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
|
||||
# Qwen2MoE
|
||||
|
@ -19,6 +19,7 @@ rendered properly in your Markdown viewer.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
@ -56,7 +56,7 @@ Here is how to use the processor to process text and audio:
|
||||
```python
|
||||
>>> # let's load an audio sample from an Arabic speech corpus
|
||||
>>> from datasets import load_dataset
|
||||
>>> dataset = load_dataset("arabic_speech_corpus", split="test", streaming=True, trust_remote_code=True)
|
||||
>>> dataset = load_dataset("halabi2016/arabic_speech_corpus", split="test", streaming=True)
|
||||
>>> audio_sample = next(iter(dataset))["audio"]
|
||||
|
||||
>>> # now, process it
|
||||
|
@ -56,7 +56,7 @@ Here is how to use the processor to process text and audio:
|
||||
```python
|
||||
>>> # let's load an audio sample from an Arabic speech corpus
|
||||
>>> from datasets import load_dataset
|
||||
>>> dataset = load_dataset("arabic_speech_corpus", split="test", streaming=True, trust_remote_code=True)
|
||||
>>> dataset = load_dataset("halabi2016/arabic_speech_corpus", split="test", streaming=True)
|
||||
>>> audio_sample = next(iter(dataset))["audio"]
|
||||
|
||||
>>> # now, process it
|
||||
|
173
docs/source/en/model_doc/smollm3.md
Normal file
173
docs/source/en/model_doc/smollm3.md
Normal file
@ -0,0 +1,173 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# SmolLM3
|
||||
|
||||
SmolLM3 is a fully open, compact language model designed for efficient deployment while maintaining strong performance. It uses a Transformer decoder architecture with Grouped Query Attention (GQA) to reduce the kv cache, and no RoPE, enabling improved performance on long-context tasks. It is trained using a multi-stage training approach on high-quality public datasets across web, code, and math domains. The model is multilingual and supports very large context lengths. The instruct variant is optimized for reasoning and tool use.
|
||||
|
||||
> [!TIP]
|
||||
> Click on the SmolLM3 models in the right sidebar for more examples of how to apply SmolLM3 to different language tasks.
|
||||
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line using the instruction-tuned models.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="text-generation",
|
||||
model="HuggingFaceTB/SmolLM3-3B",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map=0
|
||||
)
|
||||
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Tell me about yourself."},
|
||||
]
|
||||
outputs = pipe(messages, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
||||
print(outputs[0]["generated_text"][-1]['content'])
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"HuggingFaceTB/SmolLM3-3B",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
|
||||
|
||||
prompt = "Give me a short introduction to large language models."
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
|
||||
|
||||
generated_ids = model.generate(
|
||||
model_inputs.input_ids,
|
||||
cache_implementation="static",
|
||||
max_new_tokens=512,
|
||||
do_sample=True,
|
||||
temperature=0.7,
|
||||
top_k=50,
|
||||
top_p=0.95
|
||||
)
|
||||
generated_ids = [
|
||||
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
||||
]
|
||||
|
||||
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
print(response)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
# pip install -U flash-attn --no-build-isolation
|
||||
transformers chat HuggingFaceTB/SmolLM3-3B --torch_dtype auto --attn_implementation flash_attention_2 --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to 4-bits.
|
||||
|
||||
```python
|
||||
# pip install -U flash-attn --no-build-isolation
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
||||
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_use_double_quant=True,
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"HuggingFaceTB/SmolLM3-3B",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config,
|
||||
attn_implementation="flash_attention_2"
|
||||
)
|
||||
|
||||
inputs = tokenizer("Gravity is the force", return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, max_new_tokens=100)
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
|
||||
## Notes
|
||||
|
||||
- Ensure your Transformers library version is up-to-date. SmolLM3 requires Transformers>=4.53.0 for full support.
|
||||
|
||||
## SmolLM3Config
|
||||
|
||||
[[autodoc]] SmolLM3Config
|
||||
|
||||
## SmolLM3Model
|
||||
|
||||
[[autodoc]] SmolLM3Model
|
||||
- forward
|
||||
|
||||
## SmolLM3ForCausalLM
|
||||
|
||||
[[autodoc]] SmolLM3ForCausalLM
|
||||
- forward
|
||||
|
||||
## SmolLM3ForSequenceClassification
|
||||
|
||||
[[autodoc]] SmolLM3ForSequenceClassification
|
||||
- forward
|
||||
|
||||
## SmolLM3ForTokenClassification
|
||||
|
||||
[[autodoc]] SmolLM3ForTokenClassification
|
||||
- forward
|
||||
|
||||
## SmolLM3ForQuestionAnswering
|
||||
|
||||
[[autodoc]] SmolLM3ForQuestionAnswering
|
||||
- forward
|
@ -20,6 +20,7 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
@ -10,48 +10,35 @@ specific language governing permissions and limitations under the License.
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# SuperPoint
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
The SuperPoint model was proposed
|
||||
in [SuperPoint: Self-Supervised Interest Point Detection and Description](https://huggingface.co/papers/1712.07629) by Daniel
|
||||
DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
|
||||
|
||||
This model is the result of a self-supervised training of a fully-convolutional network for interest point detection and
|
||||
description. The model is able to detect interest points that are repeatable under homographic transformations and
|
||||
provide a descriptor for each point. The use of the model in its own is limited, but it can be used as a feature
|
||||
extractor for other tasks such as homography estimation, image matching, etc.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*This paper presents a self-supervised framework for training interest point detectors and descriptors suitable for a
|
||||
large number of multiple-view geometry problems in computer vision. As opposed to patch-based neural networks, our
|
||||
fully-convolutional model operates on full-sized images and jointly computes pixel-level interest point locations and
|
||||
associated descriptors in one forward pass. We introduce Homographic Adaptation, a multi-scale, multi-homography
|
||||
approach for boosting interest point detection repeatability and performing cross-domain adaptation (e.g.,
|
||||
synthetic-to-real). Our model, when trained on the MS-COCO generic image dataset using Homographic Adaptation, is able
|
||||
to repeatedly detect a much richer set of interest points than the initial pre-adapted deep model and any other
|
||||
traditional corner detector. The final system gives rise to state-of-the-art homography estimation results on HPatches
|
||||
when compared to LIFT, SIFT and ORB.*
|
||||
[SuperPoint](https://huggingface.co/papers/1712.07629) is the result of self-supervised training of a fully-convolutional network for interest point detection and description. The model is able to detect interest points that are repeatable under homographic transformations and provide a descriptor for each point. Usage on it's own is limited, but it can be used as a feature extractor for other tasks such as homography estimation and image matching.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/superpoint_architecture.png"
|
||||
alt="drawing" width="500"/>
|
||||
|
||||
<small> SuperPoint overview. Taken from the <a href="https://huggingface.co/papers/1712.07629v4">original paper.</a> </small>
|
||||
You can find all the original SuperPoint checkpoints under the [Magic Leap Community](https://huggingface.co/magic-leap-community) organization.
|
||||
|
||||
## Usage tips
|
||||
> [!TIP]
|
||||
> This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
|
||||
>
|
||||
> Click on the SuperPoint models in the right sidebar for more examples of how to apply SuperPoint to different computer vision tasks.
|
||||
|
||||
Here is a quick example of using the model to detect interest points in an image:
|
||||
|
||||
```python
|
||||
|
||||
The example below demonstrates how to detect interest points in an image with the [`AutoModel`] class.
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
from transformers import AutoImageProcessor, SuperPointForKeypointDetection
|
||||
import torch
|
||||
from PIL import Image
|
||||
@ -64,67 +51,76 @@ processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint"
|
||||
model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint")
|
||||
|
||||
inputs = processor(image, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Post-process to get keypoints, scores, and descriptors
|
||||
image_size = (image.height, image.width)
|
||||
processed_outputs = processor.post_process_keypoint_detection(outputs, [image_size])
|
||||
```
|
||||
|
||||
The outputs contain the list of keypoint coordinates with their respective score and description (a 256-long vector).
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
You can also feed multiple images to the model. Due to the nature of SuperPoint, to output a dynamic number of keypoints,
|
||||
you will need to use the mask attribute to retrieve the respective information :
|
||||
## Notes
|
||||
|
||||
```python
|
||||
from transformers import AutoImageProcessor, SuperPointForKeypointDetection
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
- SuperPoint outputs a dynamic number of keypoints per image, which makes it suitable for tasks requiring variable-length feature representations.
|
||||
|
||||
url_image_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
image_1 = Image.open(requests.get(url_image_1, stream=True).raw)
|
||||
url_image_2 = "http://images.cocodataset.org/test-stuff2017/000000000568.jpg"
|
||||
image_2 = Image.open(requests.get(url_image_2, stream=True).raw)
|
||||
```py
|
||||
from transformers import AutoImageProcessor, SuperPointForKeypointDetection
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint")
|
||||
model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint")
|
||||
url_image_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
image_1 = Image.open(requests.get(url_image_1, stream=True).raw)
|
||||
url_image_2 = "http://images.cocodataset.org/test-stuff2017/000000000568.jpg"
|
||||
image_2 = Image.open(requests.get(url_image_2, stream=True).raw)
|
||||
images = [image_1, image_2]
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
# Example of handling dynamic keypoint output
|
||||
outputs = model(**inputs)
|
||||
keypoints = outputs.keypoints # Shape varies per image
|
||||
scores = outputs.scores # Confidence scores for each keypoint
|
||||
descriptors = outputs.descriptors # 256-dimensional descriptors
|
||||
mask = outputs.mask # Value of 1 corresponds to a keypoint detection
|
||||
```
|
||||
|
||||
images = [image_1, image_2]
|
||||
- The model provides both keypoint coordinates and their corresponding descriptors (256-dimensional vectors) in a single forward pass.
|
||||
- For batch processing with multiple images, you need to use the mask attribute to retrieve the respective information for each image. You can use the `post_process_keypoint_detection` from the `SuperPointImageProcessor` to retrieve the each image information.
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint")
|
||||
model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint")
|
||||
```py
|
||||
# Batch processing example
|
||||
images = [image1, image2, image3]
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
image_sizes = [(img.height, img.width) for img in images]
|
||||
processed_outputs = processor.post_process_keypoint_detection(outputs, image_sizes)
|
||||
```
|
||||
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
image_sizes = [(image.height, image.width) for image in images]
|
||||
outputs = processor.post_process_keypoint_detection(outputs, image_sizes)
|
||||
- You can then print the keypoints on the image of your choice to visualize the result:
|
||||
```py
|
||||
import matplotlib.pyplot as plt
|
||||
plt.axis("off")
|
||||
plt.imshow(image_1)
|
||||
plt.scatter(
|
||||
outputs[0]["keypoints"][:, 0],
|
||||
outputs[0]["keypoints"][:, 1],
|
||||
c=outputs[0]["scores"] * 100,
|
||||
s=outputs[0]["scores"] * 50,
|
||||
alpha=0.8
|
||||
)
|
||||
plt.savefig(f"output_image.png")
|
||||
```
|
||||
|
||||
for output in outputs:
|
||||
for keypoints, scores, descriptors in zip(output["keypoints"], output["scores"], output["descriptors"]):
|
||||
print(f"Keypoints: {keypoints}")
|
||||
print(f"Scores: {scores}")
|
||||
print(f"Descriptors: {descriptors}")
|
||||
```
|
||||
|
||||
You can then print the keypoints on the image of your choice to visualize the result:
|
||||
```python
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.axis("off")
|
||||
plt.imshow(image_1)
|
||||
plt.scatter(
|
||||
outputs[0]["keypoints"][:, 0],
|
||||
outputs[0]["keypoints"][:, 1],
|
||||
c=outputs[0]["scores"] * 100,
|
||||
s=outputs[0]["scores"] * 50,
|
||||
alpha=0.8
|
||||
)
|
||||
plt.savefig(f"output_image.png")
|
||||
```
|
||||

|
||||
|
||||
This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
|
||||
The original code can be found [here](https://github.com/magicleap/SuperPointPretrainedNetwork).
|
||||
<div class="flex justify-center">
|
||||
<img src="https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/ZtFmphEhx8tcbEQqOolyE.png">
|
||||
</div>
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with SuperPoint. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
|
||||
- A notebook showcasing inference and visualization with SuperPoint can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SuperPoint/Inference_with_SuperPoint_to_detect_interest_points_in_an_image.ipynb). 🌎
|
||||
- Refer to this [noteboook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SuperPoint/Inference_with_SuperPoint_to_detect_interest_points_in_an_image.ipynb) for an inference and visualization example.
|
||||
|
||||
## SuperPointConfig
|
||||
|
||||
@ -137,8 +133,12 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
|
||||
- preprocess
|
||||
- post_process_keypoint_detection
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
## SuperPointForKeypointDetection
|
||||
|
||||
[[autodoc]] SuperPointForKeypointDetection
|
||||
|
||||
- forward
|
||||
|
||||
</pt>
|
||||
|
107
docs/source/en/model_doc/t5gemma.md
Normal file
107
docs/source/en/model_doc/t5gemma.md
Normal file
@ -0,0 +1,107 @@
|
||||
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
|
||||
# T5Gemma
|
||||
|
||||
T5Gemma (aka encoder-decoder Gemma) was proposed in a [research paper](https://arxiv.org/abs/2504.06225) by Google. It is a family of encoder-decoder large langauge models, developed by adapting pretrained decoder-only models into encoder-decoder. T5Gemma includes pretrained and instruction-tuned variants. The architecture is based on transformer encoder-decoder design following T5, with improvements from Gemma 2: GQA, RoPE, GeGLU activation, RMSNorm, and interleaved local/global attention.
|
||||
|
||||
T5Gemma has two groups of model sizes: 1) [Gemma 2](https://ai.google.dev/gemma/docs/core/model_card_2) sizes (2B-2B, 9B-2B, and 9B-9B), which are based on the offical Gemma 2 models (2B and 9B); and 2) [T5](https://arxiv.org/abs/1910.10683) sizes (Small, Base, Large, and XL), where are pretrained under the Gemma 2 framework following T5 configuration. In addition, we also provide a model at ML size (medium large, ~2B in total), which is in-between T5 Large and T5 XL.
|
||||
|
||||
The pretrained varaints are trained with two objectives: prefix language modeling with knowledge distillation (PrefixLM) and UL2, separately. We release both variants for each model size. The instruction-turned varaints was post-trained with supervised fine-tuning and reinforcement learning.
|
||||
|
||||
The example below demonstrates how to chat with the model with [`Pipeline`] or the [`AutoModel`] class, and from the command line.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="text2text-generation",
|
||||
model="google/t5gemma-placeholder",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device="cuda",
|
||||
)
|
||||
|
||||
pipe("Question: Why is the sky blue?\nAnswer:", max_new_tokens=50)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("google/t5gemma-placeholder")
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
"google/t5gemma-placeholder",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
input_text = "Question: Why is the sky blue?\nAnswer:"
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
||||
|
||||
outputs = model.generate(**input_ids, max_new_tokens=32)
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```
|
||||
echo -e "Question: Why is the sky blue? Answer:" | transformers run --task text2text-generation --model google/t5gemma-placeholder --device 0
|
||||
```
|
||||
|
||||
## T5GemmaConfig
|
||||
|
||||
[[autodoc]] T5GemmaConfig
|
||||
|
||||
## T5GemmaModuleConfig
|
||||
|
||||
[[autodoc]] T5GemmaModuleConfig
|
||||
|
||||
## T5GemmaModel
|
||||
|
||||
[[autodoc]] T5GemmaModel
|
||||
- forward
|
||||
|
||||
## T5GemmaEncoderModel
|
||||
|
||||
[[autodoc]] T5GemmaEncoderModel
|
||||
- forward
|
||||
|
||||
## T5GemmaForConditionalGeneration
|
||||
|
||||
[[autodoc]] T5GemmaForConditionalGeneration
|
||||
- forward
|
||||
|
||||
## T5GemmaForSequenceClassification
|
||||
|
||||
[[autodoc]] T5GemmaForSequenceClassification
|
||||
- forward
|
||||
|
||||
## T5GemmaForTokenClassification
|
||||
|
||||
[[autodoc]] T5GemmaForTokenClassification
|
||||
- forward
|
@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
Transformers provides many pretrained models that are ready to use with a single line of code. It requires a model class and the [`~PreTrainedModel.from_pretrained`] method.
|
||||
|
||||
Call [`~PreTrainedModel.from_pretrained`] to download and load a models weights and configuration stored on the Hugging Face [Hub](https://hf.co/models).
|
||||
Call [`~PreTrainedModel.from_pretrained`] to download and load a model's weights and configuration stored on the Hugging Face [Hub](https://hf.co/models).
|
||||
|
||||
> [!TIP]
|
||||
> The [`~PreTrainedModel.from_pretrained`] method loads weights stored in the [safetensors](https://hf.co/docs/safetensors/index) file format if they're available. Traditionally, PyTorch model weights are serialized with the [pickle](https://docs.python.org/3/library/pickle.html) utility which is known to be unsecure. Safetensor files are more secure and faster to load.
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Modular Transformers
|
||||
# Contributing a new model to Transformers
|
||||
|
||||
Modular Transformers lowers the bar for contributing models and significantly reduces the code required to add a model by allowing imports and inheritance.
|
||||
|
||||
@ -540,6 +540,9 @@ This makes it very easy to switch decorators and makes it explicit that the only
|
||||
|
||||
## Docstring variables
|
||||
|
||||
> [!TIP]
|
||||
> Refer to the [Documeting a model](./auto_docstring) guide for more information about how you can use the `@auto_docstring` decorator to help automatically generate consistent docstring arguments.
|
||||
|
||||
If an object defined in both the modular and modeling file from which it inherits, the modular definition has precedence unless for assignments containing the pattern `DOCSTRING`. These variables are typically used in `MODEL_START_DOCSTRING` and `MODEL_INPUT_DOCSTRING` in the modeling files. They are big blocks of docstrings and the linter rewrites the names everywhere. For this reason, assignments containing the `DOCSTRING` variable can use the definition found in the source file without copying the whole docstring, by simply setting the variable to `None` in the modular file.
|
||||
|
||||
This is very useful if you need the variable reference somewhere but you don't want to clutter the modular file with docstrings which are always the same. The example code below allows you to automatically use the same docstrings from [Mistral](./model_doc/mistral) in [Starcoder2](./model_doc/starcoder2).
|
||||
|
@ -13,21 +13,19 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Tensor parallelism in transformers
|
||||
# Distributed inference
|
||||
|
||||
[Tensor parallelism](./perf_train_gpu_many#tensor-parallelism) shards a model onto multiple GPUs and parallelizes computations such as matrix multiplication. It enables fitting larger model sizes into memory and is faster because each GPU can process a tensor slice.
|
||||
This document assumes that you are already familiar with the basics of tensor parallelism. If you are not, please refer to the [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism) section on tensor parallelism.
|
||||
When a model doesn't fit on a single GPU, distributed inference with [tensor parallelism](./perf_train_gpu_many#tensor-parallelism) can help. Tensor parallelism shards a model onto multiple GPUs and parallelizes computations such as matrix multiplication. It enables fitting larger model sizes into memory and is faster because each GPU can process a tensor slice.
|
||||
|
||||
However, tensor parallelism adds communication overhead and should be used on single machine setups with multiple GPUs to take advantage of fast intra-node communication. For multi-node training, it may be more efficient to use pipeline or data parallelism depending on your use case.
|
||||
|
||||
> [!TIP]
|
||||
> Tensor parallelism is very communication intensive, therefore it is reccomended to use it on a single machine with multiple GPUs, utilizing fast intra-node communication. For multi-node training, methods as pipeline or data parallelism are more efficient (depending on your use case).
|
||||
> Refer to the [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism) section on tensor parallelism to learn more.
|
||||
|
||||
Tensor parallelism requires slight changes to the model parameters, therefore in transformers, we support some of the popular models out of the box.
|
||||
|
||||
> [!TIP]
|
||||
> Expand the list below to see which models support tensor parallelism. Open a GitHub issue or pull request to add support for a model not currently below.
|
||||
Check the list below for models that natively support tensor parallelism. Open a GitHub issue or pull request to add support for a model.
|
||||
|
||||
<details>
|
||||
<summary>Supported models</summary>
|
||||
<summary>Show supported models</summary>
|
||||
|
||||
* [Cohere](./model_doc/cohere) and [Cohere 2](./model_doc/cohere2)
|
||||
* [Gemma](./model_doc/gemma) and [Gemma 2](./model_doc/gemma2)
|
||||
@ -43,19 +41,74 @@ Tensor parallelism requires slight changes to the model parameters, therefore in
|
||||
|
||||
</details>
|
||||
|
||||
## Using 🤗 transformers
|
||||
This guide shows how to enable tensor parallelism with Transformers and different partitioning strategies.
|
||||
|
||||
Transformers provides a simple interface to use for tensor parallelism. We provide multiple classes implementing different partitioning
|
||||
strategies and a simple entrypoint to parallelize `nn.Module` instance. You won't have to interact with this interface directly, everything is done in `PretrainedModel.from_pretrained` method for you. This section will first talk about the partitioning strategies
|
||||
we support, then the user interface you will be interacting with, and finally it will teach you how to extend it with your own partitioning
|
||||
strategies.
|
||||
## Partitioning a model
|
||||
|
||||
### Partitioning strategies
|
||||
Transformers supports tensor parallelism if a model has a `tp_plan`. There are two plans to partition a model.
|
||||
|
||||
In transformers, partitioning strategies reside in a class `ParallelInterface` which works like a mapping from string to the strategy implementation.
|
||||
- The `auto` tensor parallelism plan partitions a model (see the supported models above) based on a predefined configuration.
|
||||
- You can also manually specify your own partitioning plan and pass it to the `tp_plan` parameter in [`~PreTrainedModel.from_pretrained`].
|
||||
|
||||
<hfoptions id="sharding">
|
||||
<hfoption id="auto plan">
|
||||
|
||||
```python
|
||||
```py
|
||||
import os
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
# model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct" # better to visualize all the possible strategies
|
||||
model_id = "meta-llama/Meta-Llama-3-8B-Instruct" # better for smaller number of GPUs
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan="auto")
|
||||
print(model._tp_plan)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
||||
prompt = "Can I help"
|
||||
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
||||
|
||||
# distributed run
|
||||
outputs = model(inputs)
|
||||
```
|
||||
|
||||
Launch the inference script above on [torchrun](https://pytorch.org/docs/stable/elastic/run.html) with 4 processes per GPU.
|
||||
|
||||
```bash
|
||||
torchrun --nproc-per-node 4 demo.py
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="manual plan">
|
||||
|
||||
Define a tensor parallel plan for each layer in `tp_plan` and pass it to [`~PreTrainedModel.from_pretrained`]. The example below uses a combination of column and row partitioning. Refer to the [Partitioning strategies](#partitioning-strategies) section to learn about other supported partitioning strategies.
|
||||
|
||||
> [!WARNING]
|
||||
> Manually specifying your own partitioning plan requires a good understanding of the model architecture and how the partitioning strategies interact together. If you are not sure about the partitioning strategies, the resulting model can be very slow, even failing or incorrect. Refer to the [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism) to learn more.
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
tp_plan = {
|
||||
"model.layers.*.self_attn.q_proj": "colwise",
|
||||
"model.layers.*.self_attn.k_proj": "colwise",
|
||||
"model.layers.*.self_attn.v_proj": "colwise",
|
||||
"model.layers.*.self_attn.o_proj": "rowwise",
|
||||
...
|
||||
}
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan=tp_plan)
|
||||
print(model._tp_plan)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Partitioning strategies
|
||||
|
||||
All partitioning strategies are defined in the [`ParallelInterface`] class which maps a string to the strategy implementation. You don't need to interact with this class directly since all the strategies are set with `tp_plan` in [`~PreTrainedModel.from_pretrained`], but it is useful for checking what strategies are available.
|
||||
|
||||
```py
|
||||
class ParallelInterface(MutableMapping):
|
||||
"""
|
||||
Dict-like object keeping track of allowed attention functions. You can easily add a new attention function
|
||||
@ -77,66 +130,32 @@ class ParallelInterface(MutableMapping):
|
||||
}
|
||||
```
|
||||
|
||||
We support the following strategies:
|
||||
Refer to the table below to learn more about each strategy.
|
||||
|
||||
- `ColwiseParallel` - A simple column-wise partitioning, being able to handle both weights and biases, does exactly what we've discussed before.
|
||||
- `RowwiseParallel` - Again, row-wise partitioning as dicussed before, supports weights and biases, on top of that it also supports `nn.Embedding` modules.
|
||||
- `SequenceParallel` - Sequence parallel implementation, for support of `LayerNorm` and `Dropout` layers. Also supports Python implementation of `RMSNorm` (see [this](https://github.com/facebookresearch/llama/blob/main/llama/model.py#L34))
|
||||
- `PackedColwiseParallel` - A variant of column-wise partitioning, however it works on packed weights (i.e. `up_proj` and `gate_proj` being packed together). For more details, see [this comment](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108)
|
||||
- `PackedRowwiseParallel` - A variant of row-wise partitioning, works on packed weights, for more details check the comment linked above.
|
||||
- `GatherParallel` - A very simple class, that only makes the outputs of the module to be gathered across devices.
|
||||
- `IsolatedParallel` - This is a special case, where we want to *isolate* the module from the rest of the devices (world). This is used for Experts in MoE layers, basically creating Expert parallelism of sorts.
|
||||
- `ReplicateParallel` - Many `torch.distributed` APIs break if model is partially sharded, so this class is used to replicate the module across all devices.
|
||||
| Strategy | Description |
|
||||
|---|---|
|
||||
| `ColwiseParallel` | Column-wise partitioning of weights and biases. |
|
||||
| `RowwiseParallel` | Row-wise partitioning of weights and biases. Also supports partitioning `nn.Embedding` modules. |
|
||||
| `SequenceParallel` | Sequence parallel implementation to support `LayerNorm` and `Dropout` layers. Also supports Python implementation of [RMSNorm](https://github.com/facebookresearch/llama/blob/main/llama/model.py#L34). |
|
||||
| `PackedColwiseParallel` | Variant of `ColwiseParallel` to support packed weights (for example, packing `up_proj` and `gate_proj` together). Refer to the [code](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108) for more details. |
|
||||
| `PackedRowwiseParallel` | Variant of `RowwiseParallel` to support packed weights (refer to the [code](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108) for more details). |
|
||||
| `GatherParallel` | Gather outputs of the module across devices. |
|
||||
| `IsolatedParallel` | Used for Experts in Mixture-of-Experts (MoE) layers to isolates module from other devices. |
|
||||
| `ReplicateParallel` | Replicate modules across all devices to prevent `torch.distributed` APIs from breaking due to a partially sharded model. |
|
||||
|
||||
### Sharding a model
|
||||
### Packed strategies
|
||||
|
||||
We provide two ways to shard a model, first one is to use `auto` tensor parallelism plan, which will automatically shard the model based on our predefined configuration. This requires the model to have predefined tensor parallel plan in transformers.
|
||||
Weight packing packs multiple linear layers into a single, bigger layer. Packed strategies, `PackedColwiseParallel` and `PackedRowwiseParallel`, are used to shard packed weights. The more basic `ColwiseParallel` or `RowwiseParallel` will incorrectly shard the packed weights.
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM
|
||||
The example below packs `up_proj` and `gate_proj` into a single `gate_up_proj` module and requires the `PackedRowwiseParallel` strategy to shard `gate_up_proj`.
|
||||
|
||||
# model_id = "meta-llama/Meta-Llama-3-8B-Instruct" # better for smaller number of GPUs
|
||||
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct" # better to visualize all the possible strategies
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan="auto")
|
||||
|
||||
print(model._tp_plan)
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> For a list of models that support tensor parallelism, see the [Supported models](#supported-models) section above.
|
||||
|
||||
The second way is to manually specify your own partitioning plan.
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
tp_plan = {
|
||||
"model.layers.*.self_attn.q_proj": "colwise",
|
||||
"model.layers.*.self_attn.k_proj": "colwise",
|
||||
"model.layers.*.self_attn.v_proj": "colwise",
|
||||
"model.layers.*.self_attn.o_proj": "rowwise",
|
||||
...
|
||||
}
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan=tp_plan)
|
||||
|
||||
print(model._tp_plan)
|
||||
```
|
||||
|
||||
You might have noticed that there are some special cases in the `ParallelInterface` mapping, let's now talk about them. This will help you understand their purpose and help with extending to other strategies.
|
||||
|
||||
### PackedRowwiseParallel
|
||||
This class is a special case of `RowwiseParallel`, it's used to shard packed weights. Weight packing is a common technique used in models. It's a technique where we pack multiple linear layers into a single, bigger one.
|
||||
|
||||
For example in `Llama4` model, we pack `up_proj` and `gate_proj` into a single `gate_up_proj` module.
|
||||
```python
|
||||
class Llama4TextExperts(nn.Module):
|
||||
...
|
||||
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim))
|
||||
```
|
||||
|
||||
Then in forward, we can use batch matrix multiplication to compute the output of the `gate_up_proj` module.
|
||||
Batch matrix multiplication can be used in the `forward` pass to compute the output of the `gate_up_proj` module.
|
||||
|
||||
```python
|
||||
def forward(self, hidden_states):
|
||||
@ -145,185 +164,148 @@ def forward(self, hidden_states):
|
||||
gate, up = gate_up.chunk(2, dim=-1) # Split the output into gate and up
|
||||
```
|
||||
|
||||
In this case, we need to use the `PackedRowwiseParallel` strategy to shard the `gate_up_proj` module, as using a simple `RowwiseParallel` will shard the layers wrongly.
|
||||
|
||||
> [!TIP]
|
||||
> If this is a bit difficult to wrap your head around, check out [this comment](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108) for an amazing visual representation of why `Packed*` needs to be used.
|
||||
> Refer to [this comment](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108) for an visual representation of why `Packed*` needs to be used.
|
||||
|
||||
### Local strategies
|
||||
|
||||
### `local*` strategies
|
||||
Local strategies (`local_colwise`, `local_rowwise`, `local_packed_rowwise`) don't use [DTensor](https://docs.pytorch.org/docs/stable/distributed.tensor.html) because it isn't supported for some operations such as [torch.chunk](https://docs.pytorch.org/docs/stable/generated/torch.chunk.html). Instead, local strategies use the basic [torch.Tensor](https://docs.pytorch.org/docs/stable/tensors.html) and performs some of the distributed logic manually.
|
||||
|
||||
You could have noticed that there are `local*` strategies, which use the same layers as `*` strategy, but don't use `DTensor` at all.
|
||||
This is because `DTensor` is not supported for some of the operations: such as `torch.chunk`. Therefore, sometimes we need to use the `local*` strategies, which use vanilla `torch.Tensor` and do some of the distributed logic manually.
|
||||
|
||||
<!---
|
||||
<!--
|
||||
Readd this when I get the exact error message
|
||||
> [!TIP]
|
||||
> If you are using a custom partitioning strategy, and it's not working with `... is not supported` error, try using the `local*` strategies to see if they work better.
|
||||
-->
|
||||
|
||||
> [!WARNING]
|
||||
> Manually specifying your own partitiong plan requires a good understanding of the model architecture and how the partitioning strategies interact together. If you are not sure about this, the resulting model can be very slow, even failing or incorrect. Again, refer to the [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism) which can teach you everything required.
|
||||
## Custom partitioning strategies
|
||||
|
||||
### Extending the interface with your own partitioning strategies
|
||||
A custom partitioning strategy should inherit from [`TensorParallelLayer`](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py) and implement `partition_tensor`, `_prepare_input_fn` and `_prepare_output_fn`.
|
||||
|
||||
This is a very advanced topic, which requires a good understanding of distributed collectives and the model architecture.
|
||||
Your custom partitioning strategy should inherit from `TensorParallelLayer` defined in [integrations/tensor_parallel.py](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py) and implement: `partition_tensor`, `_prepare_input_fn` and `_prepare_output_fn`. Then it should be registered in the `ParallelInterface` mapping, so our dispatching logic can find it when specified in the `tp_plan`.
|
||||
Then it needs to be registered in the `ParallelInterface` mapping so the dispatching logic can find it when specified in `tp_plan`.
|
||||
|
||||
Let's go through this workflow step by step, on an already existing example: `ColwiseParallel`.
|
||||
The example below shows how to implement `ColwiseParallel` with this workflow.
|
||||
|
||||
1. Inherit from `TensorParallelLayer` and initialization
|
||||
1. Inherit from `TensorParallelLayer`. In the `__init__` method, define `input_layouts` and `output_layouts` to describe how the input and output tensors should be placed on devices. The `desired_input_layouts` attribute is used to specify how the input *should* be placed on devices.
|
||||
|
||||
```python
|
||||
class ColwiseParallel(TensorParallelLayer):
|
||||
def __init__(
|
||||
```python
|
||||
class ColwiseParallel(TensorParallelLayer):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
input_layouts: Optional[Placement] = None, # The input layout coming from the previous layer
|
||||
output_layouts: Optional[Placement] = None, # The output layout we want to achieve
|
||||
use_local_output: bool = True, # Whether to use local output or not
|
||||
use_dtensor=True, # Whether to use DTensor or not
|
||||
):
|
||||
self.input_layouts = (input_layouts or Replicate(),) # The input sharding coming from the previous layer
|
||||
self.output_layouts = (output_layouts or Shard(-1),) # Desired output sharding
|
||||
self.desired_input_layouts = (Replicate(),) # Desired input sharding, inputs should be replicated across GPUs
|
||||
self.use_local_output = use_local_output
|
||||
self.use_dtensor = use_dtensor
|
||||
```
|
||||
|
||||
2. Implement the `partition_tensor`, `_prepare_input_fn` and `_prepare_output_fn` methods.
|
||||
|
||||
The `partition_tensor` method partitions the tensor and fills `empty_param` with the partitioned tensor. Use the utility function `get_tensor_shard` to help you get the correct shard of the original parameter for a given rank and `get_packed_weights` to help with packed weights.
|
||||
|
||||
```python
|
||||
def partition_tensor(
|
||||
self,
|
||||
*,
|
||||
input_layouts: Optional[Placement] = None, # The input layout coming from the previous layer
|
||||
output_layouts: Optional[Placement] = None, # The output layout we want to achieve
|
||||
use_local_output: bool = True, # Whether to use local output or not
|
||||
use_dtensor=True, # Whether to use DTensor or not
|
||||
):
|
||||
self.input_layouts = (input_layouts or Replicate(),) # The input sharding coming from the previous layer
|
||||
self.output_layouts = (output_layouts or Shard(-1),) # Desired output sharding
|
||||
self.desired_input_layouts = (Replicate(),) # Desired input sharding, inputs should be replicated across GPUs
|
||||
self.use_local_output = use_local_output
|
||||
self.use_dtensor = use_dtensor
|
||||
```
|
||||
param, # Full tensor of the parameter
|
||||
empty_param, # Empty tensor of the parameter, will be filled with the partitioned tensor
|
||||
param_type, # Type of the parameter, `bias` or `weight`
|
||||
param_casting_dtype, # The type to cast the parameter to
|
||||
to_contiguous, # Whether to convert the tensor to a contiguous memory layout
|
||||
rank, # The rank of the current device
|
||||
device_mesh, # The device mesh
|
||||
) -> nn.Parameter: # Return the partitioned parameter
|
||||
...
|
||||
```
|
||||
|
||||
In the `__init__` method, we define these attributes, where `input_layouts` and `output_layouts` describing, how the input and output tensors should be placed on the devices. `desired_input_layouts` is used to specify, how the input *SHOULD* be placed on the devices.
|
||||
The `_prepare_input_fn` and `_prepare_output_fn` methods are used in the [pre-forward](https://docs.pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_pre_hook.html) and [forward](https://docs.pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_hook.html) hooks. They redistribute the inputs and outputs to the desired layout as specified in the `__init__`.
|
||||
|
||||
2a. Implement `partition_tensor` method
|
||||
```python
|
||||
def _prepare_input_fn(input_layouts, desired_input_layouts, mod, inputs, device_mesh):
|
||||
...
|
||||
# Do some custom logic, cast to DTensor etc.
|
||||
...
|
||||
return inputs.redistribute(placements=desired_input_layouts, device_mesh=device_mesh)
|
||||
def _prepare_output_fn(output_layouts, use_local_output, mod, outputs, device_mesh):
|
||||
...
|
||||
# Do some custom logic, cast to DTensor etc.
|
||||
...
|
||||
return outputs.redistribute(placements=output_layouts, device_mesh=device_mesh)
|
||||
```
|
||||
|
||||
```python
|
||||
def partition_tensor(
|
||||
self,
|
||||
param, # Full tensor of the parameter
|
||||
empty_param, # Empty tensor of the parameter, will be filled with the partitioned tensor
|
||||
param_type, # Type of the parameter, `bias` or `weight`
|
||||
param_casting_dtype, # The type to cast the parameter to
|
||||
to_contiguous, # Whether to convert the tensor to a contiguous memory layout
|
||||
rank, # The rank of the current device
|
||||
device_mesh, # The device mesh
|
||||
) -> nn.Parameter: # Return the partitioned parameter
|
||||
...
|
||||
```
|
||||
3. Register the strategy to [`ParallelInterface`] to enable it for use with `tp_plan`.
|
||||
|
||||
This method is used to partition the tensor, and fill the `empty_param` with the partitioned tensor.
|
||||
We provide some utility functions to help you with this, such as `get_tensor_shard` which will get you the correct shard of the original parameter for this rank or `get_packed_weights` to help with packed weights.
|
||||
```python
|
||||
from transformers.integrations.tensor_parallel import ParallelInterface
|
||||
|
||||
2b. Implement `_prepare_input_fn` and `_prepare_output_fn` methods
|
||||
ParallelInterface.register_strategy("colwise_custom", ColwiseParallel)
|
||||
tp_plan = {
|
||||
"model.layers.*.self_attn.q_proj": "colwise_custom",
|
||||
...
|
||||
}
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan=tp_plan)
|
||||
```
|
||||
|
||||
These methods are used as [`pre-forward`](https://docs.pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_pre_hook.html) and [`forward`](https://docs.pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_hook.html) hooks respectively. Their purpose is to re-distribute the inputs and outputs to the desired layout, passed in the `__init__` method.
|
||||
## Benchmarks
|
||||
|
||||
```python
|
||||
def _prepare_input_fn(input_layouts, desired_input_layouts, mod, inputs, device_mesh):
|
||||
...
|
||||
# Do some custom logic, cast to DTensor etc.
|
||||
...
|
||||
return inputs.redistribute(placements=desired_input_layouts, device_mesh=device_mesh)
|
||||
Tensor parallelism can considerably speedup inference, especially for inputs with large batch sizes or long sequences.
|
||||
|
||||
def _prepare_output_fn(output_layouts, use_local_output, mod, outputs, device_mesh):
|
||||
...
|
||||
# Do some custom logic, cast to DTensor etc.
|
||||
...
|
||||
return outputs.redistribute(placements=output_layouts, device_mesh=device_mesh)
|
||||
```
|
||||
|
||||
3. Register the strategy
|
||||
Congratulations! You've implemented your own partitioning strategy. Now, to use it with your own `tp_plan`, you need to register it in the `ParallelInterface` mapping.
|
||||
|
||||
```python
|
||||
from transformers.integrations.tensor_parallel import ParallelInterface
|
||||
|
||||
ParallelInterface.register_strategy("colwise_custom", ColwiseParallel)
|
||||
```
|
||||
|
||||
And now you can use it in your `tp_plan` as such:
|
||||
|
||||
```python
|
||||
tp_plan = {
|
||||
"model.layers.*.self_attn.q_proj": "colwise_custom",
|
||||
...
|
||||
}
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan=tp_plan)
|
||||
```
|
||||
|
||||
|
||||
## Full example
|
||||
|
||||
Let's go through a full example of inference with tensor parallelism.
|
||||
```python
|
||||
import os
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
|
||||
# enable tensor parallelism
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"meta-llama/Meta-Llama-3-8B-Instruct",
|
||||
tp_plan="auto",
|
||||
)
|
||||
|
||||
# prepare input tokens
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
||||
prompt = "Can I help"
|
||||
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
||||
|
||||
# distributed run
|
||||
outputs = model(inputs)
|
||||
```
|
||||
|
||||
Launch the inference script above on [torchrun](https://pytorch.org/docs/stable/elastic/run.html) with 4 processes per GPU.
|
||||
|
||||
```bash
|
||||
torchrun --nproc-per-node 4 demo.py
|
||||
```
|
||||
|
||||
You can benefit from considerable speed ups for inference, especially for inputs with large batch size or long sequences.
|
||||
|
||||
For a single forward pass on [Llama](./model_doc/llama) with a sequence length of 512 and various batch sizes, you can expect the following speed ups.
|
||||
Refer to the chart below for the expected speedup for a single forward pass on [Llama](./model_doc/llama) with a sequence length of 512.
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Meta-Llama-3-8B-Instruct%2C%20seqlen%20%3D%20512%2C%20python%2C%20w_%20compile.png">
|
||||
</div>
|
||||
|
||||
## Tensor parallelism in-depth
|
||||
Our implementation of tensor parallelism is framework-agnostic in design, but the specific implementations we've developed rely on the torch.distributed package. We heavily utilize abstractions such as `DeviceMesh` or `DTensor` to provide a simple and extensible interface to the user.
|
||||
## Design implementation
|
||||
|
||||
The Transformers tensor parallelism implementation is framework-agnostic, but for specific implementations, we rely on [DeviceMesh](https://docs.pytorch.org/tutorials/recipes/distributed_device_mesh.html) and [DTensor](https://docs.pytorch.org/docs/stable/distributed.tensor.html) from [torch.distributed](https://docs.pytorch.org/tutorials/beginner/dist_overview.html) to provide a simple and extensible interface.
|
||||
|
||||
### DeviceMesh
|
||||
Imagine `DeviceMesh` as a multi-dimensional grid of devices that communicate together. Different parallelization strategies require different types of communication patterns, therefore we can create a `DeviceMesh` with multiple submeshes:
|
||||
|
||||
Imagine `DeviceMesh` as a multi-dimensional grid of devices that communicate together. Different parallelization strategies require different types of communication patterns, so you can create a `DeviceMesh` with multiple sub-meshes.
|
||||
|
||||
```python
|
||||
from torch.distributed.device_mesh import init_device_mesh
|
||||
|
||||
# Create a 1D mesh of 4 GPUs
|
||||
device_mesh = init_device_mesh("cuda", (4,), mesh_dim_names=["tp"])
|
||||
```
|
||||
Then, most of the `torch.distributed` defined parallelization strategies can be applied to a mesh itself, or its submesh, automatically handling the communication patterns.
|
||||
|
||||
Most of the `torch.distributed` defined parallelization strategies can be applied to the mesh itself, or its sub-mesh, and it automatically handles the communication patterns.
|
||||
|
||||
### DTensor
|
||||
|
||||
Abbreviation for Distributed Tensor, `DTensor` is a tensor subclass that handles the distributed logic on-top of the usual tensor operations. Most of the model weights in case of tensor parallelism are stored as `DTensor`s (with some exceptions, more on that later).
|
||||
The most important part of DTensor, that is crucial to understand, is the `placement` attribute. It's an attribute that tells PyTorch how is the tensor placed on the devices of the `DeviceMesh`.
|
||||
`DTensor` (Distributed Tensor) is a tensor subclass that handles the distributed logic on top of the usual tensor operations. Most of the model weights in tensor parallelism are stored as `DTensor`s.
|
||||
|
||||
It can have the following values:
|
||||
The most important part of DTensor is the `placement` attribute because it tells PyTorch how a tensor is placed on the devices in `DeviceMesh`. The `placement` attribute can take the following values.
|
||||
|
||||
- `Shard(dimension)` - Annotates that this `DTensor` is sharded across a given dimension, over the `DeviceMesh` it was constructed under. For example, if we would like to shard weights for column-wise partitioning, we would do:
|
||||
```python
|
||||
weight = ...
|
||||
weight = DTensor.from_local(weight, device_mesh["tp"], placements=[Shard(0)]) # Shard across the 1st (column-wise) dimension
|
||||
bias = ...
|
||||
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Shard(-1)]) # Shard across the ONLY dimension
|
||||
```
|
||||
- `Shard(dimension)` - Indicates how a `DTensor` is sharded across a given dimension, over the `DeviceMesh` it was constructed under. The example below demonstrates how to shard weights over different dimensions for column-wise partitioning.
|
||||
|
||||
To give another example, for row-wise partitioning, we would do:
|
||||
```python
|
||||
weight = ...
|
||||
weight = DTensor.from_local(weight, device_mesh["tp"], placements=[Shard(1)]) # Shard across the 2nd (row-wise) dimension
|
||||
bias = ...
|
||||
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Replicate()]) # Replicate bias across all GPUs
|
||||
```
|
||||
```python
|
||||
weight = ...
|
||||
weight = DTensor.from_local(weight, device_mesh["tp"], placements=[Shard(0)]) # Shard across the 1st (column-wise) dimension
|
||||
bias = ...
|
||||
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Shard(-1)]) # Shard across the ONLY dimension
|
||||
```
|
||||
|
||||
- `Replicate()` - Annotates that this `DTensor` is replicated across the `DeviceMesh`. Very straight-forward, only creates a full copy of the tensor on each device.
|
||||
- `Partial()` - This placement is mostly of no interest to us, it's used to annotate that this tensor is pending a reduction operation.
|
||||
This example demonstrates how to shard weights over different dimensions for row-wise partitioning.
|
||||
|
||||
```python
|
||||
weight = ...
|
||||
weight = DTensor.from_local(weight, device_mesh["tp"], placements=[Shard(1)]) # Shard across the 2nd (row-wise) dimension
|
||||
bias = ...
|
||||
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Replicate()]) # Replicate bias across all GPUs
|
||||
```
|
||||
|
||||
- `Replicate()` - Indicates a `DTensor` is replicated across the `DeviceMesh`. It only creates a full copy of the tensor on each device.
|
||||
|
||||
```py
|
||||
bias = ...
|
||||
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Replicate()]) # Replicate bias across all GPUs
|
||||
```
|
||||
|
||||
- `Partial()` - Indicates a tensor is pending a reduction operation (not typically relevant for usage in Transformers).
|
@ -91,6 +91,8 @@ Tensor parallelism distributes large tensor computations across multiple GPUs. T
|
||||
|
||||
Tensor parallelism is effective for training large models that don't fit into the memory of a single GPU. It is also faster and more efficient because each GPU can process its tensor slice in parallel, and it can be combined with other parallelism methods. Like other parallelism methods though, tensor parallelism adds communication overhead between GPUs.
|
||||
|
||||
Refer to the [Tensor parallelism](./perf_infer_gpu_multi) guide to learn how to use it for inference.
|
||||
|
||||
## Hybrid parallelism
|
||||
|
||||
Parallelism methods can be combined to achieve even greater memory savings and more efficiently train models with billions of parameters.
|
||||
|
@ -32,12 +32,29 @@ To start, we recommend creating a Hugging Face [account](https://hf.co/join). An
|
||||
|
||||
Create a [User Access Token](https://hf.co/docs/hub/security-tokens#user-access-tokens) and log in to your account.
|
||||
|
||||
<hfoptions id="authenticate">
|
||||
<hfoption id="notebook">
|
||||
|
||||
Paste your User Access Token into [`~huggingface_hub.notebook_login`] when prompted to log in.
|
||||
|
||||
```py
|
||||
from huggingface_hub import notebook_login
|
||||
|
||||
notebook_login()
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="CLI">
|
||||
|
||||
Make sure the [huggingface_hub[cli]](https://huggingface.co/docs/huggingface_hub/guides/cli#getting-started) package is installed and run the command below. Paste your User Access Token when prompted to log in.
|
||||
|
||||
```bash
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Install a machine learning framework.
|
||||
|
||||
<hfoptions id="installation">
|
||||
|
@ -474,13 +474,6 @@ For example, here is a test that must be run only when there are 2 or more GPUs
|
||||
def test_example_with_multi_gpu():
|
||||
```
|
||||
|
||||
If a test requires `tensorflow` use the `require_tf` decorator. For example:
|
||||
|
||||
```python no-style
|
||||
@require_tf
|
||||
def test_tf_thing_with_tensorflow():
|
||||
```
|
||||
|
||||
These decorators can be stacked. For example, if a test is slow and requires at least one GPU under pytorch, here is
|
||||
how to set it up:
|
||||
|
||||
@ -1226,11 +1219,6 @@ if torch.cuda.is_available():
|
||||
import numpy as np
|
||||
|
||||
np.random.seed(seed)
|
||||
|
||||
# tf RNG
|
||||
import tensorflow as tf
|
||||
|
||||
tf.random.set_seed(seed)
|
||||
```
|
||||
|
||||
### Debugging tests
|
||||
|
@ -445,13 +445,6 @@ CUDA_VISIBLE_DEVICES="1" pytest tests/utils/test_logging.py
|
||||
def test_example_with_multi_gpu():
|
||||
```
|
||||
|
||||
テストに `tensorflow` が必要な場合は、`require_tf` デコレータを使用します。例えば:
|
||||
|
||||
```python no-style
|
||||
@require_tf
|
||||
def test_tf_thing_with_tensorflow():
|
||||
```
|
||||
|
||||
これらのデコレータは積み重ねることができます。たとえば、テストが遅く、pytorch で少なくとも 1 つの GPU が必要な場合は、次のようになります。
|
||||
設定方法:
|
||||
|
||||
@ -1135,9 +1128,6 @@ if torch.cuda.is_available():
|
||||
import numpy as np
|
||||
|
||||
np.random.seed(seed)
|
||||
|
||||
# tf RNG
|
||||
tf.random.set_seed(seed)
|
||||
```
|
||||
|
||||
|
||||
|
@ -473,13 +473,6 @@ GPU 요구 사항을 표로 정리하면 아래와 같습니디ㅏ:
|
||||
def test_example_with_multi_gpu():
|
||||
```
|
||||
|
||||
`tensorflow`가 필요한 경우 `require_tf` 데코레이터를 사용합니다. 예를 들어 다음과 같습니다:
|
||||
|
||||
```python no-style
|
||||
@require_tf
|
||||
def test_tf_thing_with_tensorflow():
|
||||
```
|
||||
|
||||
이러한 데코레이터는 중첩될 수 있습니다.
|
||||
예를 들어, 느린 테스트로 진행되고 pytorch에서 적어도 하나의 GPU가 필요한 경우 다음과 같이 설정할 수 있습니다:
|
||||
|
||||
|
@ -60,7 +60,7 @@ from transformers.utils import check_min_version, send_example_telemetry
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
Array = Any
|
||||
Dataset = datasets.arrow_dataset.Dataset
|
||||
|
@ -59,7 +59,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risk.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/flax/speech-recognition/requirements.txt")
|
||||
|
||||
|
@ -264,7 +264,6 @@ class ExamplesTests(TestCasePlus):
|
||||
--dataset_config clean
|
||||
--train_split_name validation
|
||||
--eval_split_name validation
|
||||
--trust_remote_code
|
||||
--output_dir {tmp_dir}
|
||||
--overwrite_output_dir
|
||||
--num_train_epochs=2
|
||||
|
@ -55,7 +55,7 @@ from transformers.utils import check_min_version, send_example_telemetry
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
Array = Any
|
||||
Dataset = datasets.arrow_dataset.Dataset
|
||||
|
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
|
||||
|
||||
|
@ -14,6 +14,7 @@ class MyNewModelConfig(PretrainedConfig):
|
||||
This is the configuration class to store the configuration of a [`MyNewModelModel`]. It is used to instantiate an MyNewModel
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the MyNewModel-7B.
|
||||
e.g. [meta-my_new_model/MyNewModel-2-7b-hf](https://huggingface.co/meta-my_new_model/MyNewModel-2-7b-hf)
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
@ -4,37 +4,25 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_dummy.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from typing import Callable, Optional, Union
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...cache_utils import Cache, DynamicCache, StaticCache
|
||||
from ...cache_utils import Cache, DynamicCache
|
||||
from ...integrations import use_kernel_forward_from_hub
|
||||
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
||||
from ...masking_utils import create_causal_mask
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutputWithPast
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import (
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
can_return_tuple,
|
||||
is_torch_flex_attn_available,
|
||||
logging,
|
||||
)
|
||||
from ...utils import auto_docstring, can_return_tuple, logging
|
||||
from .configuration_dummy import DummyConfig
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from torch.nn.attention.flex_attention import BlockMask
|
||||
|
||||
from ...integrations.flex_attention import make_flex_block_causal_mask
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@ -232,15 +220,8 @@ class DummyAttention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
self,
|
||||
@ -311,27 +292,7 @@ class DummyDecoderLayer(GradientCheckpointingLayer):
|
||||
return outputs
|
||||
|
||||
|
||||
DUMMY_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`DummyConfig`]):
|
||||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||||
load the weights associated with the model, only the configuration. Check out the
|
||||
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Dummy Model outputting raw hidden-states without any specific head on top.",
|
||||
DUMMY_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class DummyPreTrainedModel(PreTrainedModel):
|
||||
config_class = DummyConfig
|
||||
base_model_prefix = "model"
|
||||
@ -360,88 +321,8 @@ class DummyPreTrainedModel(PreTrainedModel):
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
DUMMY_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||||
it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length) or `BlockMask`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
If the model is configured to use flex_attention, it will attempt to convert the mask Tensor into a BlockMask,
|
||||
but you can also pass a `BlockMask` object directly here.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
||||
`past_key_values`).
|
||||
|
||||
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
||||
and modify to your needs. See diagram 1 in [the paper](https://huggingface.co/papers/1910.13461) for more
|
||||
information on the default strategy.
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.n_positions - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
past_key_values (`Cache`, *optional*):
|
||||
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||||
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||||
|
||||
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||||
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||||
of shape `(batch_size, sequence_length)`.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||||
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
||||
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
||||
the complete sequence length.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Dummy Model outputting raw hidden-states without any specific head on top.",
|
||||
DUMMY_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class DummyModel(DummyPreTrainedModel):
|
||||
"""
|
||||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DummyDecoderLayer`]
|
||||
|
||||
Args:
|
||||
config: DummyConfig
|
||||
"""
|
||||
|
||||
def __init__(self, config: DummyConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
@ -465,7 +346,7 @@ class DummyModel(DummyPreTrainedModel):
|
||||
self.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(DUMMY_INPUTS_DOCSTRING)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
@ -513,8 +394,12 @@ class DummyModel(DummyPreTrainedModel):
|
||||
if position_ids is None:
|
||||
position_ids = cache_position.unsqueeze(0)
|
||||
|
||||
causal_mask = self._update_causal_mask(
|
||||
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
||||
causal_mask = create_causal_mask(
|
||||
config=self.config,
|
||||
input_embeds=inputs_embeds,
|
||||
attention_mask=attention_mask,
|
||||
cache_position=cache_position,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
@ -559,126 +444,3 @@ class DummyModel(DummyPreTrainedModel):
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask: Union[torch.Tensor, "BlockMask"],
|
||||
input_tensor: torch.Tensor,
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Cache,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
if attention_mask is not None and (attention_mask == 0.0).any():
|
||||
return attention_mask
|
||||
return None
|
||||
if self.config._attn_implementation == "flex_attention":
|
||||
if isinstance(attention_mask, torch.Tensor):
|
||||
attention_mask = make_flex_block_causal_mask(attention_mask)
|
||||
return attention_mask
|
||||
|
||||
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
||||
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
||||
# to infer the attention mask.
|
||||
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||
using_static_cache = isinstance(past_key_values, StaticCache)
|
||||
|
||||
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
||||
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
||||
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
||||
attention_mask,
|
||||
inputs_embeds=input_tensor,
|
||||
past_key_values_length=past_seen_tokens,
|
||||
is_training=self.training,
|
||||
):
|
||||
return None
|
||||
|
||||
dtype = input_tensor.dtype
|
||||
sequence_length = input_tensor.shape[1]
|
||||
if using_static_cache:
|
||||
target_length = past_key_values.get_max_cache_shape()
|
||||
else:
|
||||
target_length = (
|
||||
attention_mask.shape[-1]
|
||||
if isinstance(attention_mask, torch.Tensor)
|
||||
else past_seen_tokens + sequence_length + 1
|
||||
)
|
||||
|
||||
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
||||
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask,
|
||||
sequence_length=sequence_length,
|
||||
target_length=target_length,
|
||||
dtype=dtype,
|
||||
cache_position=cache_position,
|
||||
batch_size=input_tensor.shape[0],
|
||||
)
|
||||
|
||||
if (
|
||||
self.config._attn_implementation == "sdpa"
|
||||
and attention_mask is not None
|
||||
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
||||
and not output_attentions
|
||||
):
|
||||
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||||
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
||||
# Details: https://github.com/pytorch/pytorch/issues/110213
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
||||
|
||||
return causal_mask
|
||||
|
||||
@staticmethod
|
||||
def _prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask: torch.Tensor,
|
||||
sequence_length: int,
|
||||
target_length: int,
|
||||
dtype: torch.dtype,
|
||||
cache_position: torch.Tensor,
|
||||
batch_size: int,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
||||
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
||||
|
||||
Args:
|
||||
attention_mask (`torch.Tensor`):
|
||||
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
||||
`(batch_size, 1, query_length, key_value_length)`.
|
||||
sequence_length (`int`):
|
||||
The sequence length being processed.
|
||||
target_length (`int`):
|
||||
The target length: when generating with static cache, the mask should be as long as the static cache,
|
||||
to account for the 0 padding, the part of the cache that is not filled yet.
|
||||
dtype (`torch.dtype`):
|
||||
The dtype to use for the 4D attention mask.
|
||||
cache_position (`torch.Tensor`):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
batch_size (`torch.Tensor`):
|
||||
Batch size.
|
||||
"""
|
||||
if attention_mask is not None and attention_mask.dim() == 4:
|
||||
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
||||
causal_mask = attention_mask
|
||||
else:
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = torch.full(
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
||||
)
|
||||
if sequence_length != 1:
|
||||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||||
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
||||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||||
mask_length = attention_mask.shape[-1]
|
||||
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
||||
causal_mask.device
|
||||
)
|
||||
padding_mask = padding_mask == 0
|
||||
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
||||
padding_mask, min_dtype
|
||||
)
|
||||
|
||||
return causal_mask
|
||||
|
@ -14,24 +14,16 @@ from torch import nn
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions
|
||||
from ...modeling_utils import PreTrainedModel
|
||||
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
||||
from ...utils import (
|
||||
add_code_sample_docstrings,
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
get_torch_version,
|
||||
logging,
|
||||
)
|
||||
from ...utils import auto_docstring, get_torch_version, logging
|
||||
from .configuration_dummy_bert import DummyBertConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
_CHECKPOINT_FOR_DOC = "google-dummy_bert/dummy_bert-base-uncased"
|
||||
_CONFIG_FOR_DOC = "DummyBertConfig"
|
||||
|
||||
|
||||
class DummyBertEmbeddings(nn.Module):
|
||||
"""Construct the embeddings from word, position and token_type embeddings."""
|
||||
@ -432,7 +424,7 @@ class DummyBertOutput(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class DummyBertLayer(nn.Module):
|
||||
class DummyBertLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||||
@ -557,27 +549,15 @@ class DummyBertEncoder(nn.Module):
|
||||
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||||
past_key_value = past_key_values[i] if past_key_values is not None else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
layer_module.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
else:
|
||||
layer_outputs = layer_module(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
layer_outputs = layer_module(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states, # as a positional argument for gradient checkpointing
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
if use_cache:
|
||||
@ -739,12 +719,8 @@ def load_tf_weights_in_dummy_bert(model, config, tf_checkpoint_path):
|
||||
return model
|
||||
|
||||
|
||||
@auto_docstring
|
||||
class DummyBertPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = DummyBertConfig
|
||||
load_tf_weights = load_tf_weights_in_dummy_bert
|
||||
base_model_prefix = "dummy_bert"
|
||||
@ -770,79 +746,8 @@ class DummyBertPreTrainedModel(PreTrainedModel):
|
||||
module.bias.data.zero_()
|
||||
|
||||
|
||||
DUMMY_BERT_START_DOCSTRING = r"""
|
||||
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`DummyBertConfig`]): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the
|
||||
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
DUMMY_BERT_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `({0})`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.FloatTensor` of shape `({0})`or `(batch_size, sequence_length, target_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||||
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
||||
1]`:
|
||||
|
||||
- 0 corresponds to a *sentence A* token,
|
||||
- 1 corresponds to a *sentence B* token.
|
||||
|
||||
[What are token type IDs?](../glossary#token-type-ids)
|
||||
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.max_position_embeddings - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||||
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare DummyBert Model transformer outputting raw hidden-states without any specific head on top.",
|
||||
DUMMY_BERT_START_DOCSTRING,
|
||||
)
|
||||
class DummyBertModel(DummyBertPreTrainedModel):
|
||||
"""
|
||||
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
||||
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
||||
all you need](https://huggingface.co/papers/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
||||
@ -852,10 +757,15 @@ class DummyBertModel(DummyBertPreTrainedModel):
|
||||
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
||||
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
||||
"""
|
||||
|
||||
)
|
||||
class DummyBertModel(DummyBertPreTrainedModel):
|
||||
_no_split_modules = ["DummyBertEmbeddings", "DummyBertLayer"]
|
||||
|
||||
def __init__(self, config, add_pooling_layer=True):
|
||||
r"""
|
||||
add_pooling_layer (bool, *optional*, defaults to `True`):
|
||||
Whether to add a pooling layer
|
||||
"""
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
@ -884,12 +794,7 @@ class DummyBertModel(DummyBertPreTrainedModel):
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
@add_start_docstrings_to_model_forward(DUMMY_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
@ -906,26 +811,6 @@ class DummyBertModel(DummyBertPreTrainedModel):
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
||||
r"""
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
the model is configured as a decoder.
|
||||
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, target_length)`, *optional*):
|
||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||||
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
|
@ -10,6 +10,7 @@ import torch
|
||||
from torch import nn
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
|
||||
from ...utils import logging
|
||||
from .configuration_from_uppercase_model import FromUppercaseModelTextConfig, FromUppercaseModelVisionConfig
|
||||
@ -138,7 +139,7 @@ class FromUppercaseModelMLP(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FromUppercaseModelEncoderLayer(nn.Module):
|
||||
class FromUppercaseModelEncoderLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config: Union[FromUppercaseModelVisionConfig, FromUppercaseModelTextConfig]):
|
||||
super().__init__()
|
||||
self.embed_dim = config.hidden_size
|
||||
|
@ -4,37 +4,25 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_multimodal1.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from typing import Callable, Optional, Union
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...cache_utils import Cache, DynamicCache, StaticCache
|
||||
from ...cache_utils import Cache, DynamicCache
|
||||
from ...integrations import use_kernel_forward_from_hub
|
||||
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
||||
from ...masking_utils import create_causal_mask
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutputWithPast
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import (
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
can_return_tuple,
|
||||
is_torch_flex_attn_available,
|
||||
logging,
|
||||
)
|
||||
from ...utils import auto_docstring, can_return_tuple, logging
|
||||
from .configuration_multimodal1 import Multimodal1TextConfig
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from torch.nn.attention.flex_attention import BlockMask
|
||||
|
||||
from ...integrations.flex_attention import make_flex_block_causal_mask
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@ -232,15 +220,8 @@ class Multimodal1TextAttention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
self,
|
||||
@ -311,27 +292,7 @@ class Multimodal1TextDecoderLayer(GradientCheckpointingLayer):
|
||||
return outputs
|
||||
|
||||
|
||||
MULTIMODAL1_TEXT_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`Multimodal1TextConfig`]):
|
||||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||||
load the weights associated with the model, only the configuration. Check out the
|
||||
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Multimodal1Text Model outputting raw hidden-states without any specific head on top.",
|
||||
MULTIMODAL1_TEXT_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class Multimodal1TextPreTrainedModel(PreTrainedModel):
|
||||
config_class = Multimodal1TextConfig
|
||||
base_model_prefix = "model"
|
||||
@ -360,88 +321,8 @@ class Multimodal1TextPreTrainedModel(PreTrainedModel):
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
MULTIMODAL1_TEXT_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||||
it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length) or `BlockMask`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
If the model is configured to use flex_attention, it will attempt to convert the mask Tensor into a BlockMask,
|
||||
but you can also pass a `BlockMask` object directly here.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
||||
`past_key_values`).
|
||||
|
||||
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
||||
and modify to your needs. See diagram 1 in [the paper](https://huggingface.co/papers/1910.13461) for more
|
||||
information on the default strategy.
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.n_positions - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
past_key_values (`Cache`, *optional*):
|
||||
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||||
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||||
|
||||
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||||
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||||
of shape `(batch_size, sequence_length)`.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||||
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
||||
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
||||
the complete sequence length.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Multimodal1Text Model outputting raw hidden-states without any specific head on top.",
|
||||
MULTIMODAL1_TEXT_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
"""
|
||||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Multimodal1TextDecoderLayer`]
|
||||
|
||||
Args:
|
||||
config: Multimodal1TextConfig
|
||||
"""
|
||||
|
||||
def __init__(self, config: Multimodal1TextConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
@ -465,7 +346,7 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
self.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MULTIMODAL1_TEXT_INPUTS_DOCSTRING)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
@ -513,8 +394,12 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
if position_ids is None:
|
||||
position_ids = cache_position.unsqueeze(0)
|
||||
|
||||
causal_mask = self._update_causal_mask(
|
||||
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
||||
causal_mask = create_causal_mask(
|
||||
config=self.config,
|
||||
input_embeds=inputs_embeds,
|
||||
attention_mask=attention_mask,
|
||||
cache_position=cache_position,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
@ -559,126 +444,3 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask: Union[torch.Tensor, "BlockMask"],
|
||||
input_tensor: torch.Tensor,
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Cache,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
if attention_mask is not None and (attention_mask == 0.0).any():
|
||||
return attention_mask
|
||||
return None
|
||||
if self.config._attn_implementation == "flex_attention":
|
||||
if isinstance(attention_mask, torch.Tensor):
|
||||
attention_mask = make_flex_block_causal_mask(attention_mask)
|
||||
return attention_mask
|
||||
|
||||
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
||||
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
||||
# to infer the attention mask.
|
||||
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||
using_static_cache = isinstance(past_key_values, StaticCache)
|
||||
|
||||
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
||||
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
||||
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
||||
attention_mask,
|
||||
inputs_embeds=input_tensor,
|
||||
past_key_values_length=past_seen_tokens,
|
||||
is_training=self.training,
|
||||
):
|
||||
return None
|
||||
|
||||
dtype = input_tensor.dtype
|
||||
sequence_length = input_tensor.shape[1]
|
||||
if using_static_cache:
|
||||
target_length = past_key_values.get_max_cache_shape()
|
||||
else:
|
||||
target_length = (
|
||||
attention_mask.shape[-1]
|
||||
if isinstance(attention_mask, torch.Tensor)
|
||||
else past_seen_tokens + sequence_length + 1
|
||||
)
|
||||
|
||||
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
||||
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask,
|
||||
sequence_length=sequence_length,
|
||||
target_length=target_length,
|
||||
dtype=dtype,
|
||||
cache_position=cache_position,
|
||||
batch_size=input_tensor.shape[0],
|
||||
)
|
||||
|
||||
if (
|
||||
self.config._attn_implementation == "sdpa"
|
||||
and attention_mask is not None
|
||||
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
||||
and not output_attentions
|
||||
):
|
||||
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||||
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
||||
# Details: https://github.com/pytorch/pytorch/issues/110213
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
||||
|
||||
return causal_mask
|
||||
|
||||
@staticmethod
|
||||
def _prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask: torch.Tensor,
|
||||
sequence_length: int,
|
||||
target_length: int,
|
||||
dtype: torch.dtype,
|
||||
cache_position: torch.Tensor,
|
||||
batch_size: int,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
||||
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
||||
|
||||
Args:
|
||||
attention_mask (`torch.Tensor`):
|
||||
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
||||
`(batch_size, 1, query_length, key_value_length)`.
|
||||
sequence_length (`int`):
|
||||
The sequence length being processed.
|
||||
target_length (`int`):
|
||||
The target length: when generating with static cache, the mask should be as long as the static cache,
|
||||
to account for the 0 padding, the part of the cache that is not filled yet.
|
||||
dtype (`torch.dtype`):
|
||||
The dtype to use for the 4D attention mask.
|
||||
cache_position (`torch.Tensor`):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
batch_size (`torch.Tensor`):
|
||||
Batch size.
|
||||
"""
|
||||
if attention_mask is not None and attention_mask.dim() == 4:
|
||||
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
||||
causal_mask = attention_mask
|
||||
else:
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = torch.full(
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
||||
)
|
||||
if sequence_length != 1:
|
||||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||||
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
||||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||||
mask_length = attention_mask.shape[-1]
|
||||
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
||||
causal_mask.device
|
||||
)
|
||||
padding_mask = padding_mask == 0
|
||||
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
||||
padding_mask, min_dtype
|
||||
)
|
||||
|
||||
return causal_mask
|
||||
|
@ -13,15 +13,10 @@ from torch import nn
|
||||
from transformers.utils import add_start_docstrings
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...utils import (
|
||||
add_start_docstrings_to_model_forward,
|
||||
can_return_tuple,
|
||||
logging,
|
||||
replace_return_docstrings,
|
||||
torch_int,
|
||||
)
|
||||
from ...utils import auto_docstring, can_return_tuple, logging, torch_int
|
||||
from .configuration_multimodal2 import Multimodal2Config, Multimodal2TextConfig, Multimodal2VisionConfig
|
||||
|
||||
|
||||
@ -229,7 +224,7 @@ class Multimodal2Attention(nn.Module):
|
||||
return attn_output, attn_weights
|
||||
|
||||
|
||||
class Multimodal2VisionEncoderLayer(nn.Module):
|
||||
class Multimodal2VisionEncoderLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.embed_dim = config.hidden_size
|
||||
@ -344,21 +339,12 @@ class Multimodal2VisionEncoder(nn.Module):
|
||||
for idx, encoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
encoder_states = encoder_states + (hidden_states,)
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
encoder_layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
causal_attention_mask,
|
||||
output_attentions,
|
||||
)
|
||||
else:
|
||||
layer_outputs = encoder_layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
causal_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
layer_outputs = encoder_layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
causal_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
@ -458,24 +444,6 @@ class Multimodal2VisionEmbeddings(nn.Module):
|
||||
return embeddings
|
||||
|
||||
|
||||
MULTIMODAL2_VISION_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||||
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
||||
[`AutoImageProcessor`]. See [`Multimodal2ImageProcessor.__call__`] for details.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
|
||||
Whether to interpolate the pre-trained position encodings.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
class Multimodal2VisionTransformer(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
@ -488,8 +456,7 @@ class Multimodal2VisionTransformer(nn.Module):
|
||||
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MULTIMODAL2_VISION_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Multimodal2VisionConfig)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
pixel_values: Optional[torch.FloatTensor] = None,
|
||||
@ -497,10 +464,6 @@ class Multimodal2VisionTransformer(nn.Module):
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
interpolate_pos_encoding: Optional[bool] = False,
|
||||
) -> BaseModelOutputWithPooling:
|
||||
r"""
|
||||
Returns:
|
||||
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
@ -530,17 +493,15 @@ class Multimodal2VisionTransformer(nn.Module):
|
||||
)
|
||||
|
||||
|
||||
@auto_docstring
|
||||
class Multimodal2VisionPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = Multimodal2Config
|
||||
base_model_prefix = "multimodal2_vision"
|
||||
supports_gradient_checkpointing = True
|
||||
_supports_sdpa = True
|
||||
_supports_flash_attn_2 = True
|
||||
_supports_flex_attn = True
|
||||
_supports_attention_backend = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights"""
|
||||
@ -567,8 +528,7 @@ class Multimodal2VisionModel(Multimodal2VisionPreTrainedModel):
|
||||
return self.vision_model.embeddings.patch_embedding
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MULTIMODAL2_VISION_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Multimodal2VisionConfig)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
pixel_values: Optional[torch.FloatTensor] = None,
|
||||
@ -577,9 +537,7 @@ class Multimodal2VisionModel(Multimodal2VisionPreTrainedModel):
|
||||
interpolate_pos_encoding: bool = False,
|
||||
) -> BaseModelOutputWithPooling:
|
||||
r"""
|
||||
Returns:
|
||||
|
||||
Examples:
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from PIL import Image
|
||||
|
@ -4,36 +4,24 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_my_new_model2.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from typing import Callable, Optional, Union
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...cache_utils import Cache, DynamicCache, StaticCache
|
||||
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
||||
from ...cache_utils import Cache, DynamicCache
|
||||
from ...masking_utils import create_causal_mask
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutputWithPast, SequenceClassifierOutputWithPast
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import (
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
can_return_tuple,
|
||||
is_torch_flex_attn_available,
|
||||
logging,
|
||||
)
|
||||
from ...utils import auto_docstring, can_return_tuple, logging
|
||||
from .configuration_my_new_model2 import MyNewModel2Config
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from torch.nn.attention.flex_attention import BlockMask
|
||||
|
||||
from ...integrations.flex_attention import make_flex_block_causal_mask
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@ -230,15 +218,8 @@ class MyNewModel2Attention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
self,
|
||||
@ -309,27 +290,7 @@ class MyNewModel2DecoderLayer(GradientCheckpointingLayer):
|
||||
return outputs
|
||||
|
||||
|
||||
MY_NEW_MODEL2_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`MyNewModel2Config`]):
|
||||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||||
load the weights associated with the model, only the configuration. Check out the
|
||||
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare MyNewModel2 Model outputting raw hidden-states without any specific head on top.",
|
||||
MY_NEW_MODEL2_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class MyNewModel2PreTrainedModel(PreTrainedModel):
|
||||
config_class = MyNewModel2Config
|
||||
base_model_prefix = "model"
|
||||
@ -358,88 +319,8 @@ class MyNewModel2PreTrainedModel(PreTrainedModel):
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
MY_NEW_MODEL2_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||||
it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length) or `BlockMask`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
If the model is configured to use flex_attention, it will attempt to convert the mask Tensor into a BlockMask,
|
||||
but you can also pass a `BlockMask` object directly here.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
||||
`past_key_values`).
|
||||
|
||||
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
||||
and modify to your needs. See diagram 1 in [the paper](https://huggingface.co/papers/1910.13461) for more
|
||||
information on the default strategy.
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.n_positions - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
past_key_values (`Cache`, *optional*):
|
||||
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||||
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||||
|
||||
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||||
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||||
of shape `(batch_size, sequence_length)`.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||||
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
||||
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
||||
the complete sequence length.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare MyNewModel2 Model outputting raw hidden-states without any specific head on top.",
|
||||
MY_NEW_MODEL2_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
"""
|
||||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MyNewModel2DecoderLayer`]
|
||||
|
||||
Args:
|
||||
config: MyNewModel2Config
|
||||
"""
|
||||
|
||||
def __init__(self, config: MyNewModel2Config):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
@ -463,19 +344,19 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
self.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MY_NEW_MODEL2_INPUTS_DOCSTRING)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
|
||||
past_key_values: Optional[Cache] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs, # NOOP kwarg for now
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> BaseModelOutputWithPast:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
@ -507,8 +388,12 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
if position_ids is None:
|
||||
position_ids = cache_position.unsqueeze(0)
|
||||
|
||||
causal_mask = self._update_causal_mask(
|
||||
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
||||
causal_mask = create_causal_mask(
|
||||
config=self.config,
|
||||
input_embeds=inputs_embeds,
|
||||
attention_mask=attention_mask,
|
||||
cache_position=cache_position,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
# embed positions
|
||||
@ -540,6 +425,7 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
position_embeddings=position_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
@ -560,132 +446,9 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask: Union[torch.Tensor, "BlockMask"],
|
||||
input_tensor: torch.Tensor,
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Cache,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
if attention_mask is not None and (attention_mask == 0.0).any():
|
||||
return attention_mask
|
||||
return None
|
||||
if self.config._attn_implementation == "flex_attention":
|
||||
if isinstance(attention_mask, torch.Tensor):
|
||||
attention_mask = make_flex_block_causal_mask(attention_mask)
|
||||
return attention_mask
|
||||
|
||||
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
||||
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
||||
# to infer the attention mask.
|
||||
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||
using_static_cache = isinstance(past_key_values, StaticCache)
|
||||
|
||||
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
||||
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
||||
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
||||
attention_mask,
|
||||
inputs_embeds=input_tensor,
|
||||
past_key_values_length=past_seen_tokens,
|
||||
is_training=self.training,
|
||||
):
|
||||
return None
|
||||
|
||||
dtype = input_tensor.dtype
|
||||
sequence_length = input_tensor.shape[1]
|
||||
if using_static_cache:
|
||||
target_length = past_key_values.get_max_cache_shape()
|
||||
else:
|
||||
target_length = (
|
||||
attention_mask.shape[-1]
|
||||
if isinstance(attention_mask, torch.Tensor)
|
||||
else past_seen_tokens + sequence_length + 1
|
||||
)
|
||||
|
||||
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
||||
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask,
|
||||
sequence_length=sequence_length,
|
||||
target_length=target_length,
|
||||
dtype=dtype,
|
||||
cache_position=cache_position,
|
||||
batch_size=input_tensor.shape[0],
|
||||
)
|
||||
|
||||
if (
|
||||
self.config._attn_implementation == "sdpa"
|
||||
and attention_mask is not None
|
||||
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
||||
and not output_attentions
|
||||
):
|
||||
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||||
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
||||
# Details: https://github.com/pytorch/pytorch/issues/110213
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
||||
|
||||
return causal_mask
|
||||
|
||||
@staticmethod
|
||||
def _prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask: torch.Tensor,
|
||||
sequence_length: int,
|
||||
target_length: int,
|
||||
dtype: torch.dtype,
|
||||
cache_position: torch.Tensor,
|
||||
batch_size: int,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
||||
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
||||
|
||||
Args:
|
||||
attention_mask (`torch.Tensor`):
|
||||
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
||||
`(batch_size, 1, query_length, key_value_length)`.
|
||||
sequence_length (`int`):
|
||||
The sequence length being processed.
|
||||
target_length (`int`):
|
||||
The target length: when generating with static cache, the mask should be as long as the static cache,
|
||||
to account for the 0 padding, the part of the cache that is not filled yet.
|
||||
dtype (`torch.dtype`):
|
||||
The dtype to use for the 4D attention mask.
|
||||
cache_position (`torch.Tensor`):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
batch_size (`torch.Tensor`):
|
||||
Batch size.
|
||||
"""
|
||||
if attention_mask is not None and attention_mask.dim() == 4:
|
||||
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
||||
causal_mask = attention_mask
|
||||
else:
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = torch.full(
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
||||
)
|
||||
if sequence_length != 1:
|
||||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||||
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
||||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||||
mask_length = attention_mask.shape[-1]
|
||||
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
||||
causal_mask.device
|
||||
)
|
||||
padding_mask = padding_mask == 0
|
||||
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
||||
padding_mask, min_dtype
|
||||
)
|
||||
|
||||
return causal_mask
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"""
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
The MyNewModel2 Model transformer with a sequence classification head on top (linear layer).
|
||||
|
||||
[`MyNewModel2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
||||
@ -696,8 +459,7 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
||||
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
||||
each row of the batch).
|
||||
""",
|
||||
MY_NEW_MODEL2_START_DOCSTRING,
|
||||
"""
|
||||
)
|
||||
class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
|
||||
def __init__(self, config):
|
||||
@ -716,7 +478,7 @@ class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
|
||||
self.model.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MY_NEW_MODEL2_INPUTS_DOCSTRING)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
|
@ -22,68 +22,48 @@ from .configuration_new_task_model import NewTaskModelConfig
|
||||
|
||||
|
||||
@dataclass
|
||||
class NewTaskModelModelOutputWithPast(BaseModelOutputWithPast):
|
||||
"""
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
Base class for NewTaskModel outputs, with hidden states and attentions.
|
||||
"""
|
||||
)
|
||||
class NewTaskModelModelOutputWithPast(BaseModelOutputWithPast):
|
||||
r"""
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||||
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
||||
|
||||
Args:
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||||
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
||||
`past_key_values` input) to speed up sequential decoding.
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||||
sequence_length)`.
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
image_hidden_states (`torch.FloatTensor`, *optional*):
|
||||
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
||||
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
||||
`past_key_values` input) to speed up sequential decoding.
|
||||
image_hidden_states (`torch.FloatTensor`, *optional*):
|
||||
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
||||
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
||||
"""
|
||||
|
||||
image_hidden_states: Optional[torch.FloatTensor] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class NewTaskModelCausalLMOutputWithPast(ModelOutput):
|
||||
"""
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
Base class for NewTaskModel causal language model (or autoregressive) outputs.
|
||||
"""
|
||||
)
|
||||
class NewTaskModelCausalLMOutputWithPast(ModelOutput):
|
||||
r"""
|
||||
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||||
Language modeling loss (for next-token prediction).
|
||||
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||||
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
||||
|
||||
Args:
|
||||
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||||
Language modeling loss (for next-token prediction).
|
||||
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||||
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
||||
`past_key_values` input) to speed up sequential decoding.
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||||
sequence_length)`.
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
image_hidden_states (`torch.FloatTensor`, *optional*):
|
||||
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
||||
image_hidden_states of the model produced by the vision encoder after projecting last hidden state.
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
||||
`past_key_values` input) to speed up sequential decoding.
|
||||
image_hidden_states (`torch.FloatTensor`, *optional*):
|
||||
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
||||
image_hidden_states of the model produced by the vision encoder after projecting last hidden state.
|
||||
"""
|
||||
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
@ -157,6 +137,12 @@ class NewTaskModelModel(NewTaskModelPreTrainedModel):
|
||||
def set_input_embeddings(self, value):
|
||||
self.language_model.set_input_embeddings(value)
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.language_model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.language_model
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask,
|
||||
@ -406,10 +392,13 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
self.model.set_decoder(decoder)
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
return self.model.get_decoder()
|
||||
|
||||
def get_image_features(self, pixel_values):
|
||||
return self.model.get_image_features(pixel_values)
|
||||
|
||||
# Make modules available throught conditional class for BC
|
||||
@property
|
||||
|
@ -14,24 +14,16 @@ from packaging import version
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions
|
||||
from ...modeling_utils import PreTrainedModel
|
||||
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
||||
from ...utils import (
|
||||
add_code_sample_docstrings,
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
get_torch_version,
|
||||
logging,
|
||||
)
|
||||
from ...utils import auto_docstring, get_torch_version, logging
|
||||
from .configuration_roberta import RobertaConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
_CHECKPOINT_FOR_DOC = "google-roberta/roberta-base-uncased"
|
||||
_CONFIG_FOR_DOC = "RobertaConfig"
|
||||
|
||||
|
||||
class RobertaEmbeddings(nn.Module):
|
||||
"""Construct the embeddings from word, position and token_type embeddings."""
|
||||
@ -435,7 +427,7 @@ class RobertaOutput(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class RobertaLayer(nn.Module):
|
||||
class RobertaLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||||
@ -560,27 +552,15 @@ class RobertaEncoder(nn.Module):
|
||||
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||||
past_key_value = past_key_values[i] if past_key_values is not None else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
layer_module.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
else:
|
||||
layer_outputs = layer_module(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
layer_outputs = layer_module(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states, # as a positional argument for gradient checkpointing
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
if use_cache:
|
||||
@ -742,12 +722,8 @@ def load_tf_weights_in_roberta(model, config, tf_checkpoint_path):
|
||||
return model
|
||||
|
||||
|
||||
@auto_docstring
|
||||
class RobertaPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = RobertaConfig
|
||||
load_tf_weights = load_tf_weights_in_roberta
|
||||
base_model_prefix = "roberta"
|
||||
@ -773,79 +749,8 @@ class RobertaPreTrainedModel(PreTrainedModel):
|
||||
module.bias.data.zero_()
|
||||
|
||||
|
||||
ROBERTA_START_DOCSTRING = r"""
|
||||
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`RobertaConfig`]): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the
|
||||
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
ROBERTA_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `({0})`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.FloatTensor` of shape `({0})`or `(batch_size, sequence_length, target_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||||
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
||||
1]`:
|
||||
|
||||
- 0 corresponds to a *sentence A* token,
|
||||
- 1 corresponds to a *sentence B* token.
|
||||
|
||||
[What are token type IDs?](../glossary#token-type-ids)
|
||||
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.max_position_embeddings - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||||
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Roberta Model transformer outputting raw hidden-states without any specific head on top.",
|
||||
ROBERTA_START_DOCSTRING,
|
||||
)
|
||||
class RobertaModel(RobertaPreTrainedModel):
|
||||
"""
|
||||
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
||||
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
||||
all you need](https://huggingface.co/papers/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
||||
@ -855,10 +760,15 @@ class RobertaModel(RobertaPreTrainedModel):
|
||||
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
||||
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
||||
"""
|
||||
|
||||
)
|
||||
class RobertaModel(RobertaPreTrainedModel):
|
||||
_no_split_modules = ["RobertaEmbeddings", "RobertaLayer"]
|
||||
|
||||
def __init__(self, config, add_pooling_layer=True):
|
||||
r"""
|
||||
add_pooling_layer (bool, *optional*, defaults to `True`):
|
||||
Whether to add a pooling layer
|
||||
"""
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
@ -887,12 +797,7 @@ class RobertaModel(RobertaPreTrainedModel):
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
@ -909,26 +814,6 @@ class RobertaModel(RobertaPreTrainedModel):
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
||||
r"""
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
the model is configured as a decoder.
|
||||
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, target_length)`, *optional*):
|
||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||||
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
|
@ -12,33 +12,17 @@ from torch import nn
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...cache_utils import Cache, StaticCache
|
||||
from ...cache_utils import Cache
|
||||
from ...integrations import use_kernel_forward_from_hub
|
||||
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import (
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
can_return_tuple,
|
||||
is_torch_flex_attn_available,
|
||||
logging,
|
||||
)
|
||||
from ...utils import auto_docstring, can_return_tuple
|
||||
from .configuration_super import SuperConfig
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from torch.nn.attention.flex_attention import BlockMask
|
||||
|
||||
from ...integrations.flex_attention import make_flex_block_causal_mask
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@use_kernel_forward_from_hub("RMSNorm")
|
||||
class SuperRMSNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
@ -233,15 +217,8 @@ class SuperAttention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
self,
|
||||
@ -312,27 +289,7 @@ class SuperDecoderLayer(GradientCheckpointingLayer):
|
||||
return outputs
|
||||
|
||||
|
||||
SUPER_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`SuperConfig`]):
|
||||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||||
load the weights associated with the model, only the configuration. Check out the
|
||||
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Super Model outputting raw hidden-states without any specific head on top.",
|
||||
SUPER_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class SuperPreTrainedModel(PreTrainedModel):
|
||||
config_class = SuperConfig
|
||||
base_model_prefix = "model"
|
||||
@ -361,88 +318,8 @@ class SuperPreTrainedModel(PreTrainedModel):
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
SUPER_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||||
it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length) or `BlockMask`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
If the model is configured to use flex_attention, it will attempt to convert the mask Tensor into a BlockMask,
|
||||
but you can also pass a `BlockMask` object directly here.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
||||
`past_key_values`).
|
||||
|
||||
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
||||
and modify to your needs. See diagram 1 in [the paper](https://huggingface.co/papers/1910.13461) for more
|
||||
information on the default strategy.
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.n_positions - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
past_key_values (`Cache`, *optional*):
|
||||
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||||
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||||
|
||||
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||||
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||||
of shape `(batch_size, sequence_length)`.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||||
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
||||
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
||||
the complete sequence length.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Super Model outputting raw hidden-states without any specific head on top.",
|
||||
SUPER_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class SuperModel(SuperPreTrainedModel):
|
||||
"""
|
||||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SuperDecoderLayer`]
|
||||
|
||||
Args:
|
||||
config: SuperConfig
|
||||
"""
|
||||
|
||||
def __init__(self, config: SuperConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
@ -466,7 +343,7 @@ class SuperModel(SuperPreTrainedModel):
|
||||
self.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(SUPER_INPUTS_DOCSTRING)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
@ -494,126 +371,3 @@ class SuperModel(SuperPreTrainedModel):
|
||||
)
|
||||
out.logits *= 2**4
|
||||
return out
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask: Union[torch.Tensor, "BlockMask"],
|
||||
input_tensor: torch.Tensor,
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Cache,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
if attention_mask is not None and (attention_mask == 0.0).any():
|
||||
return attention_mask
|
||||
return None
|
||||
if self.config._attn_implementation == "flex_attention":
|
||||
if isinstance(attention_mask, torch.Tensor):
|
||||
attention_mask = make_flex_block_causal_mask(attention_mask)
|
||||
return attention_mask
|
||||
|
||||
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
||||
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
||||
# to infer the attention mask.
|
||||
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||
using_static_cache = isinstance(past_key_values, StaticCache)
|
||||
|
||||
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
||||
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
||||
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
||||
attention_mask,
|
||||
inputs_embeds=input_tensor,
|
||||
past_key_values_length=past_seen_tokens,
|
||||
is_training=self.training,
|
||||
):
|
||||
return None
|
||||
|
||||
dtype = input_tensor.dtype
|
||||
sequence_length = input_tensor.shape[1]
|
||||
if using_static_cache:
|
||||
target_length = past_key_values.get_max_cache_shape()
|
||||
else:
|
||||
target_length = (
|
||||
attention_mask.shape[-1]
|
||||
if isinstance(attention_mask, torch.Tensor)
|
||||
else past_seen_tokens + sequence_length + 1
|
||||
)
|
||||
|
||||
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
||||
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask,
|
||||
sequence_length=sequence_length,
|
||||
target_length=target_length,
|
||||
dtype=dtype,
|
||||
cache_position=cache_position,
|
||||
batch_size=input_tensor.shape[0],
|
||||
)
|
||||
|
||||
if (
|
||||
self.config._attn_implementation == "sdpa"
|
||||
and attention_mask is not None
|
||||
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
||||
and not output_attentions
|
||||
):
|
||||
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||||
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
||||
# Details: https://github.com/pytorch/pytorch/issues/110213
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
||||
|
||||
return causal_mask
|
||||
|
||||
@staticmethod
|
||||
def _prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask: torch.Tensor,
|
||||
sequence_length: int,
|
||||
target_length: int,
|
||||
dtype: torch.dtype,
|
||||
cache_position: torch.Tensor,
|
||||
batch_size: int,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
||||
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
||||
|
||||
Args:
|
||||
attention_mask (`torch.Tensor`):
|
||||
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
||||
`(batch_size, 1, query_length, key_value_length)`.
|
||||
sequence_length (`int`):
|
||||
The sequence length being processed.
|
||||
target_length (`int`):
|
||||
The target length: when generating with static cache, the mask should be as long as the static cache,
|
||||
to account for the 0 padding, the part of the cache that is not filled yet.
|
||||
dtype (`torch.dtype`):
|
||||
The dtype to use for the 4D attention mask.
|
||||
cache_position (`torch.Tensor`):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
batch_size (`torch.Tensor`):
|
||||
Batch size.
|
||||
"""
|
||||
if attention_mask is not None and attention_mask.dim() == 4:
|
||||
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
||||
causal_mask = attention_mask
|
||||
else:
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = torch.full(
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
||||
)
|
||||
if sequence_length != 1:
|
||||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||||
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
||||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||||
mask_length = attention_mask.shape[-1]
|
||||
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
||||
causal_mask.device
|
||||
)
|
||||
padding_mask = padding_mask == 0
|
||||
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
||||
padding_mask, min_dtype
|
||||
)
|
||||
|
||||
return causal_mask
|
||||
|
@ -14,13 +14,9 @@ from ...cache_utils import Cache
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import logging
|
||||
from .configuration_switch_function import SwitchFunctionConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
# Split and rotate. Note that this function is different from e.g. Llama.
|
||||
x1 = x[..., ::2]
|
||||
@ -145,15 +141,8 @@ class SwitchFunctionAttention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
self,
|
||||
|
@ -16,17 +16,11 @@ from torch import Tensor, nn
|
||||
from ...activations import ACT2FN
|
||||
from ...integrations import use_kernel_forward_from_hub
|
||||
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutput
|
||||
from ...modeling_utils import PreTrainedModel
|
||||
from ...pytorch_utils import meshgrid
|
||||
from ...utils import (
|
||||
ModelOutput,
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
is_timm_available,
|
||||
replace_return_docstrings,
|
||||
requires_backends,
|
||||
)
|
||||
from ...utils import ModelOutput, auto_docstring, is_timm_available, requires_backends
|
||||
from ...utils.backbone_utils import load_backbone
|
||||
from .configuration_test_detr import TestDetrConfig
|
||||
|
||||
@ -34,8 +28,6 @@ from .configuration_test_detr import TestDetrConfig
|
||||
if is_timm_available():
|
||||
from timm import create_model
|
||||
|
||||
_CONFIG_FOR_DOC = "TestDetrConfig"
|
||||
|
||||
|
||||
@use_kernel_forward_from_hub("MultiScaleDeformableAttention")
|
||||
class MultiScaleDeformableAttention(nn.Module):
|
||||
@ -93,32 +85,24 @@ class MultiScaleDeformableAttention(nn.Module):
|
||||
|
||||
|
||||
@dataclass
|
||||
class TestDetrDecoderOutput(ModelOutput):
|
||||
"""
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
Base class for outputs of the TestDetrDecoder. This class adds two attributes to
|
||||
BaseModelOutputWithCrossAttentions, namely:
|
||||
- a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
|
||||
- a stacked tensor of intermediate reference points.
|
||||
|
||||
Args:
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
|
||||
Stacked intermediate hidden states (output of each layer of the decoder).
|
||||
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
|
||||
Stacked intermediate reference points (reference points of each layer of the decoder).
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||||
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
|
||||
plus the initial embedding outputs.
|
||||
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||||
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
||||
the self-attention heads.
|
||||
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||||
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
|
||||
used to compute the weighted average in the cross-attention heads.
|
||||
"""
|
||||
)
|
||||
class TestDetrDecoderOutput(ModelOutput):
|
||||
r"""
|
||||
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
|
||||
Stacked intermediate hidden states (output of each layer of the decoder).
|
||||
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
|
||||
Stacked intermediate reference points (reference points of each layer of the decoder).
|
||||
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||||
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
|
||||
used to compute the weighted average in the cross-attention heads.
|
||||
"""
|
||||
|
||||
last_hidden_state: Optional[torch.FloatTensor] = None
|
||||
@ -130,47 +114,27 @@ class TestDetrDecoderOutput(ModelOutput):
|
||||
|
||||
|
||||
@dataclass
|
||||
class TestDetrModelOutput(ModelOutput):
|
||||
"""
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
Base class for outputs of the Deformable DETR encoder-decoder model.
|
||||
|
||||
Args:
|
||||
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
||||
Initial reference points sent through the Transformer decoder.
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the decoder of the model.
|
||||
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
|
||||
Stacked intermediate hidden states (output of each layer of the decoder).
|
||||
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
||||
Stacked intermediate reference points (reference points of each layer of the decoder).
|
||||
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||||
shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
|
||||
plus the initial embedding outputs.
|
||||
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
|
||||
num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
|
||||
average in the self-attention heads.
|
||||
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
|
||||
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
|
||||
weighted average in the cross-attention heads.
|
||||
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder of the model.
|
||||
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||||
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
|
||||
layer plus the initial embedding outputs.
|
||||
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
|
||||
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
|
||||
self-attention heads.
|
||||
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
||||
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
|
||||
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
|
||||
foreground and background).
|
||||
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
||||
Logits of predicted bounding boxes coordinates in the first stage.
|
||||
"""
|
||||
)
|
||||
class TestDetrModelOutput(ModelOutput):
|
||||
r"""
|
||||
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
||||
Initial reference points sent through the Transformer decoder.
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the decoder of the model.
|
||||
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
|
||||
Stacked intermediate hidden states (output of each layer of the decoder).
|
||||
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
||||
Stacked intermediate reference points (reference points of each layer of the decoder).
|
||||
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
||||
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
|
||||
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
|
||||
foreground and background).
|
||||
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
||||
Logits of predicted bounding boxes coordinates in the first stage.
|
||||
"""
|
||||
|
||||
init_reference_points: Optional[torch.FloatTensor] = None
|
||||
@ -635,7 +599,7 @@ class TestDetrMultiheadAttention(nn.Module):
|
||||
return attn_output, attn_weights_reshaped
|
||||
|
||||
|
||||
class TestDetrEncoderLayer(nn.Module):
|
||||
class TestDetrEncoderLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config: TestDetrConfig):
|
||||
super().__init__()
|
||||
self.embed_dim = config.d_model
|
||||
@ -724,7 +688,7 @@ class TestDetrEncoderLayer(nn.Module):
|
||||
return outputs
|
||||
|
||||
|
||||
class TestDetrDecoderLayer(nn.Module):
|
||||
class TestDetrDecoderLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config: TestDetrConfig):
|
||||
super().__init__()
|
||||
self.embed_dim = config.d_model
|
||||
@ -837,6 +801,7 @@ class TestDetrDecoderLayer(nn.Module):
|
||||
return outputs
|
||||
|
||||
|
||||
@auto_docstring
|
||||
class TestDetrPreTrainedModel(PreTrainedModel):
|
||||
config_class = TestDetrConfig
|
||||
base_model_prefix = "model"
|
||||
@ -1001,29 +966,16 @@ class TestDetrEncoder(TestDetrPreTrainedModel):
|
||||
for i, encoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
encoder_states = encoder_states + (hidden_states,)
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
encoder_layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_embeddings,
|
||||
reference_points,
|
||||
spatial_shapes,
|
||||
spatial_shapes_list,
|
||||
level_start_index,
|
||||
output_attentions,
|
||||
)
|
||||
else:
|
||||
layer_outputs = encoder_layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_embeddings=position_embeddings,
|
||||
reference_points=reference_points,
|
||||
spatial_shapes=spatial_shapes,
|
||||
spatial_shapes_list=spatial_shapes_list,
|
||||
level_start_index=level_start_index,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
layer_outputs = encoder_layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_embeddings=position_embeddings,
|
||||
reference_points=reference_points,
|
||||
spatial_shapes=spatial_shapes,
|
||||
spatial_shapes_list=spatial_shapes_list,
|
||||
level_start_index=level_start_index,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
@ -1155,31 +1107,17 @@ class TestDetrDecoder(TestDetrPreTrainedModel):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
decoder_layer.__call__,
|
||||
hidden_states,
|
||||
position_embeddings,
|
||||
reference_points_input,
|
||||
spatial_shapes,
|
||||
spatial_shapes_list,
|
||||
level_start_index,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
output_attentions,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
position_embeddings=position_embeddings,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
reference_points=reference_points_input,
|
||||
spatial_shapes=spatial_shapes,
|
||||
spatial_shapes_list=spatial_shapes_list,
|
||||
level_start_index=level_start_index,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
position_embeddings,
|
||||
reference_points_input,
|
||||
spatial_shapes,
|
||||
spatial_shapes_list,
|
||||
level_start_index,
|
||||
encoder_hidden_states, # as a positional argument for gradient checkpointing
|
||||
encoder_attention_mask,
|
||||
output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
@ -1253,67 +1191,11 @@ def build_position_encoding(config):
|
||||
return position_embedding
|
||||
|
||||
|
||||
TEST_DETR_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`TestDetrConfig`]):
|
||||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||||
load the weights associated with the model, only the configuration. Check out the
|
||||
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
TEST_DETR_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||||
Pixel values. Padding will be ignored by default should you provide it.
|
||||
|
||||
Pixel values can be obtained using [`AutoImageProcessor`]. See [`TestDetrImageProcessor.__call__`]
|
||||
for details.
|
||||
|
||||
pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
|
||||
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for pixels that are real (i.e. **not masked**),
|
||||
- 0 for pixels that are padding (i.e. **masked**).
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
|
||||
Not used by default. Can be used to mask object queries.
|
||||
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
||||
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
||||
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
||||
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
|
||||
can choose to directly pass a flattened representation of an image.
|
||||
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
||||
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
|
||||
embedded representation.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"""
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
The bare Deformable DETR Model (consisting of a backbone and encoder-decoder Transformer) outputting raw
|
||||
hidden-states without any specific head on top.
|
||||
""",
|
||||
TEST_DETR_START_DOCSTRING,
|
||||
"""
|
||||
)
|
||||
class TestDetrModel(TestDetrPreTrainedModel):
|
||||
def __init__(self, config: TestDetrConfig):
|
||||
@ -1486,8 +1368,7 @@ class TestDetrModel(TestDetrPreTrainedModel):
|
||||
object_query = self.enc_output_norm(self.enc_output(object_query))
|
||||
return object_query, output_proposals
|
||||
|
||||
@add_start_docstrings_to_model_forward(TEST_DETR_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=TestDetrModelOutput, config_class=_CONFIG_FOR_DOC)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
pixel_values: torch.FloatTensor,
|
||||
@ -1501,7 +1382,14 @@ class TestDetrModel(TestDetrPreTrainedModel):
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[tuple[torch.FloatTensor], TestDetrModelOutput]:
|
||||
r"""
|
||||
Returns:
|
||||
decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
|
||||
Not used by default. Can be used to mask object queries.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
|
||||
can choose to directly pass a flattened representation of an image.
|
||||
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
||||
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
|
||||
embedded representation.
|
||||
|
||||
Examples:
|
||||
|
||||
|
@ -44,7 +44,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")
|
||||
|
||||
|
@ -53,7 +53,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/contrastive-image-text/requirements.txt")
|
||||
|
||||
|
@ -2,4 +2,5 @@ accelerate>=0.12.0
|
||||
torch>=1.5.0
|
||||
torchvision>=0.6.0
|
||||
datasets>=2.14.0
|
||||
evaluate
|
||||
evaluate
|
||||
scikit-learn
|
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
|
||||
|
||||
|
@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -42,7 +42,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
||||
|
||||
|
@ -47,7 +47,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
||||
|
||||
|
@ -52,7 +52,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
||||
|
||||
|
@ -46,7 +46,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/instance-segmentation/requirements.txt")
|
||||
|
||||
|
@ -52,7 +52,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/instance-segmentation/requirements.txt")
|
||||
|
||||
|
@ -54,7 +54,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -59,7 +59,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -53,7 +53,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
@ -46,7 +46,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -45,7 +45,7 @@ from transformers.utils import check_min_version, send_example_telemetry
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -53,7 +53,7 @@ from transformers.utils import check_min_version, send_example_telemetry
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
# You should update this to your particular problem to have better documentation of `model_type`
|
||||
|
@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/object-detection/requirements.txt")
|
||||
|
||||
|
@ -51,7 +51,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = get_logger(__name__)
|
||||
|
@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -47,7 +47,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -54,7 +54,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -45,7 +45,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -50,7 +50,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt")
|
||||
|
||||
|
@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -129,7 +129,7 @@ To pre-train `"large-sized"` Wav2Vec2 model, *e.g.* [facebook/wav2vec2-large-lv6
|
||||
on [librispeech_asr](https://huggingface.co/datasets/librispeech_asr), the following command can be run:
|
||||
|
||||
```bash
|
||||
accelerate launch run_wav2vec2_pretraining_no_trainer.py \
|
||||
accelerate launch run_wav2vec2_pretraining_no_trainer.py \
|
||||
--dataset_name=librispeech_asr \
|
||||
--dataset_config_names clean clean other \
|
||||
--dataset_split_names train.100 train.360 train.500 \
|
||||
@ -141,7 +141,7 @@ accelerate launch run_wav2vec2_pretraining_no_trainer.py \
|
||||
--weight_decay=0.01 \
|
||||
--max_duration_in_seconds=20.0 \
|
||||
--min_duration_in_seconds=2.0 \
|
||||
--model_name_or_path=./
|
||||
--model_name_or_path=./ \
|
||||
--logging_steps=1 \
|
||||
--saving_steps=10000 \
|
||||
--per_device_train_batch_size=2 \
|
||||
|
@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
||||
|
||||
|
@ -52,7 +52,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
||||
|
||||
|
@ -47,7 +47,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.53.0.dev0")
|
||||
check_min_version("4.54.0.dev0")
|
||||
|
||||
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user