mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-29 17:22:25 +06:00
TF Longformer (#5764)
* improve names and tests longformer * more and better tests for longformer * add first tf test * finalize tf basic op functions * fix merge * tf shape test passes * narrow down discrepancies * make longformer local attn tf work * correct tf longformer * add first global attn function * add more global longformer func * advance tf longformer * finish global attn * upload big model * finish all tests * correct false any statement * fix common tests * make all tests pass except keras save load * fix some tests * fix torch test import * finish tests * fix test * fix torch tf tests * add docs * finish docs * Update src/transformers/modeling_longformer.py Co-authored-by: Lysandre Debut <lysandre@huggingface.co> * Update src/transformers/modeling_tf_longformer.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * apply Lysandres suggestions * reverse to assert statement because function will fail otherwise * applying sylvains recommendations * Update src/transformers/modeling_longformer.py Co-authored-by: Sam Shleifer <sshleifer@gmail.com> * Update src/transformers/modeling_tf_longformer.py Co-authored-by: Lysandre Debut <lysandre@huggingface.co> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Sam Shleifer <sshleifer@gmail.com>
This commit is contained in:
parent
3425936643
commit
00bb0b25ed
@ -102,3 +102,25 @@ LongformerForQuestionAnswering
|
||||
|
||||
.. autoclass:: transformers.LongformerForQuestionAnswering
|
||||
:members:
|
||||
|
||||
|
||||
TFLongformerModel
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: transformers.TFLongformerModel
|
||||
:members:
|
||||
|
||||
|
||||
TFLongformerForMaskedLM
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: transformers.TFLongformerForMaskedLM
|
||||
:members:
|
||||
|
||||
|
||||
TFLongformerForQuestionAnswering
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: transformers.TFLongformerForQuestionAnswering
|
||||
:members:
|
||||
|
||||
|
@ -399,6 +399,7 @@ if is_torch_available():
|
||||
LongformerForMultipleChoice,
|
||||
LongformerForTokenClassification,
|
||||
LongformerForQuestionAnswering,
|
||||
LongformerSelfAttention,
|
||||
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
)
|
||||
|
||||
@ -568,6 +569,14 @@ if is_tf_available():
|
||||
TFGPT2PreTrainedModel,
|
||||
)
|
||||
|
||||
from .modeling_tf_longformer import (
|
||||
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
TFLongformerModel,
|
||||
TFLongformerForMaskedLM,
|
||||
TFLongformerForQuestionAnswering,
|
||||
TFLongformerSelfAttention,
|
||||
)
|
||||
|
||||
from .modeling_tf_mobilebert import (
|
||||
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
TFMobileBertModel,
|
||||
|
@ -71,7 +71,6 @@ def _get_question_end_index(input_ids, sep_token_id):
|
||||
assert (
|
||||
sep_token_indices.shape[0] == 3 * batch_size
|
||||
), f"There should be exactly three separator tokens: {sep_token_id} in every sample for questions answering. You might also consider to set `global_attention_mask` manually in the forward function to avoid this error."
|
||||
|
||||
return sep_token_indices.view(batch_size, 3, 2)[:, 0, 1]
|
||||
|
||||
|
||||
@ -81,7 +80,6 @@ def _compute_global_attention_mask(input_ids, sep_token_id, before_sep_token=Tru
|
||||
before `sep_token_id` if `before_sep_token is True` else after
|
||||
`sep_token_id`.
|
||||
"""
|
||||
|
||||
question_end_index = _get_question_end_index(input_ids, sep_token_id)
|
||||
question_end_index = question_end_index.unsqueeze(dim=1) # size: batch_size x 1
|
||||
# bool attention mask with True in locations of global attention
|
||||
@ -131,6 +129,172 @@ class LongformerSelfAttention(nn.Module):
|
||||
|
||||
self.one_sided_attn_window_size = attention_window // 2
|
||||
|
||||
def forward(
|
||||
self, hidden_states, attention_mask=None, output_attentions=False,
|
||||
):
|
||||
"""
|
||||
LongformerSelfAttention expects `len(hidden_states)` to be multiple of `attention_window`.
|
||||
Padding to `attention_window` happens in LongformerModel.forward to avoid redoing the padding on each layer.
|
||||
|
||||
The `attention_mask` is changed in `BertModel.forward` from 0, 1, 2 to
|
||||
-ve: no attention
|
||||
0: local attention
|
||||
+ve: global attention
|
||||
|
||||
"""
|
||||
attention_mask = attention_mask.squeeze(dim=2).squeeze(dim=1)
|
||||
|
||||
# is index masked or global attention
|
||||
is_index_masked = attention_mask < 0
|
||||
is_index_global_attn = attention_mask > 0
|
||||
is_global_attn = is_index_global_attn.flatten().any().item()
|
||||
|
||||
hidden_states = hidden_states.transpose(0, 1)
|
||||
|
||||
# project hidden states
|
||||
query_vectors = self.query(hidden_states)
|
||||
key_vectors = self.key(hidden_states)
|
||||
value_vectors = self.value(hidden_states)
|
||||
|
||||
seq_len, batch_size, embed_dim = hidden_states.size()
|
||||
assert (
|
||||
embed_dim == self.embed_dim
|
||||
), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}"
|
||||
|
||||
# normalize query
|
||||
query_vectors /= math.sqrt(self.head_dim)
|
||||
|
||||
query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
|
||||
key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
|
||||
|
||||
# attn_probs = (batch_size, seq_len, num_heads, window*2+1)
|
||||
attn_scores = self._sliding_chunks_query_key_matmul(
|
||||
query_vectors, key_vectors, self.one_sided_attn_window_size
|
||||
)
|
||||
|
||||
# values to pad for attention probs
|
||||
remove_from_windowed_attention_mask = (attention_mask != 0)[:, :, None, None]
|
||||
|
||||
# cast to fp32/fp16 then replace 1's with -inf
|
||||
float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill(
|
||||
remove_from_windowed_attention_mask, -10000.0
|
||||
)
|
||||
# diagonal mask with zeros everywhere and -inf inplace of padding
|
||||
diagonal_mask = self._sliding_chunks_query_key_matmul(
|
||||
float_mask.new_ones(size=float_mask.size()), float_mask, self.one_sided_attn_window_size
|
||||
)
|
||||
|
||||
# pad local attention probs
|
||||
attn_scores += diagonal_mask
|
||||
|
||||
assert list(attn_scores.size()) == [
|
||||
batch_size,
|
||||
seq_len,
|
||||
self.num_heads,
|
||||
self.one_sided_attn_window_size * 2 + 1,
|
||||
], f"attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}, {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.size()}"
|
||||
|
||||
# compute local attention probs from global attention keys and contact over window dim
|
||||
if is_global_attn:
|
||||
# compute global attn indices required through out forward fn
|
||||
(
|
||||
max_num_global_attn_indices,
|
||||
is_index_global_attn_nonzero,
|
||||
is_local_index_global_attn_nonzero,
|
||||
is_local_index_no_global_attn_nonzero,
|
||||
) = self._get_global_attn_indices(is_index_global_attn)
|
||||
# calculate global attn probs from global key
|
||||
|
||||
global_key_attn_scores = self._concat_with_global_key_attn_probs(
|
||||
query_vectors=query_vectors,
|
||||
key_vectors=key_vectors,
|
||||
max_num_global_attn_indices=max_num_global_attn_indices,
|
||||
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
|
||||
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
|
||||
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
|
||||
)
|
||||
# concat to attn_probs
|
||||
# (batch_size, seq_len, num_heads, extra attention count + 2*window+1)
|
||||
attn_scores = torch.cat((global_key_attn_scores, attn_scores), dim=-1)
|
||||
|
||||
# free memory
|
||||
del global_key_attn_scores
|
||||
|
||||
attn_probs_fp32 = F.softmax(attn_scores, dim=-1, dtype=torch.float32) # use fp32 for numerical stability
|
||||
attn_probs = attn_probs_fp32.type_as(attn_scores)
|
||||
|
||||
# free memory
|
||||
del attn_probs_fp32
|
||||
|
||||
# softmax sometimes inserts NaN if all positions are masked, replace them with 0
|
||||
attn_probs = torch.masked_fill(attn_probs, is_index_masked[:, :, None, None], 0.0)
|
||||
|
||||
# apply dropout
|
||||
attn_probs = F.dropout(attn_probs, p=self.dropout, training=self.training)
|
||||
|
||||
value_vectors = value_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
|
||||
|
||||
# compute local attention output with global attention value and add
|
||||
if is_global_attn:
|
||||
# compute sum of global and local attn
|
||||
attn_output = self._compute_attn_output_with_global_indices(
|
||||
value_vectors=value_vectors,
|
||||
attn_probs=attn_probs,
|
||||
max_num_global_attn_indices=max_num_global_attn_indices,
|
||||
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
|
||||
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
|
||||
)
|
||||
else:
|
||||
# compute local attn only
|
||||
attn_output = self._sliding_chunks_matmul_attn_probs_value(
|
||||
attn_probs, value_vectors, self.one_sided_attn_window_size
|
||||
)
|
||||
|
||||
assert attn_output.size() == (batch_size, seq_len, self.num_heads, self.head_dim), "Unexpected size"
|
||||
attn_output = attn_output.transpose(0, 1).reshape(seq_len, batch_size, embed_dim).contiguous()
|
||||
|
||||
# compute value for global attention and overwrite to attention output
|
||||
# TODO: remove the redundant computation
|
||||
if is_global_attn:
|
||||
global_attn_output = self._compute_global_attn_output_from_hidden(
|
||||
hidden_states=hidden_states,
|
||||
max_num_global_attn_indices=max_num_global_attn_indices,
|
||||
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
|
||||
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
|
||||
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
|
||||
is_index_masked=is_index_masked,
|
||||
)
|
||||
|
||||
# get only non zero global attn output
|
||||
nonzero_global_attn_output = global_attn_output[
|
||||
is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1]
|
||||
]
|
||||
|
||||
# overwrite values with global attention
|
||||
attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view(
|
||||
len(is_local_index_global_attn_nonzero[0]), -1
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(0, 1)
|
||||
|
||||
if output_attentions:
|
||||
if is_global_attn:
|
||||
# With global attention, return global attention probabilities only
|
||||
# batch_size x num_heads x max_num_global_attention_tokens x sequence_length
|
||||
# which is the attention weights from tokens with global attention to all tokens
|
||||
# It doesn't not return local attention
|
||||
# In case of variable number of global attantion in the rows of a batch,
|
||||
# attn_probs are padded with -10000.0 attention scores
|
||||
attn_probs = attn_probs.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len)
|
||||
else:
|
||||
# without global attention, return local attention probabilities
|
||||
# batch_size x num_heads x sequence_length x window_size
|
||||
# which is the attention weights of every token attending to its neighbours
|
||||
attn_probs = attn_probs.permute(0, 2, 1, 3)
|
||||
|
||||
outputs = (attn_output, attn_probs) if output_attentions else (attn_output,)
|
||||
return outputs
|
||||
|
||||
@staticmethod
|
||||
def _pad_and_transpose_last_two_dims(hidden_states_padded, padding):
|
||||
"""pads rows and then flips rows and columns"""
|
||||
@ -143,8 +307,20 @@ class LongformerSelfAttention(nn.Module):
|
||||
return hidden_states_padded
|
||||
|
||||
@staticmethod
|
||||
def _pad_by_window_overlap_except_last_row(chunked_hidden_states):
|
||||
"""shift every row 1 step right, converting columns into diagonals"""
|
||||
def _pad_and_diagonalize(chunked_hidden_states):
|
||||
"""shift every row 1 step right, converting columns into diagonals.
|
||||
Example:
|
||||
chunked_hidden_states: [ 0.4983, 2.6918, -0.0071, 1.0492,
|
||||
-1.8348, 0.7672, 0.2986, 0.0285,
|
||||
-0.7584, 0.4206, -0.0405, 0.1599,
|
||||
2.0514, -1.1600, 0.5372, 0.2629 ]
|
||||
window_overlap = num_rows = 4
|
||||
(pad & diagonilize) =>
|
||||
[ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000
|
||||
0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000
|
||||
0.0000, 0.0000, -0.7584, 0.4206, -0.0405, 0.1599, 0.0000
|
||||
0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ]
|
||||
"""
|
||||
total_num_heads, num_chunks, window_overlap, hidden_dim = chunked_hidden_states.size()
|
||||
chunked_hidden_states = F.pad(
|
||||
chunked_hidden_states, (0, window_overlap + 1)
|
||||
@ -181,7 +357,8 @@ class LongformerSelfAttention(nn.Module):
|
||||
chunk_stride[1] = chunk_stride[1] // 2
|
||||
return hidden_states.as_strided(size=chunk_size, stride=chunk_stride)
|
||||
|
||||
def _mask_invalid_locations(self, input_tensor, affected_seq_len) -> torch.Tensor:
|
||||
@staticmethod
|
||||
def _mask_invalid_locations(input_tensor, affected_seq_len) -> torch.Tensor:
|
||||
beginning_mask_2d = input_tensor.new_ones(affected_seq_len, affected_seq_len + 1).tril().flip(dims=[0])
|
||||
beginning_mask = beginning_mask_2d[None, :, None, :]
|
||||
ending_mask = beginning_mask.flip(dims=(1, 3))
|
||||
@ -243,6 +420,7 @@ class LongformerSelfAttention(nn.Module):
|
||||
diagonal_attention_scores[:, 1:, :, :window_overlap] = diagonal_chunked_attention_scores[
|
||||
:, :, -(window_overlap + 1) : -1, window_overlap + 1 :
|
||||
]
|
||||
|
||||
diagonal_attention_scores[:, 0, 1:window_overlap, 1:window_overlap] = diagonal_chunked_attention_scores[
|
||||
:, 0, : window_overlap - 1, 1 - window_overlap :
|
||||
]
|
||||
@ -261,11 +439,13 @@ class LongformerSelfAttention(nn.Module):
|
||||
"""Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors.
|
||||
Returned tensor will be of the same shape as `attn_probs`"""
|
||||
batch_size, seq_len, num_heads, head_dim = value.size()
|
||||
|
||||
assert seq_len % (window_overlap * 2) == 0
|
||||
assert attn_probs.size()[:3] == value.size()[:3]
|
||||
assert attn_probs.size(3) == 2 * window_overlap + 1
|
||||
chunks_count = seq_len // window_overlap - 1
|
||||
# group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap
|
||||
|
||||
chunked_attn_probs = attn_probs.transpose(1, 2).reshape(
|
||||
batch_size * num_heads, seq_len // window_overlap, window_overlap, 2 * window_overlap + 1
|
||||
)
|
||||
@ -287,178 +467,11 @@ class LongformerSelfAttention(nn.Module):
|
||||
)
|
||||
chunked_value = padded_value.as_strided(size=chunked_value_size, stride=chunked_value_stride)
|
||||
|
||||
chunked_attn_probs = self._pad_by_window_overlap_except_last_row(chunked_attn_probs)
|
||||
chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs)
|
||||
|
||||
context = torch.einsum("bcwd,bcdh->bcwh", (chunked_attn_probs, chunked_value))
|
||||
return context.view(batch_size, num_heads, seq_len, head_dim).transpose(1, 2)
|
||||
|
||||
def forward(
|
||||
self, hidden_states, attention_mask=None, output_attentions=False,
|
||||
):
|
||||
"""
|
||||
LongformerSelfAttention expects `len(hidden_states)` to be multiple of `attention_window`.
|
||||
Padding to `attention_window` happens in LongformerModel.forward to avoid redoing the padding on each layer.
|
||||
|
||||
The `attention_mask` is changed in `BertModel.forward` from 0, 1, 2 to
|
||||
-ve: no attention
|
||||
0: local attention
|
||||
+ve: global attention
|
||||
|
||||
"""
|
||||
|
||||
attention_mask = attention_mask.squeeze(dim=2).squeeze(dim=1)
|
||||
|
||||
# is index masked or global attention
|
||||
is_index_masked = attention_mask < 0
|
||||
is_index_global_attn = attention_mask > 0
|
||||
is_global_attn = is_index_global_attn.flatten().any().item()
|
||||
|
||||
hidden_states = hidden_states.transpose(0, 1)
|
||||
|
||||
# project hidden states
|
||||
query_vectors = self.query(hidden_states)
|
||||
key_vectors = self.key(hidden_states)
|
||||
value_vectors = self.value(hidden_states)
|
||||
|
||||
seq_len, batch_size, embed_dim = hidden_states.size()
|
||||
assert (
|
||||
embed_dim == self.embed_dim
|
||||
), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}"
|
||||
|
||||
# normalize query
|
||||
query_vectors /= math.sqrt(self.head_dim)
|
||||
|
||||
query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
|
||||
key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
|
||||
|
||||
# attn_probs = (batch_size, seq_len, num_heads, window*2+1)
|
||||
attn_scores = self._sliding_chunks_query_key_matmul(
|
||||
query_vectors, key_vectors, self.one_sided_attn_window_size
|
||||
)
|
||||
|
||||
# values to pad for attention probs
|
||||
remove_from_windowed_attention_mask = (attention_mask != 0).unsqueeze(dim=-1).unsqueeze(dim=-1)
|
||||
|
||||
# cast to fp32/fp16 then replace 1's with -inf
|
||||
float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill(
|
||||
remove_from_windowed_attention_mask, -10000.0
|
||||
)
|
||||
# diagonal mask with zeros everywhere and -inf inplace of padding
|
||||
diagonal_mask = self._sliding_chunks_query_key_matmul(
|
||||
float_mask.new_ones(size=float_mask.size()), float_mask, self.one_sided_attn_window_size
|
||||
)
|
||||
|
||||
# pad local attention probs
|
||||
attn_scores += diagonal_mask
|
||||
|
||||
assert list(attn_scores.size()) == [
|
||||
batch_size,
|
||||
seq_len,
|
||||
self.num_heads,
|
||||
self.one_sided_attn_window_size * 2 + 1,
|
||||
], f"attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}, {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.size()}"
|
||||
|
||||
# compute local attention probs from global attention keys and contact over window dim
|
||||
if is_global_attn:
|
||||
# compute global attn indices required through out forward fn
|
||||
(
|
||||
max_num_global_attn_indices,
|
||||
is_index_global_attn_nonzero,
|
||||
is_local_index_global_attn_nonzero,
|
||||
is_local_index_no_global_attn_nonzero,
|
||||
) = self._get_global_attn_indices(is_index_global_attn)
|
||||
# calculate global attn probs from global key
|
||||
global_key_attn_scores = self._concat_with_global_key_attn_probs(
|
||||
query_vectors=query_vectors,
|
||||
key_vectors=key_vectors,
|
||||
max_num_global_attn_indices=max_num_global_attn_indices,
|
||||
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
|
||||
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
|
||||
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
|
||||
)
|
||||
# concat to attn_probs
|
||||
# (batch_size, seq_len, num_heads, extra attention count + 2*window+1)
|
||||
attn_scores = torch.cat((global_key_attn_scores, attn_scores), dim=-1)
|
||||
|
||||
# free memory
|
||||
del global_key_attn_scores
|
||||
|
||||
attn_probs_fp32 = F.softmax(attn_scores, dim=-1, dtype=torch.float32) # use fp32 for numerical stability
|
||||
attn_probs = attn_probs_fp32.type_as(attn_scores)
|
||||
|
||||
# free memory
|
||||
del attn_probs_fp32
|
||||
|
||||
# softmax sometimes inserts NaN if all positions are masked, replace them with 0
|
||||
attn_probs = torch.masked_fill(attn_probs, is_index_masked.unsqueeze(-1).unsqueeze(-1), 0.0)
|
||||
|
||||
# apply dropout
|
||||
attn_probs = F.dropout(attn_probs, p=self.dropout, training=self.training)
|
||||
|
||||
value_vectors = value_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
|
||||
|
||||
# compute local attention output with global attention value and add
|
||||
if is_global_attn:
|
||||
# compute sum of global and local attn
|
||||
attn_output = self._compute_attn_output_with_global_indices(
|
||||
value_vectors=value_vectors,
|
||||
attn_probs=attn_probs,
|
||||
max_num_global_attn_indices=max_num_global_attn_indices,
|
||||
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
|
||||
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
|
||||
)
|
||||
else:
|
||||
# compute local attn only
|
||||
attn_output = self._sliding_chunks_matmul_attn_probs_value(
|
||||
attn_probs, value_vectors, self.one_sided_attn_window_size
|
||||
)
|
||||
|
||||
assert attn_output.size() == (batch_size, seq_len, self.num_heads, self.head_dim), "Unexpected size"
|
||||
attn_output = attn_output.transpose(0, 1).reshape(seq_len, batch_size, embed_dim).contiguous()
|
||||
|
||||
# compute value for global attention and overwrite to attention output
|
||||
# TODO: remove the redundant computation
|
||||
if is_global_attn:
|
||||
global_attn_output = self._compute_global_attn_output_from_hidden(
|
||||
hidden_states=hidden_states,
|
||||
max_num_global_attn_indices=max_num_global_attn_indices,
|
||||
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
|
||||
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
|
||||
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
|
||||
is_index_masked=is_index_masked,
|
||||
)
|
||||
|
||||
# get only non zero global attn output
|
||||
nonzero_global_attn_output = global_attn_output[
|
||||
is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1]
|
||||
]
|
||||
# overwrite values with global attention
|
||||
attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view(
|
||||
len(is_local_index_global_attn_nonzero[0]), -1
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(0, 1)
|
||||
|
||||
if output_attentions:
|
||||
if is_global_attn:
|
||||
# With global attention, return global attention probabilities only
|
||||
# batch_size x num_heads x sequence_length x window_size
|
||||
# which is the attention weights from all tokens to all tokens for global attention
|
||||
# It doesn't not return local attention. Only tokens with global attention have values > 0.0
|
||||
attn_probs = attn_probs[:, :, :, :max_num_global_attn_indices]
|
||||
# pad attn_probs to max length with 0.0 since global attn did not attend there
|
||||
window_size = self.one_sided_attn_window_size * 2 + 1
|
||||
attn_probs = F.pad(attn_probs, (0, window_size - max_num_global_attn_indices), value=0.0,)
|
||||
attn_probs = attn_probs.permute(0, 2, 1, 3)
|
||||
else:
|
||||
# without global attention, return local attention probabilities
|
||||
# batch_size x num_heads x sequence_length x window_size
|
||||
# which is the attention weights of every token attending to its neighbours
|
||||
attn_probs = attn_probs.permute(0, 2, 1, 3)
|
||||
|
||||
outputs = (attn_output, attn_probs) if output_attentions else (attn_output,)
|
||||
return outputs
|
||||
|
||||
@staticmethod
|
||||
def _get_global_attn_indices(is_index_global_attn):
|
||||
""" compute global attn indices required throughout forward pass """
|
||||
@ -503,12 +516,16 @@ class LongformerSelfAttention(nn.Module):
|
||||
key_vectors_only_global = key_vectors.new_zeros(
|
||||
batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim
|
||||
)
|
||||
|
||||
key_vectors_only_global[is_local_index_global_attn_nonzero] = key_vectors[is_index_global_attn_nonzero]
|
||||
|
||||
# (batch_size, seq_len, num_heads, max_num_global_attn_indices)
|
||||
attn_probs_from_global_key = torch.einsum("blhd,bshd->blhs", (query_vectors, key_vectors_only_global))
|
||||
|
||||
attn_probs_from_global_key[
|
||||
is_local_index_no_global_attn_nonzero[0], :, :, is_local_index_no_global_attn_nonzero[1]
|
||||
] = -10000.0
|
||||
|
||||
return attn_probs_from_global_key
|
||||
|
||||
def _compute_attn_output_with_global_indices(
|
||||
@ -600,7 +617,7 @@ class LongformerSelfAttention(nn.Module):
|
||||
is_local_index_no_global_attn_nonzero[0], :, is_local_index_no_global_attn_nonzero[1], :
|
||||
] = -10000.0
|
||||
|
||||
global_attn_scores = global_attn_scores.masked_fill(is_index_masked.unsqueeze(1).unsqueeze(2), -10000.0,)
|
||||
global_attn_scores = global_attn_scores.masked_fill(is_index_masked[:, None, None, :], -10000.0,)
|
||||
|
||||
global_attn_scores = global_attn_scores.view(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)
|
||||
|
||||
@ -754,7 +771,6 @@ class LongformerPreTrainedModel(PreTrainedModel):
|
||||
|
||||
|
||||
LONGFORMER_START_DOCSTRING = r"""
|
||||
|
||||
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ sub-class.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
|
||||
usage and behavior.
|
||||
@ -823,13 +839,13 @@ LONGFORMER_INPUTS_DOCSTRING = r"""
|
||||
)
|
||||
class LongformerModel(LongformerPreTrainedModel):
|
||||
"""
|
||||
This class overrides :class:`~transformers.RobertaModel` to provide the ability to process
|
||||
long sequences following the selfattention approach described in `Longformer: the Long-Document Transformer
|
||||
<https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer selfattention
|
||||
This class copied code from :class:`~transformers.RobertaModel` and overwrote standard self-attention with longformer self-attention to provide the ability to process
|
||||
long sequences following the self-attention approach described in `Longformer: the Long-Document Transformer
|
||||
<https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer self-attention
|
||||
combines a local (sliding window) and global attention to extend to long documents without the O(n^2) increase in
|
||||
memory and compute.
|
||||
|
||||
The selfattention module `LongformerSelfAttention` implemented here supports the combination of local and
|
||||
The self-attention module `LongformerSelfAttention` implemented here supports the combination of local and
|
||||
global attention but it lacks support for autoregressive attention and dilated attention. Autoregressive
|
||||
and dilated attention are more relevant for autoregressive language modeling than finetuning on downstream
|
||||
tasks. Future release will add support for autoregressive attention, but the support for dilated attention
|
||||
@ -883,7 +899,7 @@ class LongformerModel(LongformerPreTrainedModel):
|
||||
inputs_embeds: torch.Tensor,
|
||||
pad_token_id: int,
|
||||
):
|
||||
"""A helper function to pad tokens and mask to work with implementation of Longformer selfattention."""
|
||||
"""A helper function to pad tokens and mask to work with implementation of Longformer self-attention."""
|
||||
# padding
|
||||
attention_window = (
|
||||
self.config.attention_window
|
||||
@ -1053,6 +1069,9 @@ class LongformerForMaskedLM(LongformerPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head.decoder
|
||||
|
||||
@add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
@ -1315,11 +1334,14 @@ class LongformerForQuestionAnswering(BertPreTrainedModel):
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# set global attention on question tokens
|
||||
if global_attention_mask is None:
|
||||
logger.info("Initializing global attention on question tokens...")
|
||||
# put global attention on all tokens until `config.sep_token_id` is reached
|
||||
global_attention_mask = _compute_global_attention_mask(input_ids, self.config.sep_token_id)
|
||||
if input_ids is None:
|
||||
logger.warning(
|
||||
"It is not possible to automatically generate the `global_attention_mask` because input_ids is None. Please make sure that it is correctly set."
|
||||
)
|
||||
else:
|
||||
# set global attention on question tokens automatically
|
||||
global_attention_mask = _compute_global_attention_mask(input_ids, self.config.sep_token_id)
|
||||
|
||||
outputs = self.longformer(
|
||||
input_ids,
|
||||
@ -1504,7 +1526,7 @@ class LongformerForMultipleChoice(BertPreTrainedModel):
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# set global attention on question tokens
|
||||
if global_attention_mask is None:
|
||||
if global_attention_mask is None and input_ids is not None:
|
||||
logger.info("Initializing global attention on multiple choice...")
|
||||
# put global attention on all tokens after `config.sep_token_id`
|
||||
global_attention_mask = torch.stack(
|
||||
|
@ -29,6 +29,7 @@ from .configuration_auto import (
|
||||
ElectraConfig,
|
||||
FlaubertConfig,
|
||||
GPT2Config,
|
||||
LongformerConfig,
|
||||
MobileBertConfig,
|
||||
OpenAIGPTConfig,
|
||||
RobertaConfig,
|
||||
@ -93,6 +94,7 @@ from .modeling_tf_flaubert import (
|
||||
TFFlaubertWithLMHeadModel,
|
||||
)
|
||||
from .modeling_tf_gpt2 import TFGPT2LMHeadModel, TFGPT2Model
|
||||
from .modeling_tf_longformer import TFLongformerForMaskedLM, TFLongformerForQuestionAnswering, TFLongformerModel
|
||||
from .modeling_tf_mobilebert import (
|
||||
TFMobileBertForMaskedLM,
|
||||
TFMobileBertForMultipleChoice,
|
||||
@ -149,6 +151,7 @@ TF_MODEL_MAPPING = OrderedDict(
|
||||
(AlbertConfig, TFAlbertModel),
|
||||
(CamembertConfig, TFCamembertModel),
|
||||
(XLMRobertaConfig, TFXLMRobertaModel),
|
||||
(LongformerConfig, TFLongformerModel),
|
||||
(RobertaConfig, TFRobertaModel),
|
||||
(BertConfig, TFBertModel),
|
||||
(OpenAIGPTConfig, TFOpenAIGPTModel),
|
||||
@ -191,6 +194,7 @@ TF_MODEL_WITH_LM_HEAD_MAPPING = OrderedDict(
|
||||
(AlbertConfig, TFAlbertForMaskedLM),
|
||||
(CamembertConfig, TFCamembertForMaskedLM),
|
||||
(XLMRobertaConfig, TFXLMRobertaForMaskedLM),
|
||||
(LongformerConfig, TFLongformerForMaskedLM),
|
||||
(RobertaConfig, TFRobertaForMaskedLM),
|
||||
(BertConfig, TFBertForMaskedLM),
|
||||
(OpenAIGPTConfig, TFOpenAIGPTLMHeadModel),
|
||||
@ -226,6 +230,7 @@ TF_MODEL_FOR_MASKED_LM_MAPPING = OrderedDict(
|
||||
(AlbertConfig, TFAlbertForMaskedLM),
|
||||
(CamembertConfig, TFCamembertForMaskedLM),
|
||||
(XLMRobertaConfig, TFXLMRobertaForMaskedLM),
|
||||
(LongformerConfig, TFLongformerForMaskedLM),
|
||||
(RobertaConfig, TFRobertaForMaskedLM),
|
||||
(BertConfig, TFBertForMaskedLM),
|
||||
(MobileBertConfig, TFMobileBertForMaskedLM),
|
||||
@ -259,6 +264,7 @@ TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = OrderedDict(
|
||||
(AlbertConfig, TFAlbertForQuestionAnswering),
|
||||
(CamembertConfig, TFCamembertForQuestionAnswering),
|
||||
(XLMRobertaConfig, TFXLMRobertaForQuestionAnswering),
|
||||
(LongformerConfig, TFLongformerForQuestionAnswering),
|
||||
(RobertaConfig, TFRobertaForQuestionAnswering),
|
||||
(BertConfig, TFBertForQuestionAnswering),
|
||||
(XLNetConfig, TFXLNetForQuestionAnsweringSimple),
|
||||
|
1392
src/transformers/modeling_tf_longformer.py
Normal file
1392
src/transformers/modeling_tf_longformer.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -33,6 +33,7 @@ if is_torch_available():
|
||||
LongformerForTokenClassification,
|
||||
LongformerForQuestionAnswering,
|
||||
LongformerForMultipleChoice,
|
||||
LongformerSelfAttention,
|
||||
)
|
||||
|
||||
|
||||
@ -325,7 +326,209 @@ class LongformerModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
self.model_tester.create_and_check_longformer_for_multiple_choice(*config_and_inputs)
|
||||
|
||||
|
||||
@require_torch
|
||||
class LongformerModelIntegrationTest(unittest.TestCase):
|
||||
def _get_hidden_states(self):
|
||||
return torch.tensor(
|
||||
[
|
||||
[
|
||||
[
|
||||
4.98332758e-01,
|
||||
2.69175139e00,
|
||||
-7.08081422e-03,
|
||||
1.04915401e00,
|
||||
-1.83476661e00,
|
||||
7.67220476e-01,
|
||||
2.98580543e-01,
|
||||
2.84803992e-02,
|
||||
],
|
||||
[
|
||||
-7.58357372e-01,
|
||||
4.20635998e-01,
|
||||
-4.04739919e-02,
|
||||
1.59924145e-01,
|
||||
2.05135748e00,
|
||||
-1.15997978e00,
|
||||
5.37166397e-01,
|
||||
2.62873606e-01,
|
||||
],
|
||||
[
|
||||
-1.69438001e00,
|
||||
4.17574660e-01,
|
||||
-1.49196962e00,
|
||||
-1.76483717e00,
|
||||
-1.94566312e-01,
|
||||
-1.71183858e00,
|
||||
7.72903565e-01,
|
||||
-1.11557056e00,
|
||||
],
|
||||
[
|
||||
5.44028163e-01,
|
||||
2.05466114e-01,
|
||||
-3.63045868e-01,
|
||||
2.41865062e-01,
|
||||
3.20348382e-01,
|
||||
-9.05611176e-01,
|
||||
-1.92690727e-01,
|
||||
-1.19917547e00,
|
||||
],
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
device=torch_device,
|
||||
)
|
||||
|
||||
def test_diagonalize(self):
|
||||
hidden_states = self._get_hidden_states()
|
||||
hidden_states = hidden_states.reshape((1, 8, 4)) # set seq length = 8, hidden dim = 4
|
||||
chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)
|
||||
window_overlap_size = chunked_hidden_states.shape[2]
|
||||
self.assertTrue(window_overlap_size == 4)
|
||||
|
||||
padded_hidden_states = LongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states)
|
||||
|
||||
self.assertTrue(padded_hidden_states.shape[-1] == chunked_hidden_states.shape[-1] + window_overlap_size - 1)
|
||||
|
||||
# first row => [0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000]
|
||||
self.assertTrue(torch.allclose(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], atol=1e-3))
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
padded_hidden_states[0, 0, 0, 4:],
|
||||
torch.zeros((3,), device=torch_device, dtype=torch.float32),
|
||||
atol=1e-3,
|
||||
)
|
||||
)
|
||||
# last row => [0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629]
|
||||
self.assertTrue(torch.allclose(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], atol=1e-3))
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
padded_hidden_states[0, 0, -1, :3],
|
||||
torch.zeros((3,), device=torch_device, dtype=torch.float32),
|
||||
atol=1e-3,
|
||||
)
|
||||
)
|
||||
|
||||
def test_pad_and_transpose_last_two_dims(self):
|
||||
hidden_states = self._get_hidden_states()
|
||||
self.assertTrue(hidden_states.shape, (1, 8, 4))
|
||||
padding = (0, 0, 0, 1)
|
||||
|
||||
padded_hidden_states = LongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, padding)
|
||||
self.assertTrue(padded_hidden_states.shape, (1, 8, 5))
|
||||
|
||||
expected_added_dim = torch.zeros((5,), device=torch_device, dtype=torch.float32)
|
||||
self.assertTrue(torch.allclose(expected_added_dim, padded_hidden_states[0, -1, :], atol=1e-6))
|
||||
self.assertTrue(torch.allclose(hidden_states[0, -1, :], padded_hidden_states.view(1, -1)[0, 24:32], atol=1e-6))
|
||||
|
||||
def test_chunk(self):
|
||||
hidden_states = self._get_hidden_states()
|
||||
batch_size = 1
|
||||
seq_length = 8
|
||||
hidden_size = 4
|
||||
hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))
|
||||
|
||||
chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)
|
||||
|
||||
# expected slices across chunk and seq length dim
|
||||
expected_slice_along_seq_length = torch.tensor(
|
||||
[0.4983, -0.7584, -1.6944], device=torch_device, dtype=torch.float32
|
||||
)
|
||||
expected_slice_along_chunk = torch.tensor(
|
||||
[0.4983, -1.8348, -0.7584, 2.0514], device=torch_device, dtype=torch.float32
|
||||
)
|
||||
|
||||
self.assertTrue(torch.allclose(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, atol=1e-3))
|
||||
self.assertTrue(torch.allclose(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, atol=1e-3))
|
||||
self.assertTrue(chunked_hidden_states.shape, (1, 3, 4, 4))
|
||||
|
||||
def test_mask_invalid_locations(self):
|
||||
hidden_states = self._get_hidden_states()
|
||||
|
||||
batch_size = 1
|
||||
seq_length = 8
|
||||
hidden_size = 4
|
||||
hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))
|
||||
chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)
|
||||
|
||||
hid_states_1 = chunked_hidden_states.clone()
|
||||
LongformerSelfAttention._mask_invalid_locations(hid_states_1, 1)
|
||||
self.assertTrue(torch.isinf(hid_states_1).sum().item() == 8)
|
||||
|
||||
hid_states_2 = chunked_hidden_states.clone()
|
||||
LongformerSelfAttention._mask_invalid_locations(hid_states_2, 2)
|
||||
self.assertTrue(torch.isinf(hid_states_2).sum().item() == 24)
|
||||
|
||||
hid_states_3 = chunked_hidden_states.clone()[:, :, :, :3]
|
||||
LongformerSelfAttention._mask_invalid_locations(hid_states_3, 2)
|
||||
self.assertTrue(torch.isinf(hid_states_3).sum().item() == 24)
|
||||
|
||||
hid_states_4 = chunked_hidden_states.clone()[:, :, 2:, :]
|
||||
LongformerSelfAttention._mask_invalid_locations(hid_states_4, 2)
|
||||
self.assertTrue(torch.isinf(hid_states_4).sum().item() == 12)
|
||||
|
||||
def test_layer_local_attn(self):
|
||||
model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
|
||||
model.eval()
|
||||
layer = model.encoder.layer[0].attention.self.to(torch_device)
|
||||
hidden_states = self._get_hidden_states()
|
||||
batch_size, seq_length, hidden_size = hidden_states.size()
|
||||
attention_mask = torch.zeros((batch_size, 1, 1, seq_length), dtype=torch.float32, device=torch_device)
|
||||
attention_mask[:, :, :, -2:] = -10000
|
||||
output_hidden_states = layer(hidden_states, attention_mask)[0]
|
||||
|
||||
self.assertTrue(output_hidden_states.shape, (1, 4, 8))
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
output_hidden_states[0, 1],
|
||||
torch.tensor(
|
||||
[0.0019, 0.0122, -0.0171, -0.0256, -0.0300, 0.0173, -0.0115, 0.0048],
|
||||
dtype=torch.float32,
|
||||
device=torch_device,
|
||||
),
|
||||
atol=1e-3,
|
||||
)
|
||||
)
|
||||
|
||||
def test_layer_global_attn(self):
|
||||
model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
|
||||
model.eval()
|
||||
layer = model.encoder.layer[0].attention.self.to(torch_device)
|
||||
hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0)
|
||||
batch_size, seq_length, hidden_size = hidden_states.size()
|
||||
attention_mask = torch.zeros((batch_size, 1, 1, seq_length), dtype=torch.float32, device=torch_device)
|
||||
|
||||
# create attn mask
|
||||
attention_mask[0, :, :, -2:] = 10000.0
|
||||
attention_mask[0, :, :, -1:] = -10000.0
|
||||
attention_mask[1, :, :, 1:] = 10000.0
|
||||
output_hidden_states = layer(hidden_states, attention_mask)[0]
|
||||
|
||||
self.assertTrue(output_hidden_states.shape, (2, 4, 8))
|
||||
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
output_hidden_states[0, 2],
|
||||
torch.tensor(
|
||||
[-0.0651, -0.0393, 0.0309, -0.0342, -0.0066, -0.0155, -0.0209, -0.0494],
|
||||
dtype=torch.float32,
|
||||
device=torch_device,
|
||||
),
|
||||
atol=1e-3,
|
||||
)
|
||||
)
|
||||
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
output_hidden_states[1, -2],
|
||||
torch.tensor(
|
||||
[-0.0405, -0.0384, 0.0396, -0.0374, -0.0341, 0.0136, 0.0014, -0.0571],
|
||||
dtype=torch.float32,
|
||||
device=torch_device,
|
||||
),
|
||||
atol=1e-3,
|
||||
)
|
||||
)
|
||||
|
||||
@slow
|
||||
def test_inference_no_head(self):
|
||||
model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
|
||||
@ -371,13 +574,13 @@ class LongformerModelIntegrationTest(unittest.TestCase):
|
||||
input_ids = torch.tensor(
|
||||
[[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
|
||||
) # long input
|
||||
input_ids = input_ids.to(torch_device)
|
||||
|
||||
loss, prediction_scores = model(input_ids, labels=input_ids)
|
||||
|
||||
expected_loss = torch.tensor(0.0074, device=torch_device)
|
||||
expected_prediction_scores_sum = torch.tensor(-6.1048e08, device=torch_device)
|
||||
expected_prediction_scores_mean = torch.tensor(-3.0348, device=torch_device)
|
||||
input_ids = input_ids.to(torch_device)
|
||||
|
||||
self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-4))
|
||||
self.assertTrue(torch.allclose(prediction_scores.sum(), expected_prediction_scores_sum, atol=1e-4))
|
||||
|
531
tests/test_modeling_tf_longformer.py
Normal file
531
tests/test_modeling_tf_longformer.py
Normal file
@ -0,0 +1,531 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import unittest
|
||||
|
||||
from transformers import is_tf_available
|
||||
from transformers.testing_utils import require_tf, slow
|
||||
|
||||
from .test_configuration_common import ConfigTester
|
||||
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
|
||||
|
||||
|
||||
if is_tf_available():
|
||||
import tensorflow as tf
|
||||
from transformers import (
|
||||
LongformerConfig,
|
||||
TFLongformerModel,
|
||||
TFLongformerForMaskedLM,
|
||||
TFLongformerForQuestionAnswering,
|
||||
TFLongformerSelfAttention,
|
||||
)
|
||||
|
||||
def shape_list(x):
|
||||
"""
|
||||
copied from transformers.modeling_tf_utils
|
||||
"""
|
||||
static = x.shape.as_list()
|
||||
dynamic = tf.shape(x)
|
||||
return [dynamic[i] if s is None else s for i, s in enumerate(static)]
|
||||
|
||||
|
||||
class TFLongformerModelTester:
|
||||
def __init__(
|
||||
self, parent,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = 13
|
||||
self.seq_length = 7
|
||||
self.is_training = True
|
||||
self.use_input_mask = True
|
||||
self.use_token_type_ids = True
|
||||
self.use_labels = True
|
||||
self.vocab_size = 99
|
||||
self.hidden_size = 32
|
||||
self.num_hidden_layers = 5
|
||||
self.num_attention_heads = 4
|
||||
self.intermediate_size = 37
|
||||
self.hidden_act = "gelu"
|
||||
self.hidden_dropout_prob = 0.1
|
||||
self.attention_probs_dropout_prob = 0.1
|
||||
self.max_position_embeddings = 512
|
||||
self.type_vocab_size = 16
|
||||
self.type_sequence_label_size = 2
|
||||
self.initializer_range = 0.02
|
||||
self.num_labels = 3
|
||||
self.num_choices = 4
|
||||
self.scope = None
|
||||
self.attention_window = 4
|
||||
|
||||
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
|
||||
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
|
||||
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
|
||||
# because its local attention only attends to `self.attention_window` and one before and one after
|
||||
self.key_length = self.attention_window + 2
|
||||
|
||||
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
|
||||
# the `test_attention_outputs` and `test_hidden_states_output` tests
|
||||
self.encoder_seq_length = (
|
||||
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
|
||||
)
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
||||
input_mask = None
|
||||
if self.use_input_mask:
|
||||
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
||||
|
||||
token_type_ids = None
|
||||
if self.use_token_type_ids:
|
||||
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
||||
|
||||
sequence_labels = None
|
||||
token_labels = None
|
||||
choice_labels = None
|
||||
if self.use_labels:
|
||||
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||||
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
||||
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
||||
|
||||
config = LongformerConfig(
|
||||
vocab_size=self.vocab_size,
|
||||
hidden_size=self.hidden_size,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
intermediate_size=self.intermediate_size,
|
||||
hidden_act=self.hidden_act,
|
||||
hidden_dropout_prob=self.hidden_dropout_prob,
|
||||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
type_vocab_size=self.type_vocab_size,
|
||||
initializer_range=self.initializer_range,
|
||||
attention_window=self.attention_window,
|
||||
)
|
||||
|
||||
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
|
||||
def create_and_check_attention_mask_determinism(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
model = TFLongformerModel(config=config)
|
||||
|
||||
attention_mask = tf.ones(input_ids.shape, dtype=tf.dtypes.int32)
|
||||
output_with_mask = model(input_ids, attention_mask=attention_mask)[0]
|
||||
output_without_mask = model(input_ids)[0]
|
||||
tf.debugging.assert_near(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], rtol=1e-4)
|
||||
|
||||
def create_and_check_longformer_model(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
model = TFLongformerModel(config=config)
|
||||
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
||||
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
|
||||
sequence_output, pooled_output = model(input_ids)
|
||||
|
||||
result = {
|
||||
"sequence_output": sequence_output,
|
||||
"pooled_output": pooled_output,
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
shape_list(result["sequence_output"]), [self.batch_size, self.seq_length, self.hidden_size]
|
||||
)
|
||||
self.parent.assertListEqual(shape_list(result["pooled_output"]), [self.batch_size, self.hidden_size])
|
||||
|
||||
def create_and_check_longformer_model_with_global_attention_mask(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
model = TFLongformerModel(config=config)
|
||||
half_input_mask_length = shape_list(input_mask)[-1] // 2
|
||||
global_attention_mask = tf.concat(
|
||||
[
|
||||
tf.zeros_like(input_mask)[:, :half_input_mask_length],
|
||||
tf.ones_like(input_mask)[:, half_input_mask_length:],
|
||||
],
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
sequence_output, pooled_output = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
global_attention_mask=global_attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
)
|
||||
sequence_output, pooled_output = model(
|
||||
input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask
|
||||
)
|
||||
sequence_output, pooled_output = model(input_ids, global_attention_mask=global_attention_mask)
|
||||
|
||||
result = {
|
||||
"sequence_output": sequence_output,
|
||||
"pooled_output": pooled_output,
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
shape_list(result["sequence_output"]), [self.batch_size, self.seq_length, self.hidden_size]
|
||||
)
|
||||
self.parent.assertListEqual(shape_list(result["pooled_output"]), [self.batch_size, self.hidden_size])
|
||||
|
||||
def create_and_check_longformer_for_masked_lm(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
model = TFLongformerForMaskedLM(config=config)
|
||||
loss, prediction_scores = model(
|
||||
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
|
||||
)
|
||||
result = {
|
||||
"loss": loss,
|
||||
"prediction_scores": prediction_scores,
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
shape_list(result["prediction_scores"]), [self.batch_size, self.seq_length, self.vocab_size]
|
||||
)
|
||||
|
||||
def create_and_check_longformer_for_question_answering(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
model = TFLongformerForQuestionAnswering(config=config)
|
||||
loss, start_logits, end_logits = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
start_positions=sequence_labels,
|
||||
end_positions=sequence_labels,
|
||||
)
|
||||
result = {
|
||||
"loss": loss,
|
||||
"start_logits": start_logits,
|
||||
"end_logits": end_logits,
|
||||
}
|
||||
self.parent.assertListEqual(shape_list(result["start_logits"]), [self.batch_size, self.seq_length])
|
||||
self.parent.assertListEqual(shape_list(result["end_logits"]), [self.batch_size, self.seq_length])
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
) = config_and_inputs
|
||||
|
||||
# global attention mask has to be partly defined
|
||||
# to trace all weights
|
||||
global_attention_mask = tf.concat(
|
||||
[tf.zeros_like(input_ids)[:, :-1], tf.ones_like(input_ids)[:, -1:]], axis=-1,
|
||||
)
|
||||
|
||||
inputs_dict = {
|
||||
"input_ids": input_ids,
|
||||
"token_type_ids": token_type_ids,
|
||||
"attention_mask": input_mask,
|
||||
"global_attention_mask": global_attention_mask,
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
def prepare_config_and_inputs_for_question_answering(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
) = config_and_inputs
|
||||
|
||||
# Replace sep_token_id by some random id
|
||||
input_ids = tf.where(input_ids == config.sep_token_id, 0, input_ids)
|
||||
# Make sure there are exactly three sep_token_id
|
||||
input_ids = tf.concat([input_ids[:, :-3], tf.ones_like(input_ids)[:, -3:] * config.sep_token_id], axis=-1)
|
||||
input_mask = tf.ones_like(input_ids)
|
||||
|
||||
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
|
||||
|
||||
@require_tf
|
||||
class TFLongformerModelTest(TFModelTesterMixin, unittest.TestCase):
|
||||
test_pruning = False # pruning is not supported
|
||||
test_headmasking = False # head masking is not supported
|
||||
test_torchscript = False
|
||||
|
||||
all_model_classes = (
|
||||
(TFLongformerModel, TFLongformerForMaskedLM, TFLongformerForQuestionAnswering,) if is_tf_available() else ()
|
||||
)
|
||||
|
||||
def setUp(self):
|
||||
self.model_tester = TFLongformerModelTester(self)
|
||||
self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)
|
||||
|
||||
def test_config(self):
|
||||
self.config_tester.run_common_tests()
|
||||
|
||||
def test_longformer_model_attention_mask_determinism(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs)
|
||||
|
||||
def test_longformer_model(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_longformer_model(*config_and_inputs)
|
||||
|
||||
def test_longformer_model_global_attention_mask(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_longformer_model_with_global_attention_mask(*config_and_inputs)
|
||||
|
||||
def test_longformer_for_masked_lm(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_longformer_for_masked_lm(*config_and_inputs)
|
||||
|
||||
def test_longformer_for_question_answering(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering()
|
||||
self.model_tester.create_and_check_longformer_for_question_answering(*config_and_inputs)
|
||||
|
||||
|
||||
@require_tf
|
||||
class TFLongformerModelIntegrationTest(unittest.TestCase):
|
||||
def _get_hidden_states(self):
|
||||
return tf.convert_to_tensor(
|
||||
[
|
||||
[
|
||||
[
|
||||
4.98332758e-01,
|
||||
2.69175139e00,
|
||||
-7.08081422e-03,
|
||||
1.04915401e00,
|
||||
-1.83476661e00,
|
||||
7.67220476e-01,
|
||||
2.98580543e-01,
|
||||
2.84803992e-02,
|
||||
],
|
||||
[
|
||||
-7.58357372e-01,
|
||||
4.20635998e-01,
|
||||
-4.04739919e-02,
|
||||
1.59924145e-01,
|
||||
2.05135748e00,
|
||||
-1.15997978e00,
|
||||
5.37166397e-01,
|
||||
2.62873606e-01,
|
||||
],
|
||||
[
|
||||
-1.69438001e00,
|
||||
4.17574660e-01,
|
||||
-1.49196962e00,
|
||||
-1.76483717e00,
|
||||
-1.94566312e-01,
|
||||
-1.71183858e00,
|
||||
7.72903565e-01,
|
||||
-1.11557056e00,
|
||||
],
|
||||
[
|
||||
5.44028163e-01,
|
||||
2.05466114e-01,
|
||||
-3.63045868e-01,
|
||||
2.41865062e-01,
|
||||
3.20348382e-01,
|
||||
-9.05611176e-01,
|
||||
-1.92690727e-01,
|
||||
-1.19917547e00,
|
||||
],
|
||||
]
|
||||
],
|
||||
dtype=tf.float32,
|
||||
)
|
||||
|
||||
def test_diagonalize(self):
|
||||
hidden_states = self._get_hidden_states()
|
||||
hidden_states = tf.reshape(hidden_states, (1, 8, 4)) # set seq length = 8, hidden dim = 4
|
||||
chunked_hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
|
||||
window_overlap_size = shape_list(chunked_hidden_states)[2]
|
||||
self.assertTrue(window_overlap_size == 4)
|
||||
|
||||
padded_hidden_states = TFLongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states)
|
||||
|
||||
self.assertTrue(
|
||||
shape_list(padded_hidden_states)[-1] == shape_list(chunked_hidden_states)[-1] + window_overlap_size - 1
|
||||
)
|
||||
|
||||
# first row => [0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000]
|
||||
tf.debugging.assert_near(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], rtol=1e-3)
|
||||
tf.debugging.assert_near(padded_hidden_states[0, 0, 0, 4:], tf.zeros((3,), dtype=tf.dtypes.float32), rtol=1e-3)
|
||||
|
||||
# last row => [0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629]
|
||||
tf.debugging.assert_near(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], rtol=1e-3)
|
||||
tf.debugging.assert_near(
|
||||
padded_hidden_states[0, 0, -1, :3], tf.zeros((3,), dtype=tf.dtypes.float32), rtol=1e-3
|
||||
)
|
||||
|
||||
def test_pad_and_transpose_last_two_dims(self):
|
||||
hidden_states = self._get_hidden_states()
|
||||
self.assertTrue(shape_list(hidden_states), [1, 8, 4])
|
||||
|
||||
# pad along seq length dim
|
||||
paddings = tf.constant([[0, 0], [0, 1], [0, 0]], dtype=tf.dtypes.int32)
|
||||
|
||||
padded_hidden_states = TFLongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, paddings)
|
||||
self.assertTrue(shape_list(padded_hidden_states) == [1, 8, 5])
|
||||
|
||||
expected_added_dim = tf.zeros((5,), dtype=tf.dtypes.float32)
|
||||
tf.debugging.assert_near(expected_added_dim, padded_hidden_states[0, -1, :], rtol=1e-6)
|
||||
tf.debugging.assert_near(
|
||||
hidden_states[0, -1, :], tf.reshape(padded_hidden_states, (1, -1))[0, 24:32], rtol=1e-6
|
||||
)
|
||||
|
||||
def test_mask_invalid_locations(self):
|
||||
hidden_states = self._get_hidden_states()
|
||||
batch_size = 1
|
||||
seq_length = 8
|
||||
hidden_size = 4
|
||||
hidden_states = tf.reshape(hidden_states, (batch_size, seq_length, hidden_size))
|
||||
hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
|
||||
|
||||
hid_states_1 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states, 1)
|
||||
hid_states_2 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states, 2)
|
||||
hid_states_3 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states[:, :, :, :3], 2)
|
||||
hid_states_4 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states[:, :, 2:, :], 2)
|
||||
|
||||
self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_1), tf.dtypes.int32)) == 8)
|
||||
self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_2), tf.dtypes.int32)) == 24)
|
||||
self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_3), tf.dtypes.int32)) == 24)
|
||||
self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_4), tf.dtypes.int32)) == 12)
|
||||
|
||||
def test_chunk(self):
|
||||
hidden_states = self._get_hidden_states()
|
||||
batch_size = 1
|
||||
seq_length = 8
|
||||
hidden_size = 4
|
||||
hidden_states = tf.reshape(hidden_states, (batch_size, seq_length, hidden_size))
|
||||
|
||||
chunked_hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
|
||||
|
||||
# expected slices across chunk and seq length dim
|
||||
expected_slice_along_seq_length = tf.convert_to_tensor([0.4983, -0.7584, -1.6944], dtype=tf.dtypes.float32)
|
||||
expected_slice_along_chunk = tf.convert_to_tensor([0.4983, -1.8348, -0.7584, 2.0514], dtype=tf.dtypes.float32)
|
||||
|
||||
self.assertTrue(shape_list(chunked_hidden_states) == [1, 3, 4, 4])
|
||||
tf.debugging.assert_near(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, rtol=1e-3)
|
||||
tf.debugging.assert_near(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, rtol=1e-3)
|
||||
|
||||
def test_layer_local_attn(self):
|
||||
model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny", use_cdn=False)
|
||||
layer = model.longformer.encoder.layer[0].attention.self_attention
|
||||
hidden_states = self._get_hidden_states()
|
||||
batch_size, seq_length, hidden_size = hidden_states.shape
|
||||
|
||||
attention_mask = tf.zeros((batch_size, 1, 1, seq_length), dtype=tf.dtypes.float32)
|
||||
attention_mask = tf.where(tf.range(4)[None, None, None, :] > 1, -10000.0, attention_mask)
|
||||
|
||||
output_hidden_states = layer([hidden_states, attention_mask, None])[0]
|
||||
|
||||
expected_slice = tf.convert_to_tensor(
|
||||
[0.00188, 0.012196, -0.017051, -0.025571, -0.02996, 0.017297, -0.011521, 0.004848], dtype=tf.dtypes.float32
|
||||
)
|
||||
|
||||
self.assertTrue(output_hidden_states.shape, (1, 4, 8))
|
||||
tf.debugging.assert_near(output_hidden_states[0, 1], expected_slice, rtol=1e-3)
|
||||
|
||||
def test_layer_global_attn(self):
|
||||
model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny", use_cdn=False)
|
||||
layer = model.longformer.encoder.layer[0].attention.self_attention
|
||||
hidden_states = self._get_hidden_states()
|
||||
|
||||
hidden_states = tf.concat([self._get_hidden_states(), self._get_hidden_states() - 0.5], axis=0)
|
||||
batch_size, seq_length, hidden_size = hidden_states.shape
|
||||
|
||||
# create attn mask
|
||||
attention_mask_1 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)
|
||||
attention_mask_2 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)
|
||||
|
||||
attention_mask_1 = tf.where(tf.range(4)[None, None, None, :] > 1, 10000.0, attention_mask_1)
|
||||
attention_mask_1 = tf.where(tf.range(4)[None, None, None, :] > 2, -10000.0, attention_mask_1)
|
||||
attention_mask_2 = tf.where(tf.range(4)[None, None, None, :] > 0, 10000.0, attention_mask_2)
|
||||
attention_mask = tf.concat([attention_mask_1, attention_mask_2], axis=0)
|
||||
|
||||
output_hidden_states = layer([hidden_states, attention_mask, None])[0]
|
||||
|
||||
self.assertTrue(output_hidden_states.shape, (2, 4, 8))
|
||||
expected_slice_0 = tf.convert_to_tensor(
|
||||
[-0.06508, -0.039306, 0.030934, -0.03417, -0.00656, -0.01553, -0.02088, -0.04938], dtype=tf.dtypes.float32
|
||||
)
|
||||
|
||||
expected_slice_1 = tf.convert_to_tensor(
|
||||
[-0.04055, -0.038399, 0.0396, -0.03735, -0.03415, 0.01357, 0.00145, -0.05709], dtype=tf.dtypes.float32
|
||||
)
|
||||
|
||||
tf.debugging.assert_near(output_hidden_states[0, 2], expected_slice_0, rtol=1e-3)
|
||||
tf.debugging.assert_near(output_hidden_states[1, -2], expected_slice_1, rtol=1e-3)
|
||||
|
||||
@slow
|
||||
def test_inference_no_head(self):
|
||||
model = TFLongformerModel.from_pretrained("allenai/longformer-base-4096")
|
||||
|
||||
# 'Hello world!'
|
||||
input_ids = tf.convert_to_tensor([[0, 20920, 232, 328, 1437, 2]], dtype=tf.dtypes.int32)
|
||||
attention_mask = tf.ones(shape_list(input_ids), dtype=tf.dtypes.int32)
|
||||
|
||||
output = model(input_ids, attention_mask=attention_mask)[0]
|
||||
output_without_mask = model(input_ids)[0]
|
||||
|
||||
expected_output_slice = tf.convert_to_tensor(
|
||||
[0.0549, 0.1087, -0.1119, -0.0368, 0.0250], dtype=tf.dtypes.float32
|
||||
)
|
||||
|
||||
tf.debugging.assert_near(output[0, 0, -5:], expected_output_slice, rtol=1e-3)
|
||||
tf.debugging.assert_near(output_without_mask[0, 0, -5:], expected_output_slice, rtol=1e-3)
|
||||
|
||||
@slow
|
||||
def test_inference_no_head_long(self):
|
||||
model = TFLongformerModel.from_pretrained("allenai/longformer-base-4096")
|
||||
|
||||
# 'Hello world! ' repeated 1000 times
|
||||
input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.dtypes.int32)
|
||||
|
||||
attention_mask = tf.ones(shape_list(input_ids), dtype=tf.dtypes.int32)
|
||||
global_attention_mask = tf.zeros(shape_list(input_ids), dtype=tf.dtypes.int32)
|
||||
# Set global attention on a few random positions
|
||||
global_attention_mask = tf.tensor_scatter_nd_update(
|
||||
global_attention_mask, tf.constant([[0, 1], [0, 4], [0, 21]]), tf.constant([1, 1, 1])
|
||||
)
|
||||
|
||||
output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0]
|
||||
|
||||
expected_output_sum = tf.constant(74585.875)
|
||||
expected_output_mean = tf.constant(0.024267)
|
||||
|
||||
# assert close
|
||||
tf.debugging.assert_near(tf.reduce_sum(output), expected_output_sum, rtol=1e-4)
|
||||
tf.debugging.assert_near(tf.reduce_mean(output), expected_output_mean, rtol=1e-4)
|
||||
|
||||
@slow
|
||||
def test_inference_masked_lm_long(self):
|
||||
model = TFLongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")
|
||||
|
||||
# 'Hello world! ' repeated 1000 times
|
||||
input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.dtypes.int32)
|
||||
|
||||
loss, prediction_scores = model(input_ids, labels=input_ids)
|
||||
|
||||
expected_loss = tf.constant(0.0073798)
|
||||
expected_prediction_scores_sum = tf.constant(-610476600.0)
|
||||
expected_prediction_scores_mean = tf.constant(-3.03477)
|
||||
|
||||
# assert close
|
||||
tf.debugging.assert_near(tf.reduce_mean(loss), expected_loss, rtol=1e-4)
|
||||
tf.debugging.assert_near(tf.reduce_sum(prediction_scores), expected_prediction_scores_sum, rtol=1e-4)
|
||||
tf.debugging.assert_near(tf.reduce_mean(prediction_scores), expected_prediction_scores_mean, rtol=1e-4)
|
Loading…
Reference in New Issue
Block a user